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Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental disorder 

that appears early in life and is characterized by limited interest and 
lacking ability in social interactions, repetitive behavior and dysfunction 
in social communication. Motor and intellectual deficits, together with 
mood and sleep disorder and sensory and gastrointestinal abnormalities 
are common [1]. ASD affects up to 1% of the general population [2] 
and has a genetic basis [3,4].  A number of genetic variations have 
been associated with ASD (https://gene.sfari.org/autdb/GS_Home.
do), but results are not definitive [5–11]. A notable exception was 
recently published [12], reporting a positive association finding for a 
couple of genes previously associated with Autism, the SHANK3 and 
the WBSCR17. Apart from this result, the overall lack of replication 
rate in genetic association finding is in conflict with evidence showing 
that the heritability of ASD due to common variants is as high as 60% 
[13]. Limited power of the analysis, small sample sizes, and a critical 
phenotype definition may be limitations of the studies conducted so 
far [14–16]. A possible solution to this sparse genetic evidence is the 
“many genes common pathways” hypothesis, which suggests that the 
impact of different genes may converge to common pathways, whose 
impaired function results in the core symptoms of a disease [17].  The 
molecular pathways analysis is consistent with this hypothesis and may 
help understanding complex genetic diseases [18]. 

Previous results about the genetic networks whose disruption led to 
ASD showed that the following molecular pathways might be involved: 
Protein synthesis and metabolism, modulation of transcription process, 
chromatin remodeling, calcium signaling and the oxytocin pathway 
[19–21]. Nevertheless, those findings were generated by systematic 
reviews, and to the best of our knowledge a molecular pathway analysis 
on GWAS data derived from ASD trios is yet to be conducted. 

In the present contribution two independent trios sample of ASD 
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Abstract
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by limited 

interest and lacking ability in social interactions, repetitive behavior and dysfunction in social communication. ASD 
runs in families. Twin studies suggest a strong genetic basis for ASD. The complete definition of a genetic profile at 
risk for ASD is nevertheless currently lacking. 

Methods: NIHM-Autism datasets 3 and 4 (n=1233 and n=2890 respectively) were analyzed. A molecular 
pathway analysis was conducted. Quality analysis was run as usual (λ values). Plink and R (ReactomePA and 
Bioconductor packages) served for TDT, association tests and the molecular pathway analysis.

Results and Discussion: The “Adherens junctions’ interactions pathway” and “Axon guidance” were enriched 
in the first sample, while the “Extracellular matrix organization pathway” was enriched in the second sample. The 
“Axon guidance pathway” showed a trend for enrichment in the second sample. A trend of significant enrichment 
was observed for the “NCAM1 molecular pathway” when the severity of autistic symptoms was investigated.

Conclusion: Cell to cell interaction and the cell-matrix interaction may hold the genetic risk for ASD. 
Both neurodevelopment and immune response (T-cell) rely on those processes and may be involved in the 
pathophysiology of ASD. 

individuals are retrieved from the NIMH database (https://www.
nimhgenetics.org/). A molecular pathway analysis is conducted on 
the transmission disequilibrium test (TDT) result in order to identify 
common molecular pathways enriched in variations associated 
with Autism in both samples. Moreover, the same approach is used 
to identify one or more pathways enriched in variations associated 
with the severity of autistic symptoms as ranked from 1 to 4 (from 
broad spectrum to strict Autism) in one of the samples. The present 
contribution is originated from a previous published abstract at the 29th 
ECNP Conference [22]. 

Materials and Methods
Dataset

Genetic data were available from the NIMH genetics (https://www.
nimhgenetics.org/). The Autism Dataset 4 (Study 65/TASC GWAS Data) 
sample was chosen for the investigation sample. The Autism Dataset 3 
(GWAS Data on 1,264 Non-AGRE Samples) served as a replication 
sample.  GWAS were conducted with Affymetrix 5.0 in both samples.

