
Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 272

ISSN:0974-7230 JCSB, an open access journal

Genetic Networks Described in Stochastic Pi Machine (SPiM)
Programming Language: Compositional Design

Andrew Kuznetsov*

Freiburg University, Baden-Wuerttemberg GERMANY

Abstract

If biological objects are created by natural selection, why are

they composed of discrete modules? What has been the nature

of mutations since the Darwinian epoch? This paper presents

examples of genetic circuits in terms of stochastic π-calculus; a

new mathematical language for nanosystems. The author used a

constructor of five elements such as decay, null gate, gene prod-

uct, and negative and positive gates. These primitives were ap-

plied to design genetic switches, oscillators, feedforward and

feedback loops, pulse generators, memory elements, and com-

binatorial logics. The behaviors of those circuits were investi-

gated – functions, such as oscillations or a spontaneous pulse

generation were performed simply, flip-flops between stable

states occurred in the noisy environment. The modular essence

of π-calculus and the following up features of Stochastic Pi

Machine (SPiM) programming language allowed us to change

the topology of networks that resembled a gene exchange in

nature. Other types of mutations were considered as variations

in parameters. Perturbations modified system behavior in un-

predictable ways that generated diversity for a possible future

design by selection of appropriative variants.

Research Article OPEN ACCESS Freely available online doi:10.4172/jcsb.1000042

*Corresponding author: Andrew Kuznetsov, Freiburg University, Baden-

Wuerttemberg GERMANY, E-mail: andrei_kouznetsov@hotmail.com

Received September 29, 2009; Accepted October 29, 2009; Published

October 29, 2009

Citation: Kuznetsov A (2009) VMD: Genetic Networks Described in Sto-

chastic Pi Machine (SPiM) Programming Language: Compositional

Design. J Comput Sci Syst Biol 2: 272-282. doi:10.4172/jcsb.1000042

Copyright: © 2009 Kuznetsov A. This is an open-access article distrib-

uted under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Keywords: Genetic network motifs; Modular design; Sto-

chastic pi-calculus; SPiM programming language

Introduction

Biological entities are different from artificial devices be-

cause they are developed by an algorithm that Charles Darwin

called natural selection. Evolutionary simulations demon-

strated that modular structures are rare and less optimal than

fully wired counterparts (Poli et al., 2008; Thompson, 1998).

That is why the masterpiece of biological networks is an en-

tanglement. However, there are many examples of modular

design in evolution; body plans of invertebrates and verte-

brates, and modular metabolic networks within bacteria

(Kreimer et al., 2008; Parter et al., 2007). Modular structures

can spontaneously emerge if the environment changes over

time (Kashtan and Alon, 2005). Modularity can also dramati-

cally speed up evolution (Kashtan et al., 2007). On the other

hand, modularity is a basis of our ability to divide a problem

into parts and to scale up to large systems by a composition of

elements.

The motivation of this experiment is a biologically inspired

bottom-up design from basic primitives or modules which re-

semble the natural evolution process of a composition of gene

clusters and protein domains (Kuznetsov, 2009a). Artificial

genetic networks of increasing complexity were constructed

from their components. An attempt to study in a formal way

the relation between genotype and phenotype was done and

the behavior of genetic circuits of different topologies was

investigated. Special attention was given to using an adequate

language to describe a large system with interacting compo-

nents. In general, π-calculus is such a language. Modules were

described in the π-calculus formalism because it is subse-

quently expected to explore a larger system of the modules,

like genetic networks. The main point here is a modular na-

ture of π-calculus that opens the door to the combinatorial

design on the basis of Stochastic Pi Machine (SPiM) program-

ming language.

Basically, π-calculus is a model of computation for concur-

rent systems whose configuration may change during the com-

putation in which “everything is a process” and all computa-

tion proceeds by communication on channels. The syntax of

π-calculus lets us represent parallel processes, synchronous

communication between processes through channels, and

nondeterminism. A process is an abstraction of independent

threads. A channel is an abstraction of the communication be-

tween two processes. Processes interact with each other by

sending and receiving messages over channels. The content

of messages is also channels. As a result of such a communi-

cation event, the recipient process may now use the received

channel for further communication. This feature, called mo-

bility, allows the network “wiring” to change with interaction.

Stochastic π-calculus is an elegant approach to simulating the

populations of biological molecules. A system is defined by a

flow chart that gives the rates of transitions between states,

for example the rate of protein production. The simulator

chooses among the possibilities at random simulation. The

SPiM is a programming language for designing and simulat-

ing computer models of biological processes. The language is

based on π-calculus formalism and the simulation algorithm

is based on chemical kinetics theory. The language can be used

to model large systems incrementally by directly composing

simpler models of subsystems.

Some historical facts in the development of π-calculus should

be mentioned: the π-calculus was invented in 1992 by Robin

Milner with the aim of describing interactive systems. He

showed that λ-calculus can be expressed in the π-calculus

formalism that demonstrates a computation equivalence of π-

calculus and a Turing machine (Milner, 1992; Milner, 1999).

The π-calculus has been used to describe many different kinds

of concurrent systems from mobile nets to business

applications. Aviv Regev and Ehud Shapiro used stochastic π-

calculus for a representation and simulation of molecular

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 273

ISSN:0974-7230 JCSB, an open access journal

pathways in computational biology (Priami et al., 2001).

