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Introduction
Nanoparticles (NP) are particles with dimensions smaller 

than 100 nm [1,2]. Engineered NPs are widely used in cosmetics, 
clothing, sunscreen and food additives, etc. Current applications of 
nanotechnology have great influence on various industry and medical 
sectors. The global market for nanotechnology based manufactured 
goods is expected to be worth US$ 1.6 Trillion by certain estimations, 
representing a compound annual growth rate of around 50% during 
2009-2013. Engineered NPs with a diameter of less than 100nm are 
classified as ultrafine particles. Ultrafine particles can occur naturally, 
or can be generated through combustion sources such as cooking, 
candle burning, and tobacco smoking, while engineered NPs are 
produced intentionally for industrial purposes and generally with 
greater consistency in size and chemistry. These particles readily travel 
throughout the body, having higher deposition rates in the lower 
respiratory tract [1,2].

Human exposure to ultrafine particle occurs mostly through 
ambient atmospheric exposure; therefore the respiratory tract is the 
preferred target for exposure [2,3]. Exposure to engineered NPs can 
happen through other pathways (inhalation, dermally, ocularly).The 
wide spread use and applications such as oral administration through 
food or drinking water, skin absorption through sunscreen and/or 
cosmetics application, injection through medical procedures presents a 
number of potential problems [4]. The fate and risk may differ through 
different exposure pathways. Most animal studies have found over 
90% orally administrated engineered NPs were excreted through feces 
[5,6]. However, with their small sizes, the retention of NPs in the liver 
and kidney has been found [7,8]. The employment of nanoparticles in 
sunscreens has raised the question of whether these particles are photo-
clastogenic. Intensive studies have led to controversial results, which 
will be discussed later.

Much effort has been devoted to understand the toxicity of ultrafine 
particles. Genetic and epigenetic effects are parts of the toxicity of 
NPs. The small size and large surface area facilitate the generation 
of free radicals, and the induction of oxidative stress [3,9,10]. Tissue 
culture analysis in animal models demonstrates that oxidative stress 
contributes significantly to the cytotoxicity and genotoxicity associated 
with NP exposure [2,11,12]. It has been found that lipid peroxidation 
and oxidative stress are the most important mechanisms of genotoxicity 
related to NP exposure [13]. An emerging area of concern, are the 
epigenetic effects of NPs and has attracted growing interests. The 
findings and their implications will be discussed later.

The biological impact and biokinetic distribution of NPs are 

affected by many parameters including size, chemical composition, 
surface structure, solubility, shape, and aggregation. These parameters 
can modify cellular uptake, translocation from exposed organs to the 
targeted sites and the severity of the tissue injury [2]. Therefore, in vivo/
in vitro toxicity assays need to reflect effects on the exposed organs 
including lungs, skin, and mucus membranes. Additional focus needs 
to be given to target tissues and systems such as endothelium, blood 
cells, spleen, liver, nervous system, heart and kidney; most importantly, 
at a physiological relevant concentration of exposure.

The purpose of this minireview is to utilize several types of NPs as 
examples to survey the genetic and epigenetic effects of NPs exposure, 
and to address the importance of their physical /chemical features as 
well as bioavailability on these effects. Our review is limited to several 
examples and is no way comprehensive of all types of nanoparticles. 

The Genetic Effects of NPs
The genetic effects of NPs, by definition, include DNA damage, 

possibly leading to mutations, DNA strand breaks and chromosomal 
aberrations [14]. The mechanism of NPs genetic effects are as follows 
[15], (1) direct binding to the DNA: some NPs are capable of localizing 
within the nucleus, directly interacting with the DNA molecule [16,17]; 
(2) direct binding to DNA associated proteins: where the NPs do not 
physically interact with the DNA molecule, but with other cellular 
proteins such as those involved in the chromatin structure or DNA 
replication process; (3) indirect cellular responses: oxidative stress, 
inflammation and aberrant signaling activation [18,19].