Genetic analysis and quality control

SNPs (Single Nucleotide Polymorphism) were excluded for allele 

https://gene.sfari.org/autdb/GS_Home.do
https://gene.sfari.org/autdb/GS_Home.do
https://www.nimhgenetics.org/
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frequency <0.01 and low genotype call rate. Mendellian error threshold 
was set at 5% for families and 10% for single variations and missing 
data rate was set at 5% for the Dataset. Duplicate samples, excessive 
mendellian errors and monozygous twin (removed one of the twins) 
were sample exclusion criteria. Deviations from the Hardy-Weinberg 
equilibrium were accepted under a P-threshold of 0.0001. Lambda 
values served to exclude inflation factors. 

Statistical analysis
In the principal analysis, a transmission disequilibrium test (TDT) 

[23] was used to test for the presence of a genetic linkage between 
each and every SNP passing the quality test and the phenotype under 
analysis. The samples are comprised of trios were parents are labeled as 
“0” (cases) and the ASD child or children are labeled as “2” (controls). 
For the secondary analysis, an association analysis for quantitative data 
(command –assoc in plink) was run for every and single SNP using the 
phenotype from 1 to 4 available from the NIMH database, indicating 
different degrees of severity of autistic symptoms. 

Enrichment analysis
Plink [24] served for the TDI GWAS analysis and genetic 

annotations. R [25] and dedicated packages served for the analyses. SNPs 
associated with the phenotype under analysis at a p level <0.05 were 
included in the molecular pathway analysis. The enrichment analysis 
was conducted in an R environment [25], through Bioconductor [26] 
and the package ReactomePA [27]. The Reactome [28] is a manually 
curated database that includes chemical reactions, biological processes 
and molecular pathways. Reactome PA was developed to analyze 
molecular pathways associations with gene lists obtained from high-
throughput genomic investigations. Bonferroni, and False Discovery 
rate q-values are incorporated for multiple comparison corrections. 

Results 
1233 individuals were available from the Autism Dataset 3, 789 

males, 444 females and 588 cases. 333 nuclear families, 3 founder 
singletons were detected. 579 non-founders with 2 parents in 321 
nuclear families, 14 non-founders without 2 parents in 9 nuclear families 
and 579 affected offspring trios were detected. 393763 markers were 

included in the analysis. Genomic inflation was excluded (λ=1.03). The 
“Adherens junctions interactions pathway” was significantly enriched 
(p=0.000008; adj.p=0.008) (Table 1). 2890 individuals (1824 males, 
1069 females) with non-missing phenotype were found in the Autism 
Dataset 4, 936 cases, 1954 controls and 3 missing. 1930 founders and 
963 non-founders were found, the total genotyping rate was 0.93. 965 
nuclear families were detected, 2 founder singletons were found and 
963 non-founders with 2 parents in 963 nuclear families were included 
in the analysis. 934 affected offspring trios were identified. 1160305 
markers were available for the analysis. Genomic inflation was excluded 
(λ=1.002). The “Extracellular matrix organization pathway” was 
significantly enriched (p=0.000008; adj.p=0.007) in this sample. The 
“Axon guidance pathway” showed a trend for enrichment (p=0.00019; 
adj.p=0.084). A trend of significant enrichment was observed for the 
“NCAM1 molecular pathway” when the severity of autistic symptoms 
was investigated (p=0.00009; adj.p=0.097) (Table 2).  Finally, the 
“NCAM1 molecular pathway” showed a trend for association with a 
worse presentation of the autistic symptoms when only subjects with 
autism were selected out of the total sample (p=0.00009; adj.p=0.097).

Discussion
ASD is a frequent condition in the general population, characterized 

by impaired social abilities, restricted interests and repetitive behavior. 
The disorder was consistently proven to have a genetic basis, but 
the number of involved genes could be as high as hundreds, which 
suggests a polygenic nature. In order to test the convergence of specific 
molecular pathways towards ADS, a metabolic pathway analysis was 
undertaken in two independent samples of Autistic trios. As a result, 
two different molecular pathways were found to be enriched in the 
different databases, namely the “Adherens junction’s interactions 
pathway” and the “Extracellular matrix organization pathway”, while 
a third pathway, the “NCAM1 molecular pathway” showed a trend 
for significance when the severity of autistic symptoms was taken into 
consideration. Our findings are consistent with what was anticipated 
to be one of the most critical molecular pathways in Autism [29]. 
Cell adhesion proteins are well known to influence the neuronal 
function. Rendall and colleagues recently reported on the activity of 