Various π-calculus languages with particular formal syntaxes

and semantics, as well as simulators for parallel processes were

developed; the stochastic π-calculus was originally proposed

by Corrado Priami in 1995, while Andrew Phillips and Luca

Cardelli developed SPiM language and designed a stochastic

simulator (Stochastic Pi-Machine, SPiM) that performed a

Gillespie algorithm (Gillespie, 1977). The machine has been

formally specified and approved for the stochastic π-calculus

(Phillips, 2009b). The SPiM simulator is available for free

distribution on different platforms (Linux, MacOS X,

Windows). SPiM Player, a graphical user interface to SPiM

was written by James Margetson and co-workers in F#

language. Molecular systems were described via these tools

as collectives of interacting automata in artificial chemistry

(Cardelli, 2009). Recently, the SPiM calculus was promoted

as a formal visual programming language for biology (Phillips,

2009a).

With this background, the aim of this paper was to investigate

abstract gene-regulated networks in terms of basic primitives

and their interactions. Following (Blossey et al., 2006), the

SpiM simulator based on stochastic π-calculus was used for

the modeling of concurrent biochemical processes during the

bottom-up design of genetic networks.

The paper is structured as follows. The basic circuit

primitives in SPiM calculus are defined in the “method”. The

section “results” describes the genetic circuits of increasing

complexity such as neg and pos gates, circuit connections,

switches, oscillator motif and repressilator, feedforward and

feedback loops, memory elements and bifans. Genetic gates

are defined in the SPiM programming language and showed

in bold in the text and figures. In addition, the behaviors of

gates are described through programming code in the

“appendix” and the “supplement”. The main contribution of

the paper – valid modular design of genetic networks in SPiM

language, as well as novel aspects of design are highlighted in

the “discussion”. For instance, the design job in SPiM

programming language looks like an evolution process. Genetic

gates with multiple inputs allowed us to develop genetic

networks with a high connectivity. A robust memory element

consisting of four neg genetic gates was successfully created.

The stochastic noise in SPiM calculus demonstrated a novel

phenomena. Some of the data is included in the “supplement”.

Method

The Stochastic Pi-Machine Version 0.05 (Phillips, 2007) and

the SPiM Player Version 1.13 were used by the author for in

silico experiments with Microsoft Windows XP operating sys-

tem and NET Framework 2.0 on a Fujitsu Siemens Computer;

Intel Celeron M CPU 520 at 1.60 GHz, 95 MHz, and 448 MB

of RAM.

A gap between the abstract mathematical model and the

programming code, i.e. between the specification and the

program that implements it was eliminated by compression as

in earlier studies (Blossey et al., 2006; Blossey et al., 2008).

Interactions between biological molecules such as DNA and

protein transcription factors were considered as channels. Each

element of the network is a genetic gate and defines an input/

output relationship corresponding to the binding and synthesis

of transcription factors (Blossey et al., 2008). Network

elements become autonomous and only the input/output

relations determine their wiring. Unary reactions, i.e. protein

degradation are followed by a stochastic delay. Binary reactions

are represented as a channel with an input (?) and output (!). A

protein reactant is defined as an input or output on a given

channel. Extra notations are used in the paper such as the

constitutive expression rate ε, protein degradation δ, gene

unblocking η, and for the binding of the transcription factor.

For instance, a transcription factor can decay in the reaction

δ, a blocked gene can be unblocked by the reaction η. A gene

can also produce a new protein independently in the reaction

ε, where a vertical bar (|) represents parallel execution (see

definitions below). An initial population of proteins is

empty; they are expressed constitutively and stochastically by

genetic gates.

A stochastic nature of molecular interactions on a nanoscale

was described according to (Blossey et al., 2006). For example,

τ
ε
 is a stochastic delay where τ is a symbol indicating event

delay, and ε is the stochastic reaction constant which gives the

probability per unit time that the delay action will occur

(Gillespie, 1977). When an action with rate ε is enabled, the

probability that it will happen in the period of time t is P(t) =

1-e-εt. This distribution satisfies Markov’s property of stochastic

dynamics.

The following primitives in SPiM calculus were used to build

networks with different topologies:

1) decay or degradation of a transcription factor tr(b) ≡≡≡≡ τ
δ
,

2) null gate or constitutive transcription null(b) ≡≡≡≡ τ
ε
. (tr(b) |

null(b)),

3) gene product or protein transcription factor tr(b) ≡≡≡≡ !b. tr(b)

+ τ
δ
,

4) neg gate or negative regulation neg(a,b) ≡≡≡≡ ?a. τ
η
. neg(a,b)

+ τ
ε
. (tr(b) | neg(a,b)),

5) pos gate or positive regulation pos(a,b) ≡≡≡≡ ?a. τ
η
. (tr(b) |

pos(a,b)) + τ
ε
. (tr(b) | pos(a,b)).

Genetic networks with an increasing number of nodes and

connectivity were investigated with a nominal set of param-

eters: the protein binding r = 1.0 and protein decay δ = 0.001

for any gate, the constitutive transcription ε
n
 = 0.1 and repres-

sion η
n
 = 0.01 for a negative gate, and the constitutive tran-

scription ε
p
 = 0.01 and activation η

p
 = 0.1 for a positive gate.

To exploit a parameter space, I gradually varied the rates r, δ,

ε and η in the experiments. Algorithms were mapped to ex-

ecutable program codes for SPiM (see Appendix and Supple-

ment 4).

Results

Behavior of basic gates

The basic neg and pos gates were represented previously by

Blossey and co-workers (Blossey et al., 2006). In the case of a

negative gate (4) without input shown in Figure 1a, the gene

can express a protein by performing first a stochastic delay at

the rate ε
n
 = 0.1 and then executing a new protein in parallel to

the gene itself. Alternatively, in the presence of input (Figure

1c), it can be blocked by an input on its promoter region a and

then be unblocked during a stochastic delay at the rate η
n
 =

0.01 to activate the gene. In contrast, the modified positive

r

1-5

http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip
http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip
http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip
http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip
http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 274

ISSN:0974-7230 JCSB, an open access journal

Figure1: Basic genetic gates described in stochastic π-calculus.

genetic gate (5) depicted in Figure 1b, can follow in stochas-

tic delay at the low rate ε
p
 = 0.01 to constitutively express a

new protein in parallel to the gene or it can carry out an input

on its promoter region a and then activate transcription at the

high rate η
p
 = 0.1 (Figure 1d).