Two examples, of NPs emitted from laser printers/photocopiers as 
well as titanium dioxide (TiO2), are discussed as examples of genetic 
effects and to consider the importance of physical chemical features as 
well as bioavailability of NPs to their risk assessment.
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NP emitted unintentionally 

An unintentional release of potentially dangerous particles can 
be caused by mechanical manipulation of earth or other processes 
such as drilling, sawing, or sanding, by abrasion during daily use, 
or by degradation of the matrix caused by aging or weathering 
including water absorption, oxidation, or exposure to UV light. One 
example, that sampled and examined NP using transmission electron 
microscope (TEM in a sanding mimic abrasion process) showed that 
free-standing Carbon Nano Tubes (CNTs) were released into the 
environment during this process [20]. NPs emitted unintentionally 
are complex non-homogenous in their chemical composition which 
increases the difficulty of studying their effects. Among some of the 
more environmentally relevant NPs of interest are ones emitted from 
printers and photocopiers. These particles have been studied intensively, 
and therefore their properties are better understood. Toners emit a 
mixture of organic compounds and inorganic metal oxide additives 
[21]. The organic fraction of these NPs are formed primarily from the 
condensation of semi-volatile organic compounds evaporated from 
the toner and possibly other paper constituents during the printing/
photocopying process, and their fraction remains poorly characterized 
due to its diversity [2,6]. The inorganic fraction of airborne NPs varies 
with the toner formulation and may contain variable amounts of silicon 
(Si), sulphur (S), titanium (Ti), iron (Fe), chromium (Cr), nickel (Ni), 
zinc (Zn) and possibly other elements, most likely originating from 
the metal oxide additives in toners [21]. The major route of entry of 
airborne NPs is by inhalation [22,23].

A recent study which recruited young volunteers to spend time in 
busy photocopy centers (2-3 days a week, 6 hours a day) found higher 
levels of 8-OH-dG in their urine when compared to the days spent in 
printer-free environments [24], indicating that the elevated NP levels 
in these volunteers lead to a measurable level of oxidative stress and 
thereby modified their genetic material. A549 cells treated with NPs 
emitted from laser printers exhibited more micronuclei which resulted 
from DNA double strand break [21]. 

Various chromosomal aberrations have been found at significantly 
higher levels in a study of buccal epithelial cell and peripheral blood 
samples from males working with photocopying machines for more 
than a year when compared to their age matched unexposed controls 
[25]. Carbon NP and inflammation induced by carbon deposits 
might have caused these reported genetic effects [26]. A case report 
of, a female patient with weight loss and diarrhea after three years of 
exposed to laser printers in her office showed black material deposited 
in her submesothelial tissue and associated inflammatory reaction. A 
scanning electron microscopy study revealed that the submesothelial 
aggregates consisted of carbon NPs with sizes ranging from 31 to 67 
nm [26].

Much effort is still needed to investigate other unintended NP 
emissions associated with our daily life. The respiratory tract is 
particularly susceptible to cellular assaults caused by inhaled NPs, 
which makes the unintended NP emission in workplaces and the daily 
environmental risk factor that may be detrimental to human health. 

TiO2

Engineered titanium dioxide NPs are a widely used and through 
their design, exhibit properties that are genotoxic.

Genetoxicicity originating from different physical chemical 
features of NPs: Titanium dioxide is a poorly soluble particulate 
produced either in its anatase or rutile crystal form in industrial setting 

[27]. It is the most widely used white pigment in products such as paints, 
film, paper, food additives and cosmetics because of its brightness and 
high refractive index [28,29]. A comparative study using keratinocytes 
to investigate different crystalline phases of TiO2 interaction with cells 
showed that the anatase phase, which is phagocytosed in small clusters 
and is lodged inside the mitochondria, is more effective in producing 
free radicals and thereby generating significantly greater amounts of 
oxidative stress than its rutile phase [30]. Other than the crystalline 
phases of TiO2, the agglomeration and dispersion status of the NP can 
also modulate its genetic effects. A study using TK6 human lymphoblast 
cells and Cos-1 monkey kidney fibroblasts has shown that less stable 
dispersion may easily lead to larger agglomerates and thereby inducing 
DNA damage [31]. This DNA damage included strand breaks and 
oxidative damage which were analyzed by alkaline and FPG-modified 
comet assay [31-33].

