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Editorial Open Access

Many statistical tools have been developed to map and study the 
genetic architecture of complex phenotypes important to agriculture, 
biology, and biomedicine [1-9]. Thanks to recent advances in 
sequencing and genotyping technologies, DNA-based marker data 
crucial for genetic mapping can be generated almost with no limit. 
A new challenge that faces methodological development is how to 
dissect a phenotypic trait into its biological components, study the 
genetic control mechanisms of these components and their mutual 
coordination and, ultimately, reorganize key components into a new 
phenotype beneficial to humans. In this editorial, we review a recent 
advance of statistical development that can potentially address this 
challenge.

From Static Mapping to Dynamic Mapping
One of the most important steps toward genetic mapping is to study 

dynamic changes of genetic control over phenotypic traits across a time-
space continuum. This can be done by using and developing dynamic 
models to compare the differences of genetic control at different 
stages of complex traits [10-12]. Unlike the traditional static models 
that analyze phenotypic traits at individual time points, the central 
motivation of dynamic models lies in the study of the temporal pattern 
of genetic variation for a quantitative trait in a time course [13] and the 
identification of specific genes (i.e., quantitative trait loci or QTLs) that 
determine such a time-dependent change of the trait [14-18]. These 
models, called functional mapping [15], have been instrumental for 
detecting and mapping dynamic QTLs for individuals traits, such as 
stem growth and root growth in forest trees [19], plant height in rice 
[20], tiller number increase in rice [21], biomass growth in soybeans 
[22], body mass growth in mice [23,24], body height growth in humans 
[25] and drug response [26].

Understanding phenotypes as a dynamical system

The formation of any phenotypic trait undergoes complex 
interactions and coordination of its different components expressed at 
various organizational levels from cell to tissue to organ to organism. A 
full understanding of these interactive relationships among components 
may help shed light on the components of the biological systems and 
predict physiological and pathological states of the systems. This has 
been feasible by developing a system of differential equations that 
describe the dynamic behavior and coordination of the biological 
system based on natural laws. Below is shown a typical example for 
system dissection and modeling:

Consider whole-plant biomass that comprises of leaves, stem, 
and roots (Figure 1). However, from a mechanistic perspective, plant 
biomass growth is not simply the addition of these individual parts, 
and more importantly, entails the coordination of these parts through 
natural laws. Chen and Reynolds [27] used coordination theory to 
model the dynamic allocation of carbon to different organs by a group 
of differential equations. A series of allometric studies by West et al. [28] 
explains a power relationship existing between parts and the whole from 
fundamental biophysical, biochemical and evolutionary principles, 
i.e., plants tend to maximize leaf surface area for photosynthesis and

minimize the transport distance for water, nutrients, and carbon. By 
integrating works by Chen and Reynolds [29] and West et al. [28], we 
construct a tripled group of ordinary differential equations (ODEs) to 
specific the coordination of leaf, stem, and root biomass for a plant :
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Systems mapping intends to integrate a dynamic system like (1) into 
a mapping framework [29]. Thus, beyond static mapping and functional 
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Figure 1: Leaf (L), stem (S), and root parts (R) of a plant. M: biomass, 
L: length, D: cross-sectional area, ρ: porosity of roots and stem. Adapted 
from Zens and Webb [36]. 

where ML, MS and  MR are the biomasses of the leaves (L), the stems 
(S), and the roots (R), respectively, with whole-plant biomass  

= + +T L S RM M M M , α and β are the constant and exponent power of 
an organ biomass scaling as whole-plant biomass, and λ   is the rate of 
eliminating ageing leave and roots. The interactions between different 
parts of a plant can be modeled and studied by estimating and testing 
the ODE parameters ( , , , , , , ,α β λ α β α β λL L L S S R R R ).
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mapping, this model incorporates biological and developmental 
mechanisms for trait formation and progression, thus equipped with 
power to detect the mechanistic basis of genetic actions and interactions 
and facilitate the test of the interplay between genes and development. 
Systems mapping empowers geneticists to address fundamental 
questions in biology and biomedicine by studying the following specific 
mechanistic relationships with significant impacts:

(3) Cause-effect relationship: A web of directed events forms 
a complex cause-effect relationship. The use of an antiviral drug can 
increase the amount of uninfected cells by reducing the load of free 
virus particles in a patient, which reduces the likelihood of the patient 
to progress into AIDS. Such cause-effect relationships between different 
types of cells can be quantified by differential equations [31,32]. 
Integrated with QTL mapping models, one can determine how specific 
QTLs control the dynamic changes of different types of cells in the 
course of time.

(4) Sink-source relationship: In plants, the function of 
carbohydrate source to sink relationships determines their productivity. 
Carbohydrates are transported from supply areas (sources) to areas 
of growth or storage (sinks). Carbohydrates are produced through 
photosynthesis in the leaves and channeled through the phloem to the 
roots, which act as the main carbohydrate sinks during growth. The 
rate of carbohydrate transport is primarily ruled by the sink strength 
of plant organs. A dynamic system of sink-sources relationships is 
composed of potential growth rate, carbon losses through growth and 
maintenance respiration processes, and carbon demand related to 
active reserve storage. The identification of specific QTLs that affect 
these components and therefore sink-sources relationships can be 
made possible by constructing a system of ODEs and integrating it with 
the principle of QTL mapping.

Prospects
With the emergence and development of genome-wide association 

studies in humans, followed by other species [33-35], it has been 
possible to draw a comprehensive picture of the genetic architecture of 
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(1) Size-shape relationship: Size does matter, but shape may matter 
even more in nature. Shape is one of the most conspicuous aspects 
of an organism’s phenotype and provides an intricate link between 
biological structure and function in changing environments. Given the 
parameters ( , , , , , , ,α β λ α β α β λL L L S S R R R ) for system (1), one can see 
how much biomass has been allocated to the leaves, stem, and roots. 
It is possible that some plants have a dominant main stem, with less 
leaves, while some plants allocate more carbon to the roots (below 
ground) than the leaves and stem (above-ground). Thus, by integrating 
the ODE (1) into a QTL mapping framework, specific effects of a QTL 
on a plant’s size and form or shape can be estimated. Furthermore, how 
the QTL governs the dynamic relationship between size and shape can 
be quantified.

complex traits or diseases and, ultimately, integrate genetic information 
into genetic improvement programs or clinical therapies for disease 
treatment and prevention. To achieve this goal, we need to develop 
powerful statistical and computational algorithms for detecting 
genes or quantitative trait loci that determine complex phenotypes. 
Mathematical models and computational algorithms will be integrated 
within the statistical framework for genetic mapping, allowing a 
number of hypothesis tests to be made at the interplay between genes 
and the developmental pathways involved in phenotypic formation. 

(2) Structural-functional relationship: There has been a long-
standing interest in understanding the relationships between structure 
and function. The change of structure for a system will quickly 
lead to the alteration of function. For a plant in drought soil, more 
energy should be allocated into the root system in order to increase 
its survival rate and fitness. If the ODE (1) is implemented with an 
additional fitness variable, this will constitute a dynamical system for 
structural-functional relationships. Genetic mapping of QTLs for such 
relationships will shed light on the genetic mechanisms involved in 
balancing vegetative and reproductive growth [30].
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