Simulations were started in the absence of proteins by do-

ing a constitutive transcription. The number of protein mol-

ecules initially increased and finally leveled off at equilibrium

between the production and degradation depending on the pa-

rameters ε and δ. The constitutive expression and the output

were higher for the negative regulator than for the positive

one (Figure 1a, b).

To observe a response of genetic elements, an input allowed

linear increases from 0 to 100 individual molecules, then de-

creased linearly to 0. The input a-molecules were injected into

the system at a certain time to shape the curve b. As a result of

the reaction, the negative gate behaved like an inverter (Fig-

ure 1c) whereas the positive gate increased the output signal

about almost 10 times (Figure 1d). For each plot, the abscissa

indicates the time of simulation and the ordinate is the num-

ber of molecules.

Apparently, the simplest circuit is the single gate interacting

with itself in a feedback loop. In this case, a promoter region

a of the gene is parameterized together with the transcribed

protein tr(a). The transcription factor can repeatedly make an

output acting on the promoter region a, or it can decay at the

rate δ according to expression (3). If output was wired to in-

put, then the negative and positive gates showed an

autorepression and an amplification respectively (Figure 1e,

f). The neg(a,a) gate stabilized at an appropriative low level

of tr(a). In contrast, a magnitude of tr(a) for the pos(a,a) gate

was about 100 times higher in my experiments.

Connection of components in networks

Once basic elements are defined, genetics circuits can be

assembled by providing interaction channels connecting vari-

ous gates. For example, pos(a,b) | pos(b,c) means the pos(a,b)

process will offer output !b through tr(b) and the pos(b,c) will

ask for input ?b. Hence, the shared channel b can result in

interaction between the two processes. The same principle can

be extended to a chain of gates (Figure 2a).

The simulation took place with a constitutive transcription.

Channels were declared separately. In the absence of stimu-

lus, the first pos gate produced a low output b which was

enough to activate the next element. The outputs of the ele-

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 275

ISSN:0974-7230 JCSB, an open access journal

Figure 2: Composition of functional genetic networks

Figure 3: Genetic switches.

ments that followed increased very rapidly. In contrast, a se-

quence of neg gaits demonstrated an interchange of outputs.

In the absence of an initial input a, the odd gates showed high

output values b, d, f. At the same time, outputs of the even

gates c, e stayed at a low level (Figure 2b). A signal moved

through the chain of neg gates with a delay depending on the

parameter η
n
. The smaller the value of η

n
, the longer the time

for gene activation and the slower the propagation of the acti-

vation wave (data not shown).

The same circuit including a negative feedback on the head

gate showed a rather altered behavior. The performance was

chaotic at parameter η
n
 = 0.01. Gene activities fluctuated sig-

nificantly by time and amplitude (Figure 2c). When the re-

pression delay was increased to η
n
 = 10.0, the system stabi-

lized itself at a fix-point (Figure 2d). These results comply

with Blossey and co-authors (Blossey et al., 2006).

Switches

The combination neg(a,b) | pos(b,a) is a mono-stable feed-

Journal of Computer Science & Systems Biology - Open Access
JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 276

ISSN:0974-7230 JCSB, an open access journal

Figure 4: Oscillator motif and repressilator.

Figure 5: Coherent feedforward loop (C1-FFL).

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 277

ISSN:0974-7230 JCSB, an open access journal

back loop. In contrast to neg(a,a), it has two outputs a and b.

In the absence of stimuli, the system can stochastically start

with an occurrence of protein a before stabilization (Figure

3a). A long-time simulation revealed spontaneous fluctuations

in the expression of this protein, up to 126 molecules in a

spike (Figure 3a, insertion).

The composition neg(a,b) | neg(b,a) is a bi-stable toggle

switch, which can start up in one state or another and as a rule

stay there (Figure 3b, c).

More interesting is a tri-stable toggle switch neg(a,b,c) |

neg(b,c,a) | neg(c,a,b) that can produce three alternative com-

binations of proteins, such as (a,b), (b,c) and (c,d). Each gate

has two promoter regions and one output. They are wired to

each other as shown in Figure 3d. Occasionally, the system

did flip-flops from one state to the other at the conventional

set of parameters (Figure 3f, insertion). When a repression by

protein binding r was increased to the value 10.0 instead of

1.0, the toggle switch showed stable behavior for a long time.

Thus, the tri-stable toggle switch demonstrates a possibility to

build nontrivial genetic networks with high connectivity.

Oscillator motif and repressilator

An oscillator motif includes a negative feedback loop and a

positive self-activation loop. It can be written in SPiM lan-

guage such as pos(a,a) | pos(a,b) | neg(b,a). Preliminary ex-

periments with standard values of parameters did not reach

oscillations. Proteins fluctuated due to inherent stochastic noise

in the system (Figure 4a). When the rate of positive gene un-

blocking was decreased to η
p
 = 0.001, irregular oscillations

of protein a were induced (Figure 4c).