Genotoxic variability originating from different entry points: 
As discussed above, the exposure route and translocation efficiency 
most certainly will affect the toxicity of the NP. The bright white color, 
ability to block UV light, and antimicrobial activity of TiO2 NPs have 
made it a quite popular component in the food industry, in cosmetics 
and sunscreen manufacture, which make inhalation, ingestion and 
dermal exposure a common exposure route for humans [34-37]. The 
primary route of occupational exposure for TiO2 NPs is inhalation [2]. 
Consumer inhalation is also possible during application of antibacterial 
spray containing TiO2 NPs [38].Upon inhalation or instillation, small 
fractions of TiO2 NPs are transported from the airway lumen to the 
blood circulation and reach extra pulmonary tissues such as liver and 
kidneys [39,40]. In vitro studies using cells from extra pulmonary 
tissues such as immortalized brain microglia (BV2), primarily cultured 
lymphocytes, and human B-cell lymphoblastoid cell line exhibited 
chromosome aberrations as well as oxidative DNA damage when 
treated with TiO2 [12,41,42]. However, whether the genetic effects 
reported in these in vitro studies are applicable to other routes of entry 
will largely rely on the biokinetic distributions and whether there is a 
co-exposure to other pathogens [43].

Oral administration: The Food and Drug Administration (FDA) 
has allowed 1% by weight of TiO2 as a food additive (FDA-21 CFR 
73.575). Therefore, TiO2 NP exposure from food-related ingestion is 
a highly relevant exposure route that needs further study. An in vivo 
study with 13 weeks of repeated oral administration of anatase 80:20 
rutile TiO2 NP to rats, up to 1041 mg/kg body weight, didn’t find 
significant concentration dependent increase of TiO2 in blood samples. 
The TiO2 distribution to the liver, spleen, kidney, and brain was also 
minimal. No dose-response relationship was seen, meaning that the 
TiO2 particles were not significantly absorbed and distributed [7]. 
This result indicates that gastric ducts will be the major tissues that 
will be affected by ingestion of TiO2 NPs. TiO2 NP have been shown 
to induce DNA strand breaks by comet assays in gastric epithelial cells 
[44]. However an in vivo murine model study has argued that other 
organs might be targets for TiO2 NP genetic effects. Repeated oral 
administration of anatase75: 25rutile TiO2 NP, up to 500 mg/kg body 
weight has led to increased DNA deletion frequency in fetuses after 
maternal exposure [37]. Nevertheless, a consistent concentration-
dependent response of DNA strand breaks and chromosomal damage 
has been found in bone marrow and peripheral blood from exposed 
non-pregnant mice, as well [37]. The underlying mechanism driving 
these results remains elusive. The fact that neither of these studies 
employed organ deposition analysis as comparison with DNA damage 
tests has led to a limited interpretation of these data [7,37]. Whether the 
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in vivo DNA damage effects of TiO2 were from an indirect mechanism 
or due to special preparation of TiO2 samples remains unknown. 

Dermal administration: Most of the dermal exposure studies 
have shown that TiO2 NPs do not penetrate the stratum corneum, 
and only penetration into orifices of the pilosebaceous follicles was 
observed [45]. However, even with preferential distribution, the fact 
that TiO2 NPs are widely used in sunscreens and cosmetics has raised 
the concern of photo-clastogenicity, given that sunscreens are always 
applied when there’s UV exposure. It was reported that TiO2 produced 
the OH radicals, H2O2 and O2 under UV irradiation [46,47], while 
anatase TiO2 NP lead to higher levels of OH radicals when compared 
to the rutile form, the OH radicals levels were correlated with the UVA 
dose [48,49].

In an early in vitro genotoxicity study, the single cell gel and 
chromosomal aberration assay showed that TiO2 particles induced 
primary DNA damage and structural chromosome aberrations in 
cultured L5178Y mouse lymphoma cells when exposed to a UV spectrum 
similar to natural sun light. These genotoxic effects were dependent 
upon TiO2 dose and solar light intensity. Gene mutations were not 
induced by photo excited TiO2 particles in microbial or mammalian 
cell systems. Therefore, it was proposed that the DNA lesion catalyzed 
by photo excited TiO2 particles resulted in chromosomal aberration 
rather than gene mutations [50]. 