ID Description Gene Ratio Bg Ratio P-value p.adjust Q-value Gene ID Count

418990 Adherens junctions 
interactions 12/615 31/6750 8.20E-06 8.20E-03 8.20E-03 CDH2/CDH4/CDH5/CDH7/CDH8/CDH9/CDH11/

CDH13/CDH15/CDH17/CDH18/CADM3 12

422475 Axon guidance 45/615 292/6750 2.70E-04 1.30E-01 1.30E-01

AP2B1/CACNA1C/CACNB2/CFL1/CNTN1/COL4A3/
COL5A1/COL6A3/NCAN/DLG1/EFNA5/EPHA3/

EPHA7/FYN/GRIN2B/ITGA9/ITGB3/KCNQ3/
ABLIM1/MYH11/NCAM1/PLXNA2/PRKCQ/RAF1/

ROBO1/ROBO2/RPS6KA2/SH3GL2/SOS2/CNTN2/
EZR/NCK2/KALRN/SEMA5A/RANBP9/ACTR3/
PLXNC1/CAP2/CNTN6/TREM2/TRPC7/NTN4/

SEMA6D/PLXNA4/RGMB

45

381426

Regulation of 
Insulin-like Growth 

Factor (IGF) 
transport and 

uptake by Insulin-
like Growth Factor 
Binding Proteins 

(IGFBPs)

7/615 17/6750 4.30E-04 1.50E-01 1.50E-01 F2/IGF1/IGFBP1/IGFBP3/PAPPA/PLG/PAPPA2 7

202430

Translocation 
of ZAP-70 to 

Immunological 
synapse

7/615 18/6750 6.60E-04 1.60E-01 1.60E-01 HLA-DQA1/HLA-DQA2/HLA-DQB1/HLA-DQB2/HLA-
DRA/HLA-DRB1/HLA-DRB5 7

Note: ID=Molecular pathways’ ID; Description=Description of the pathway; GeneRatio=Number of genes in pathway in the selected database/number of genes overall 
in the selected database; BgRation=Number of genes in the pathway in international dataset/number of genes overall in international datasets; p.adjust=p values after 
Bonferroni correction; q value=p values after false discovery rate correction for multiple testing.

Table 1: Molecular pathway analysis on Autism sample 3.
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the CNTNAP2, a cell adhesion protein whose deletion results into 
myelin formation's insufficiency and delayed learning, two possible 
characteristics of ASD [30]. On the other hand, cell-adhesion molecules 
of the immunoglobulin superfamily have a critical role in brain 
development and in the maintenance of synaptic plasticity, and their 
defect can severely alter the function of the brain [31–33]. One of the 
most known and investigated gene located in the “Adherens junction’s 
interactions pathway” is the Catenin Beta 1 (CTNNB1). Its product is a 
part of the proteins that consitute adherens junctions and it is involved 
in the Wnt pathway and the Reeling Pathway. The Wnt pathway is a 
complex set of different molecular pathways that mostly control 1) 
gene expression; 2) cell polarity and 3) calcium balance. It is relevant 
in cell fate, cell proliferation and cell migration. Variations within the 
pathway lead to cancer, diabetes and at least other 100 diseases (http://
www.malacards.org/search/results/CTNNB1), which also include 
mental retardation. Evidence showing an involvement of the Wnt 
pathway in Autism is also gathering [34–36]. Quite interestingly, Wong 
and colleagues reported that the manipulation of the extracellular 
environment with pro-inflammatory mediators may impact both the 
activation of the Wnt molecular pathway and the activation of the 
metalloproteases that modify the extracellular matrix and allow and 
facilitate the cells' migration [37]. Metalloproteases are one of the 
principal enzymes of the “Extracellular matrix organization pathway”. 
Disturbances in inflammation have been reported to be possible 
causes to Autism [38,39], and neurodevelopment is dependent on the 
efficiency of the immune system [40–42]. It is tempting to postulate, 
that a signal from a genetic susceptibility to an inflammation event 
during neurodevelopment was detected in the present contribution. A 
less efficient molecular cascade (the “Adherens junction’s interactions 
pathway” or the “Extracellular matrix organization pathway”) would 
respond in a less efficient way to inflammatory insults, this resulting 
in higher risk for ASD. This hypothesis needs to be further tested by 
independent analyses.  Consistently with this, one of the genes that 
is included in the “Adherens junctions interactions pathway”, the 
CADM2, was previously found to be associated with ASD [43], in a 
sample of 1402 trios of ASD. Another gene included in the same 
molecular pathway, the ACTB gene, was deleted in a single case report 
a child exhibiting autistic like behavior along with brachycephaly, 
prominent ears, cryptorchidism, speech delay, poor eye contact, and 
outburst of aggressive behavior. Finally, NCAM1 is also a cell-adhesion 
molecule whose activity impacts on a wide range of events including 
cellular adhesion, migration, proliferation, differentiation, survival and 
synaptic plasticity.