A repressilator consists of three neg gates that mutually re-

press each other: neg(a,b) | neg(b,c) | neg(c,a). Simulation of

the repressilator at nominal parameters resulted in an irregu-

lar duration of protein cycles (Figure 4b). Since dynamics of

the network depends on relative rates of the parameters r, δ, ε

and η (Blossey et al., 2008), it was possible to fix the value of

one parameter (ε
n
 = 0.1) in order to study the effects of the

others. The decreased rate of gene unblocking η
p
 = 0.001 and

the increased protein binding r = 10.0 allowed an improve-

ment of the regularity of oscillations. Populations of proteins

stabilized near 100 molecules in each cycle with the duration

of impulses being about 625 units (Figure 4d).

Feedforward loops

A feedforward loop (FFL) is a circuit from three genes that

express two transcription factors one of which regulates the

other and together they regulate a target gene. The FFL has

eight possible subgraphs, however, only two of them, namely

the C1 coherent feedforward loop (C1-FFL) and the I1 inco-

herent feedforward loop (I1-FFL) are highly abundant in tran-

scription networks of E.coli and yeast (Alon, 2007). These

motifs were denoted as follows: C1-FFL – pos(a,b) | pos(a,c)

| pos(b,c) and I1-FFL – pos(a,b) | pos(a,c) | neg(b,c). Varia-

tions in a constitutive expression of pos gates (ε
p
) were criti-

cal for both feedforward loops.

C1-FFL output at nominal parameters and an empty start

condition is depicted in Figure 5a. Curves demonstrate a cor-

relation between amounts of b and c proteins, depending on

pos(b,c) gate activity. The system stabilized at low records for

protein b and a high quantity for protein c in agreement with

the unitary regulation for b and double positive regulation for

c proteins. When the value of ε
p
 decreased, the amounts of

both proteins dropped considerably. Spontaneous impulses of

c protein expression were observed at the very small ε
p
 =

0.0001, indicating a fast front and an exponential backside

and amplitude up to 100 molecules (Figure 5b, c). When ε
p

went down to 0.00001, the time between impulses increased

and they became far less frequent, and the system mostly slept

(Figure 5d). This behavior is determined by very rare consti-

tutive transcription events at pos(a,c) and pos(b,c) genes be-

cause of the enormous delay ε
p
. It may be that only a success-

ful combination of activity for pos(a,c) and pos(b,c) gates with

dependency on pos(a,b) gate is able to activate c output under

the conventional conditions of relatively hard protein degra-

dation δ = 0.001.

As usual, the standard set of parameters was used in experi-

ments with input. Proteins a and b were injected at 500 and at

1000 time intervals of simulation according to a triangle-shape

function. In the case of single input a, Figure 5e shows a sharp

response of b and c proteins with saturation at 100 and 200

protein molecules respectively. A double injection did not

change the shape of c output even during the simultaneous

presence of both proteins a and b (Figure 5f).

I1-FFL output at nominal parameters was depressed via an

antagonism between pos(a,c) and neg(b,c) gates (Figure 6b).

When the value ε
p
 increased, it meant an augmentation of con-

stitutive transcription for the pos gates and production of both

proteins b and c improved significantly (Figure 6a). In this

situation, the role of the neg(b,c) gate was insufficient. On the

other hand, when the constitutive transcription for pos gates

decreased to ε
p
 = 0.001, then the situation changed and a fine

balance between pos(a,c) and neg(b,c) gates played a major

role. As a rule, the productivity of neg(b,c) gate was enough

to suppress c protein for a time. Warped flops in c output were

observed as a result of chaotic neg(b,c) regulation activity (Fig-

ure 6c). When a value of transcription for pos gates decreased

to ε
p
 = 0.00001, the activation of neg(b,c) gate by pos(a,c)

was very low and the system demonstrated a stable produc-

tion of c protein once again (Figure 6d). Under these condi-

tions, the neg(b,c) gene was able to inhibit c output only spo-

radically (Figure 6d, insertion).

Subsequent simulations with inputs were performed at nomi-

nal parameters as before. An injection of protein a in the sys-

tem provoked a fast coherent response for both b and c pro-

teins up to 100 molecules (Figure 6e). Additional injection of

protein b did not affect c output (Figure 6f). When injections

were finished, the system retuned into an initial state.

Obtained data showed that C1-FFL circuit behaved like a

logical OR operator, whereas I1-FFL gate demonstrated

TRUE-A logics under the standard conditions: r = 1.0, δ =

0.001, ε
n
 = 0.1, η

n
 = 0.01, ε

p
 = 0.01 and η

p
 = 0.1.

Composition of feedforward and feedback loops (FFBL)

Coherent and incoherent FFBL were denoted as the pos(a,b)

| neg(b,a) | pos(a,c) | neg(b,c) and the pos(a,b) | neg(b,a) |

neg(a,c) | pos(b,c) accordingly. They operated at a nominal

regime like coherent pulse generator and decoherent pulse gen-

erator (Figure 7). Nevertheless, variations in parameters lead

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 278

ISSN:0974-7230 JCSB, an open access journal

Figure 6: Incoherent feedforward loop (I1-FFL).

Figure 7: Coherent and incoherent compositional feedforward and feedback loops - stochastic pulse generators.

to extremely diverse behaviors in experiments. The rates of

parameters ε
n
, η

n
, ε

p
 and η

p
 were changed gradually from 0.1

to 0.0001. Both FFBLs were investigated in detail during short

and long simulations (up to 5.104 and 106 time intervals). Re-

sults of the experiments are in Supplements 1 and 2.