Studies conducted afterwards disputed these findings by showing 
none of the eight different forms of uncoated, coated and doped TiO2 
NP was able to induce chromosome aberrations in Chinese hamster 
ovary cells, with or without the presence of simulated solar light [51]. 
The latter study argued that the previous L5178Y mouse lymphoma cell 
studies results of comet tail lengths were only evident at concentrations 
where cell survival was 70% or less, and increased chromosomal 
aberration frequencies occurred when cells were experiencing>50% 
cytotoxicity [51].

The Epigenetic Effects of NPs
“Epi” means above, outer and over in Greek, therefore “epigenetic” 

literally means “above genetic” which are heritable changes in 
phenotypes or gene expression without a change of DNA sequences 
[52]. Epigenetic effects involve inducing alterations in DNA 
methylation patterns, posttranslational modification of histones tails, 
chromatin remodeling and non-coding RNA. If these changes persist 
through cell division, heritable altered gene expression pattern will 
occur [52].

Several NPs have shown epigenetic effects and may lead to health 
risks to exposed cells which fit within the scope of this mini-review. 
It goes without saying that engineered NPs that are designed for 
epigenetic therapy purpose such as NPs formed by histone deacetylase 
inhibitors [53] and others [54-56] will not be discussed here.

DNA methylation

Methylation on cytosines and their subsequent interaction with 
methyl-CpG binding proteins (MBDs) act as regulatory marks to 
induce chromatin conformational change and inhibit the access of 
the transcriptional machinery, thus altering gene expression [57]. 
DNA methyl transferases (DNMTs) catalyze the transfer of a methyl 
group to cytosine [58]. In mammals DNMT1 is primarily involved in 
the maintenance of DNA methylation patterns during development 
and cell division, where as DNMT3a and DNMT3b are the de novo 
methyl transferases and establish DNA methylation patterns during 

early development [59]. DNMT3L induces de novo DNA methylation 
by recruitment or activation of DNMT3a, while DNMT2 is primarily 
involved in the methylation of transfer RNA (tRNA) [59].

Promoter hypermethylation is commonly associated with gene 
silencing [60] with a few exceptions [61] where intragenic methylation 
might also have a role in regulating gene expression [62,63].

Silica nano particles (SiO2 NP) are highly stable and can bio-
accumulate in the natural environment. SiO2 NPs are a class of NPs 
that has great potential for scientific, biological, and medical research 
applications [64].

SiO2 NP has been shown to decrease the mRNA expression of 
PARP-1 [65], an important DNA repair gene, in human keratinocyte 
HaCaT. This decrease of expression could be rescued by knockdown 
of DNMT1 [65]. DNA methylation levels of PARP-1 promoter 
has been found increased gradually with the increasing of SiO2 NP 
concentration, suggesting epigenetic effects play a role in regulating 
PARP-1 expression level by SiO2 NP [65]. Nevertheless, it has also 
been reported that nano and mircro-sized SiO2 decreased global DNA 
methylation and the related methyltransferase including DNMT1, 
DNMT3a and MBD2 [66], indicating epigenetic effects of SiO2 NP 
might be involving writers, readers, and erasers of DNA methylation.

miRNA induced gene expression change

A large portion of the genome is transcribed into RNA with a 
significant portion of non-coding RNA (ncRNA) that function as 
structural, catalytic, or regulatory RNAs, rather than encoding proteins 
[67]. Although the function of most of the newly identified ncRNAs is 
yet to be elucidated, emerging evidence has shown that ncRNAs play 
an important role in chromatin remodeling and epigenetic control of 
transcription [67]. MicroRNAs (miRNAs) are a group of small ncRNAs 
that mediate posttranscriptional gene silencing through degradation 
of mRNA or inhibition of mRNA translation [68]. A complicated 
feedback network of miRNAs and other epigenetic pathways appears 
to post-transcriptionally repress gene expression including those signal 
molecules and thus are critical for many cellular pathways, and to 
organize the whole gene expression profile [61,69].

Gold NPs (AuNP) has attracted a lot of attention from material 
scientists for biomedical applications due to their unique features. 
AuNPs preferentially accumulate at sites of tumor growth/
inflammation and their intense photophysical properties facilitate 
biodiagnostic assays such as HCG pregnancy test [70]. Because of their 
versatile optical properties, AuNPs have enabled optical imaging of 
cells with a wide variety of contrast [70].