Conclusion and Limitations
Adhesion molecules have been candidates for unraveling 

the genetics of Autism in the last decades, but results have been 
inconsistent or negative. A possible explanation to this apparently 
conflicting finding is the poor penetrance of the single variations for 
the phenotype under investigation. When investigated alone, SNPs 
do not have sufficient power to emerge from the noise signal in the 
most common association analyses. This caveat is addressed by a 
molecular pathway analysis, where the weak signals from different 
SNPs are gathered by the molecular pathway labeling, acquiring power 
to emerge as statistical significant. Molecular pathway analysis may be 
a promising approach to GWAS data, but it also has limits. One of the 
main limits of the genome wide molecular pathway analysis is that it 
relies on known molecular pathways and known genetic functions. 
Moreover, this technique is limited by the numbers of available SNPs 
included in the GWAS, so that the risk of false negative findings due 
to poor coverage of specific genes cannot be ruled out. Keeping this 
in mind, it is possible to combine the results of the molecular pathway 
analysis with the current published evidence about a specific phenotype, 
helping defining the genetic makeup that increases the risk for a disease 
or a group of diseases. Another limit of the present contribution is that 
it cannot take into account the de novo variations, as they may not be 
labeled and cannot therefore be grouped in any molecular pathway. 
De novo variations may explain a part of the missing heritability, but 
it was estimated that 49% of the genetic architecture of ASD is related 
to common inherited variants and only 3% by de novo variations and 
rare variants [44].
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ID Description Gene Ratio Bg Ratio P-value p.adjust Q-value Gene ID Count

1474244 Extracellular matrix 
organization 42/570 249/6748 8.82E-06 0.00778 0.0074

BMP1/DST/DDR1/CD44/CD47/COL4A1/COL4A4/COL5A1/
COL5A2/COL7A1/COL8A1/COL9A1/COL19A1/COMP/

HAPLN1/DMD/FBLN1/FBN2/EFEMP1/ITGA6/ITGAM/ITGAX/
KLKB1/LAMA2/LAMA4/LTBP1/NCAM1/PLG/SPARC/COL14A1/
VWF/GDF5/MMP20/NRXN1/SDC3/LAMC3/FBLN5/ADAMTS5/

COL25A1/COL23A1/LAMA1/COL28A1

42

422475 Axon guidance 43/570 292/6748 0.0001 0.084 0.081

ABL1/ALCAM/CACNA1C/CNTN1/COL4A1/COL4A4/COL5A1/
COL5A2/COL9A1/EFNA5/EGFR/EPHA7/EPHA8/ABLIM1/

MET/NCAM1/PLXNA2/PRKCQ/PTPN11/RPS6KA2/SCN1B/
SOS2/SPTAN1/SPTB/SPTBN1/TRPC6/ST8SIA4/NCK2/SLIT2/
RANBP9/PLXNC1/CHL1/CLASP2/PLXND1/CNTN6/DPYSL5/
TRPC7/SRGAP1/SEMA6D/APH1B/ABLIM2/UNC5D/LAMA1

43

Note: ID=molecular pathways’ ID; Description=Description of the pathway; GeneRatio=Number of genes in pathway in the selected database/number of genes overall 
in the selected database; BgRation=Number of genes in the pathway in international dataset/number of genes overall in international datasets; p.adjus t=p values after 
Bonferroni correction; q value=p values after false discovery rate correction for multiple testing.

Table 2:  Molecular pathways analysis on Autism sample 4.
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