I discovered that the coherent FFBL circuit can be in four

different states corresponding to particular patterns of protein

expression: I – low basal production of b and c proteins, II –

intensive stable production of b and c, III – spontaneous syn-

chronous outputs of a and c, and IV – exhaustive expression

of a and c proteins with gaps. These essential states were sig-

nificantly influenced by stochastic fluctuations. Nevertheless,

I did not observe any transition from one state to another when

the parameters were fixed. A system with a standard set of

parameters was typically in state I which demonstrated an equi-

librium level of b and c proteins near 10 molecules and syn-

chronous pulses of expression up to 100 molecules (S1: pic-

tures 1, 6, 10, 13). When the value of parameter ε
n
 was pro-

gressively decreased from 0.1 to 0.0001, then the frequency

and amplitude of these pulses fell; the system reached a still

state with low expression (S1: 1-4). Hence, a silencing of the

constitutive expression for negative regulators reduced the

http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 279

ISSN:0974-7230 JCSB, an open access journal

coherent FFBL to low activity at the standard rates of other

parameters.

When the value of η
n
 was altered from 0.01 to 0.1, then the

system generated more pulses with the amplitude up to 100

molecules (S1: 5). A shift of η
n
 from 0.01 to 0.0001 led to a

low protein expression of about 10 molecules (S1: 8) as in the

previous still state. Small values of parameters ε
n
 and η

n
 de-

termined the same output effects mediated by neg gates (S1: 4

and 8). Obviously, a rare unblocking neg regulation has a simi-

lar effect as the low constitutive expression.

When I investigated the properties of pos gates, the value of

ε
p
 increased to 0.1 and an expression of b and c proteins in-

creased to 100 molecules; it is just a state defined as II (S1:

9). A production of those proteins significantly improved as a

result of a more effective pos(a,b) and pos(a,c) constitutive

expression. In contrast, when the ε
p
 decreased, the frequency

of synchronous positive pulses increased (S1: 11, 12).

Activities of the coherent FFBL were more surprising when

the parameter η
p
 changed. The system occurred in an unruffled

state I at value η
p
 = 0.01 with a low level of expression for b

and c proteins (S1: 14) exactly like the small rates of ε
n
 and η

n

= 0.0001 (S1: 4, 8). However, the system stayed in a new state

III at η
p
 = 0.001, producing proteins a and c synchronously

instead of b and c. From time to time, the circuit generated

complex pulse trains of a and c proteins with an amplitude of

up to 100 molecules (S1: 15). A poor basal production of pro-

tein b at an average of 10 molecules interchanged with these

islands for an intensive expression of a and c proteins. When

the η
p
 had a rate 0.0001, then the system occupied the next

state IV with a rich synchronous output of a and c proteins

and negative pulses to a low content (S1: 16). Thus, the pro-

gressive decreasing of probability of activation for positive

gates pos(a,b) and pos(a,c) led firstly to the stabilization of b

and c expression at a low level (S1: 14), but later provoked an

intensive production of protein a instead of b through a feed-

back loop. In the case of infrequent activations of the pos gates,

the system rearranged itself from state I to states III and IV

(S1: 15, 16).

An incoherent FFBL circuit showed even more sophisticated

outputs. Sometimes the system demonstrated unstable dynamic

behavior. I found this circuit in the following states: I –

decoherent small amounts of b and large amounts of c pro-

teins, II – independent low level of b protein and intermediate

level of c protein, III – flip-flops between a and c production,

and IV – asynchronous low c and intermediate a proteins ex-

pression. In addition, I introduced the next states: Ia – for in-

dependent low b with intermediate and high c levels, as well

as state IIa – for intermediate b and high c proteins expres-

sion. The low level of any protein expression accorded to about

10 molecules, the intermediate level to near 100 molecules,

and the high level averaged 200 molecules. The circuit re-

mained in state I at the conventional values of the parameters.

This system generated synchronous pulses with positive and

negative amplitudes for b and c proteins up and down to 100

molecules accordingly (S2: 1). When the rate of ε
n
 was shifted

from 0.1 to 0.01-0.0001, the system followed in state II. In

this case, the constitutive expression of neg(b,a) and neg(a,c)

genes decreased. A negative control of protein a dropped, hence

protein a suppressed c. The output of c decreased from 200 to

100 molecules. In addition, the frequency and amplitude of b

pulses fell (S2: 2-4).

When I increased the value of η
n
 up to 0.1, the frequency of

b and c pulses rose as a result of frequent unblocking actions

for negative gates (S2: 5). When the value of η
n
 decreased to

Fig.8 Bi-stability and a memory effect within 4-node feedback loop
Figure 8: Bi-stability and a memory effect within 4-node feedback loop.

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 280

ISSN:0974-7230 JCSB, an open access journal

0.0001, then I observed an unusual effect which I called state

Ia. Sometimes the system dropped to an intermediate level of

c expression for a short time and after returned to the high c

production typical for state I (S2: 8). I believe that infrequent

unblocking events for negative gates lead the system to a vis-

ibly unstable intermediate level of c protein expression.

In the following experiment, I increased ε
p
 to 0.1 that gave a

new state IIa with intermediate b and high c expression (S2:

9). This change of parameters improved the constitutive ex-

pression of pos(a,b) and pos(b,c) genes leading to a

superproduction of b and c proteins. I identified an incoherent

FFBL circuit in the basic state I at ε
p
 = 0.01, 0.001 and 0.0001

even though the frequency of pulses progressively increased

(S2: 10-12).

Finally, when the value of parameter η
p
 decreased to 0.01,

the system woke up and changed from state I to state II (S2:

13, 14). When η
p
 decreased, the behavior transformation was

more dramatic. The system turned on to state IV at η
p
 = 0.0001.

An expression of protein a appeared at an intermediate level

up to 100 molecules and the expression of protein c decreased

drastically to about 10 molecules (S2: 16) which I had not

observed before. In addition, I discovered very interesting re-

actions at η
p
 = 0.001: the system switched from time to time

from state II to state IV producing intricate pulse trains of the

protein a or c (S2: 15). I defined this state as III based on the

instability and sufficient role of specific η
p
 activation within

the feedback loop pos(a,b), neg(b,a).