The epigenetic effects of AuNPs appear most frequently as 
miRNA levels change [71,72]. Twenty-eight microRNAs were found 
at significantly altered levels in maternaly exposed fetal lungs, and 5 
were up-regulated in fetal liver. Let-7a and miR-183 were significantly 
up-regulated in both organs [71]. The outcome of the up regulation of 
these miRNA levels remain elusive, given that Let-7a expression level 
has been found negatively correlated to lung cancer [73] while miR-183 
has been found positively correlated to lung cancer [74]. In vitro study 
using Au Nps exposed human fetal lung fibroblast has shown altered 
gene expression accompanied with up-regulation of miRNA-155 [72]. 
A reverse correlation has been established between miRNA-155 levels 
and PROS1 expression levels, albeit this has yet to be determined if this 
is a direct effect [72]. The PROS1 gene encodes for Protein S, a plasma 
glycoprotein that is involved in thrombus formation in the pulmonary 
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vasculature giving rise to adverse outcomes such as lung infraction 
[75,76].

Different NPs might have similar epigenetic effects in terms 
of regulating miRNA expression. In vitro epigenetic effects of co-
regulated miRNAs such as miR-34s, miR-21 and miR-29a were found 
in Fe2O3 NPs, cadmium telluride quantum dots (CdTe QDs) and multi 
wall carbon nanotubes (MW-CNTs) treated cells [77]. Many miRNAs 
were co-regulated after two out of three nano-material exposure, which 
suggested the similarity of epigenetic effects of NPs [77]. However, not 
much overlap was found when comparing regulated miRNA among 
these three kinds of NPs treated cells with AuNP treated in vivo tissues 
[71,72,77]. This discrepancy might due to different methods that were 
employed to detect miRNA levels in these studies, which were SOLiD 
(Sequencing by Oligonucleotide Ligation and Detection) sequencing 
and miRCURY LNA microRNA Array, respectively [71,77].

Histone code

Histone tail modifications have emerged as important players in 
epigenetic regulation of gene expression and other chromatin associated 
processes. The four core histones, H2A, H2B, H3, and H4; are subject 
to a methylation, acetylation, phosphorylation, and ubiquitination 
[78]. These marks are thought to exert their function through direct 
modulation of chromatin structure and thereby formulating a histone 
code. The signal is then processed through histone code readers that 
feature modification-specific binding domains [78].

Quantum dots (QDs) are semiconductor nanocrystals with unique 
optical properties that are used extensively for in vitro observations of 
cellular mechanisms and for in vivo studies aimed at understanding 
the bio distribution of nanoparticles upon systemic injection 
[79]. Negatively charged CdTe QDs are capable of rapid nuclear 
accumulation in cells through phagocytosis [80]. These QDs showed 
a strong interaction to the core histones and cell nuclear extractions 
when compared with its interaction with bovine serum albumin (BSA), 
DNA and RNA [81]. Global hypoacetylation of histones was observed 
in breast cancer cells in an in vitro study. This chromatin condensation 
is associated with decreased gene transcription and increase in 
transcription of pro-apoptoticgenes such as Bax upright Puma [82].

Conclusion Remarks
The controversies associated with NP toxicity studies (not limited 

to) discussed above are calling for a standard genotoxicity testing 
battery to cover a wide range of mechanisms. Many toxicology studies 
are lacking data showing NP aggregation and dissolution which occurs 
in sample media, let alone the changes in bioavailability and toxicity. It 
has been proposed that for the purpose of genotoxicity analysis of NPs, 
the OECD standardized methods should be employed; in vivo assays 
should be included to correlate with in vitro results; and more rigorous 
physicochemical characterization of particle-types should be conducted 
[83]. The interaction of nanoparticles and natural organic matter that 
occurs during waste processing results in a nanoscale coating of the 
nano materials, which dramatically changes their surface chemistry, 
aggregation, deposition, and toxic properties [84]. Engineered 
nanoparticles in natural systems are subject to a dynamic physical and 
chemical environment; therefore the toxicity analysis using their “as 
manufactured” state might not be thorough and comprehensive. More 
detailed and thoughtful design is needed for accurate risk assessment 
of NPs.
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