In general, both coherent and incoherent FFBL circuits pro-

duce coherent and decoherent pulses, being in state I at a nomi-

nal set of parameters. In addition, they behave as stochastic

pulse generators in the instable state III at the particular low

rate η
p
 = 0.001.

Bi-stability and memory effects

Achievements in previous sections were used to design a

genetic memory element. The closed chain neg(a,b) | neg(b,c)

| neg(c,d) | neg(d,a) demonstrating bi-stable characteristics

was investigated in detail. The system arbitrarily started from

expression (a,c) or (b,d) proteins. I investigated the circuit for

different values of parameter η
p
 but did not detect spontane-

ous transitions between states even at the extremely low η
p
 =

0.00001. Flip-flops were detected at the constitutive transcrip-

tion ε
n
 = 0.01. Effective protein binding r > 1.0 improved sta-

bility, however intensive protein decay δ > 0.0001 destabi-

lized the system (data not shown). Fortunately, the circuit dem-

onstrated stable behavior at a standard range of parameters.

After it dropped to an arbitrary state, the system survived for

a long time (Figure 8a, b). However, the circuit was sensitive

to external inputs. For example, when the system is in state

bd, then a programmable input a can change the state to a new

state ac, i.e. the production of b and d proteins can be changed

to a and c proteins by input a (Figure 8c). More of them, if

input a no longer exists, nevertheless, the system stayed at the

state ac and did not turn back until the specific input b changed

the system’s state again (Figure 8d). The program code for

this experiment is in the Appendix.

Bifan

Bifan is a simplest element of combinatorial logics based

on multiple inputs. I investigated bifans with variable struc-

tures under the control of diverse inputs. These circuits repre-

sented a stable and relatively poor behavior at various param-

eters. Bifan comprising only pos gates performed synchronous

outputs, when the input signals were applied separately (Fig-

ure 9a). Over time, when the inputs overlapped each other, the

pos bifan worked as an adder (Figure 9b). Bifan consisting

exclusively of neg gates behaved as an inverter or a subtractor

depending on the time interval between inputs (Figure 9c).

Symmetric bifan with two pos gates and two neg gates gener-

ated symmetric outputs (Figure 9d). Opposite, asymmetric

bifans with three pos gates and one neg gate (Figure 9e) or

Figure 9: Bifan – time-amplitude modulation with different patterns of expression.

http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 281

ISSN:0974-7230 JCSB, an open access journal

with one pos gate and three neg gates (Figure 9f) performed

more complex jobs. These patterns were repeatable, recog-

nizable, and strongly dependent on time and a combination of

inputs even in the stochastic environment.

Discussion

I wondered how Kaufmann’s networks could be combined

with agent-based modeling to describe interactions between

objects in terms of rules. One idea was to avoid a combinato-

rial explosion. The answer was found earlier by Robin Milner,

Joachim Parrow, and David Walker who introduced π-calcu-

lus which are inherently modular. This concurrent language

describes a dynamical network in terms of computable ele-

ments. Andrew Phillips and colleagues developed SPiM cal-

culus that is in fact a language for biological systems. For ex-

ample, gene is defined as a gate with corresponding inputs

and outputs. Genetic networks are composed from simple com-

putational elements. Modeling with Stochastic Pi-Machine is

like programming, where program parts correspond to autono-

mous genetic elements. The design of a system from essential

elements looks like a process of evolution. The “…composi-

tional evolution is inherently scalable and leaves gradual evo-

lution stuck at the starting blocks” (Watson, 2006). Therefore,

the composition nature of π-calculus could allow a combina-

torial design and perhaps genetic programming in the field.

A genetic constructor of five elements was used in this work;

decay, null gate, gene product, negative and positive gates.

Actually, the two last primitives are composed from the three

first ones and only the gene product, as well as neg and pos

gates were used to build more complex engines, such as ge-

netic switches, oscillators, feedforward and feedback loops,

pulse generators, memory elements and combinatorial logics

based on multiple inputs – the essential blocks of large infor-

mation devices and networks. This flexible toolkit allowed me

to investigate genetic circuits of different topologies and com-

plexities. An important part of the simulations was stochastic

noise which is an internal property of biological systems that

have a small number of molecules in a cell. The SPiM com-

puting environment showed that some functions such as oscil-

lations or stochastic pulses could be performed easily. For

example, the SPiM Player used in the experiments is based on

the Gillespite stochastic algorithm that enables accurate com-

puter simulations. Unfortunately, the algor ithm is

computationally too expensive for models with a large num-

ber of channels.

From another perspective, motifs in large-scale gene regu-

lation networks were regarded like ‘biological atoms’ (Alon,

2007). They are negative and positive auto-regulators, coher-

ent and incoherent feedforward loops, single-input module,

multi-output feedforward loop, bifan and dense overlapping

regulators. These network motifs discovered in nature by sys-

tems biology could possibly be used as building blocks for

synthetic biology (Kuznetsov, 2009b).

In this paper, artificial and natural networks were investi-

gated. At the beginning, I repeated the original models in SPiM

calculus developed by (Blossey et al., 2006), such as inverter

(Figure 1c), a chain of neg gates and the head feedback (Fig-

ure 2b-d). Then I made new designs, i.e. a robust genetic

memory element (Figure 8); genetic gates with two inputs and

one output were introduced (Figure 5f, 6f), as well as a tri-

stable toggle switch was described in terms of stochastic π-

calculus (Figure 3d-f). The last example confirmed the possi-

bility genetic networks with high connectivity – the most im-

portant feature of eukaryotes.

Different networks were compared, e.g. the repressilator

comprising three neg genetic elements demonstrated more

regular oscillations than the oscillation motif including two

proteins (Figure 4c, d). Also, C1 coherent and I1 incoherent

feedforward loops were investigated at various conditions.

They were so stable that, for instance, C1-FFL behaved like

OR logic element in a noise environment at the nominal pa-

rameters: r = 1.0, δ = 0.001, ε
n
 = 0.1, η

n
 = 0.01, ε

p
 = 0.01, η

p

= 0.1 (Figure 5f). However, C1-FFL and I1-FFL produced

spontaneous pulses with high amplitude at a very small ε
p
 =

0.00001 (Figure 5d and Figure 6d).

The coherent and incoherent compositional FFL and FBL

circuits generated coherent and decoherent pulses accordingly

(Figure 7). These circuits were analyzed systematically at vari-

ous parameters, their diverse behaviors classified, and atten-

tion was given to state III which formed trains of pulses (S1:

15, S2: 15). Variations in parameters were more significant

for pos gates than for neg ones. In particular, parameter η
p

playing a role of activator was critical (S2: 13-16). Sometimes

distinctions in a network topology and a range of parameters

changed the system in a spectacularly unpredictable way. As

such, the system demonstrated unusual behavior in state III

during a long-time simulation that was impossible to see dur-

ing a short-time run (S1: 15, S2: 15).

As mentioned, a memory element from four neg gates was

constructed. The circuit follows two very stable states; never-

theless, an intensive external impulse can turn the system from

one state to an alternative state. Operations can be repeated

many times in both directions (Figure 8d). This model could

explain epigenetic effects in living cells. Finally, bifans of vari-

ous functionality formed particular outputs under controllable

inputs. They showed a time-amplitude modulation with diverse

patterns of expression (Figure 9). The last design gives me

hope that scalable systems with multiple inputs will be able to

signal pattern recognition.

The stochastic π-calculus is inherently different from dif-

ferential equations and allows us to investigate new phenom-

ena. I was able to construct genetic switches and memory ele-

ments using stochastic dynamics and network topology varia-

tions and avoiding cooperative mechanisms (Figure 3 and Fig-

ure 8). My attempts to find memory effects in regulated posi-

tive and negative feedback loops were unsuccessful (Supple-

ment 3). This is a discrepancy with the conclusion of Uri Alon

(Alon, 2007) who pointed out a memory capability for these

kinds of circuits. The disagreement prompted me to think of a

more appropriative language for biological systems. It would

be very interesting to know about the behavior of these cir-

cuits in real conditions in vivo and which approach is better.

Conclusion

My job in a ‘silicon laboratory’ represents the bottom-up

scenario of compositional design in terms of SPiM calculus.

Most models chosen arbitrarily worked well at standard val-

http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip

Journal of Computer Science & Systems Biology - Open Access

 JCSB/Vol.2 September-October 2009

J Comput Sci Syst Biol Volume 2(5): 272-282 (2009) - 282

ISSN:0974-7230 JCSB, an open access journal

ues of parameters. The topology and complexity of networks

played a significant role in their behavior. New networks

emerged easily, sometimes because of duplications and trans-

positions of the previous ones. These operations resemble

natural genetic mechanisms such as vertical and horizontal gene

transfer – essential operators of biological evolution

(Kuznetsov, 2007). Some variations in parameters are similar

to ‘point mutations’ leading to an optimization (adaptation) of

the system to a desirable pattern of behavior. Future investi-

gations will shed light on which formalism – the stochastic π-

calculus or Ordinary Differential Equations – is better able to

describe biological entities.

Aknolegements

The author is grateful to Andrew Phillips, Vladik Avetisov,

Genaro Juarez Martinez, and an anonymous referee for sug-

gestions and to Bert Schnell for his help with the manuscript.

References

1. Alon U (2007) An Introduction to Systems Biology: De-

sign Principles of Biological Circuits. Chapman & Hall/

Crc Mathematical and Computational Biology. » CrossRef

» PubMed » Google Scholar

2. Blossey R, Cardelli L, Phillips A (2006) A Compositional

Approach to the Stochastic Dynamics of Gene Networks,

Transactions. Computer Science 3939: 99-122. » CrossRef

» PubMed » Google Scholar

3. Blossey R, Cardelli L, Phillips A (2008) Compositionality,

Stochasticity and Cooperativity in Dynamic Models of

Gene Regulation. HFSP J 2: 17-28. » CrossRef » PubMed

» Google Scholar

4. Cardelli L (2009) Artificial Biochemistry. Computer Sci-

ence 429-462. » CrossRef » PubMed » Google Scholar

5. Gillespie D (1977) Exact stochastic simulation of coupled

chemical reactions. J Phys Chem 81: 2340-2361. » CrossRef

» PubMed » Google Scholar

6. Kashtan N, Alon U (2005) Spontaneous evolution of modu-

larity and network motifs. Proc Natl Acad Sci 102: 13773-

13778. » CrossRef » PubMed » Google Scholar

7. Kashtan N, Noor E, Alon U (2007) Varying environments

can speed up evolution. Proc Natl Acad Sci 104: 13711-

13716. » CrossRef » PubMed » Google Scholar

8. Kreimer A, Borenstein E, Gophna U, Ruppin E (2008) The

evolution of modularity in bacterial metabolic networks.

Proc Natl Acad Sci 105: 6976-6981. » CrossRef » PubMed

» Google Scholar

9. Kuznetsov A (2007) Evolution by Communication: A Re-

vision of Sperm-Mediated Gene Transfer. Frontiers in the

Convergence of Bioscience and Information Technologies

322-326. » CrossRef » PubMed » Google Scholar

10. Kuznetsov A (2009a) Modularity and distribution of sul-

fur metabolism genes in bacterial populations: search and

design. J Comput Sci Syst Biol 1573-1634. » CrossRef

» PubMed » Google Scholar

11. Kuznetsov A (2009b) Synthetic Biology as a proof of Sys-

tems Biology. Handbook of Research on Systems Biology

Applications in Medicine Ed Andriani Daskalaki IGI Glo-

bal 97-115. » CrossRef » PubMed » Google Scholar

12. Milner R (1992) Functions as Processes. Computer Sci-

ence 2: 119-141. » CrossRef » PubMed » Google Scholar

13. Milner R (1999) Communicating and Mobile Systems: the

π-Calculus. Cambridge University Press UK. » CrossRef

» PubMed » Google Scholar

14. Parter M, Kashtan N, Alon U (2007) Environmental vari-

ability and modularity of bacterial metabolic networks.

BMC Evol Biol 7: 169-177. » CrossRef » PubMed » Google

Scholar

15. Phillips A (2007) The SPiM Language (Version 0.05).

Available from http://research.microsoft.com/en-us/um/

people/aphillip/spim/Language.pdf

16. Phillips A (2009a) A Visual Process Calculus for Biology,

Symbolic Systems Biology: Theory and Methods. Jones

and Bartlett Publishers In Press Available from http://

research.microsoft.com/en-us/people/aphillip/

17. Phillips A (2009b) An Abstract Machine for the Stochastic

Bioambient calculus. Electronic Notes in Theoretical Com-

puter Science 227: 143-159. » CrossRef » PubMed » Google

Scholar

18. Phillips A, Cardelli L (2007) Efficient, correct simulation

of biological processes in the stochastic Pi-calculus. Comp

Methods Syst Biol 4695: 184-199. » CrossRef » PubMed

» Google Scholar

19. Poli R, Langdon WB, Mcphee NF (2008) A field guide to

genetic programming. (With contribution by Koza JR)

GPBib. » CrossRef » PubMed » Google Scholar

20. Priami C, Regev A, Silverman W, Shapiro E (2001) Appli-

cation of stochastic process algebras to bioinformatics of

molecular processes. Information Processing Letters 80:

25-31. » CrossRef » PubMed » Google Scholar

21. SPiM Player (Version 1.13). Available on 20.10.2008 from

http://research.microsoft.com/research/downloads/details/

992f59a0-c8c2-40bc-ab25-34516cf132c9/details.aspx

22. Thompson A (1998) Hardware Evolution: Automatic de-

sign of electronic circuits in reconfigurable hardware by

artificial evolution. Springer-Verlag. » CrossRef » PubMed

» Google Scholar

23. Watson RA (2006) Compositional Evolution: The Impact

of Sex, Symbiosis, and Modularity on the Gradualist Frame-

work of Evolution. Vienna Series in Theoretical Biology:

A Bradford Book. » CrossRef » PubMed » Google Scholar

see Appendix and Supplement 4

http://www.omicsonline.com/ArchiveJCSB/2009/October/01/JCSB-02-272s.zip
http://scholar.google.co.in/scholar?hl=en&q=Alon+U+%282007%29&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=A+Compositional+Approach+to+the+Stochastic+Dynamics+of+Gene+Networks%2C+Transactions&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640994/
http://www.ncbi.nlm.nih.gov/pubmed/19404450
http://scholar.google.co.in/scholar?hl=en&q=Compositionality%2C+Stochasticity+and+Cooperativity+in+Dynamic+Models+of+Gene+Regulation&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Cardelli+L+%282009%29+Artificial+Biochemistry&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Exact+stochastic+simulation+of+coupled+chemical+reactions&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.pnas.org/content/102/39/13773.long
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236541/
http://scholar.google.co.in/scholar?hl=en&q=Spontaneous+evolution+of+modularity+and+network+motifs&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.pnas.org/lookup/pmid?view=long&pmid=17698964
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1948871/
http://scholar.google.co.in/scholar?hl=en&q=Varying+environments+can+speed+up+evolution&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.pnas.org/content/105/19/6976.long
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383979/
http://scholar.google.co.in/scholar?hl=en&q=The+evolution+of+modularity+in+bacterial+metabolic+networks&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Evolution+by+Communication%3A+A+Revision+of+Sperm-Mediated+Gene+Transfer&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Functions+as+Processes&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Milner+R+%281999%29&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://www.biomedcentral.com/1471-2148/7/169
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151768/
http://scholar.google.co.in/scholar?hl=en&q=Environmental+variability+and+modularity+of+bacterial+metabolic+networks&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=An+Abstract+Machine+for+the+Stochastic+Bioambient+calculus&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Efficient%2C+correct+simulation+of+biological+processes+in+the+stochastic+Pi-calculus&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=A+field+guide+to+genetic+programming&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Application+of+stochastic+process+algebras+to+bioinformatics+of+molecular+processes&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0
http://scholar.google.co.in/scholar?hl=en&q=Compositional+Evolution%3A+The+Impact+of+Sex%2C+Symbiosis%2C+and+Modularity+on+the+Gradualist+Framework+of+Evolution&btnG=Search&as_sdt=2000&as_ylo=&as_vis=0

	Title
	Authors
	Affiliations
	Corresponding author
	Dates
	Citation
	Copyright

	Abstract
	Keywords
	Introduction
	Method
	Results
	Behavior of basic gates
	Connection of components in networks
	Switches
	Oscillator motif and repressilator
	Feedforward loops
	Composition of feedforward and feedback loops (FFBL)
	Bi-stability and memory effects
	Bifan

	Discussion
	Conclusion
	Aknolegements
	Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

	References

