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Introduction
Ordinary or partial differential equations are commonly 

encountered in several branches of Sciences including Biology, 
Physics, Chemistry and Mathematics [1-3]. They are particularly 
used in physical branches to describe qualitatively the dynamical 
behaviors of physical systems including the population growth, the 
motion of particles in potential fields, the signal voltage in electrical 
circuits, the dynamical behaviors of trees under the effects of wind [4-
7]. These differential equations obtained via physical laws (for e.g the 
Kirchhoff and Maxwell laws) are either linear or nonlinear. Although 
linear differential equations are easily solvable, nonlinear differential 
equations are difficult to solve and several of them do not admit 
analytical solutions and their solutions need to be approximated.

Many classical methods have been proposed to find exact or 
approximated solutions of these nonlinear differential equations, 
including the Lyapunov approach, the direct integration, the multi-
scale expansion technics, the harmonic balance method [1,8-10], 
the fractional homotopy analysis transform method based on the 
innovative adjustment in Laplace transform algorithm [11-13] and 
the differential transform method (DTM) [14,15]. The DTM has been 
used in recent years for solving nonlinear oscillator dynamics problems 
and this semi-exact method, based on the kth order derivative of 
state variables around the initial time t0 or space x0, does not need 
linearization [16].

It is important to mention that in the previous works in which 
the DTM is used, the initial time or space are chosen to be the origin 
(t0=0 or x0=0) and the obtained solutions which is in the Taylor series 
expansion form are compared to the known analytical solutions of 
the models equations, which are interesting but remain nevertheless 
unsatisfactory to study the influence of initial conditions on dynamical 
behaviors of nonlinear differential equations.

The motivation of this paper is to give an answer at the above 
problem. For this aim, the rest of the paper is organized as follows: 
Section (2) describes the DTM in which some modifications have been 
carried out, in order to take into account the initial conditions. In 
section (3), some analytical and numerical examples are presented to 
illustrate the efficiency of the DTM and the obtained numerical results 
are compared to the well-known four order Runge Kutta numerical 
scheme. Finally, we give the conclusion in Section (4).

Basic Concept of Differential Transform Method
The differential transformation method is one of the semi- 

analytical method commonly used for solving ordinary and partial 
differential equations in the forms of polynomials as approximations of 
the exact solutions. The basic definition and the fundamental theorems 
of the DTM and its applicability for different kinds of differential 
equations are given in [14,16]. However in these works, all expansions 
are around the origin x0=0. Let us first remember that the differential 
transformation of the kth order derivative of any one dimensional 
variable y is given as follows:

0
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If all values of the the transformation Y (k) are computed, one 
can find the expression of the variable y(x) by using the inverse 
transformation defined as follows
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It is obvious that the DTM satisfies the following set of conditions:

i) If y(x) = ay1(x) ± by2(x), then Y (k) = aY1(k) ± bY2(k), where a
and b are any arbitrary constants.

ii) 
n
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All these five first theorems are well known and given in [14,16]. In 
addition to the above theorems, the last other theorems of the previous 
works are generalized for any given initial conditions as follows:

Vi) n (n k)
0

n!if y(x) x , then Y(k) (n k)! (n k) x
k!(n k)

−= = Θ − Θ −
−

 

where Θ  is the step function,

{1 0
0(u) if u

else
≥Θ =  				                   (3)

and x0 the initial value of x. It is obvious that when x0=0, one recover 
the result obtained in [14,16] (that is Y (k)=δ(n−k)), where δ (u) is the 
Dirac delta function.

{1 0
0(u) if u

elseδ ==  			                                  (4)

Vii) If y(x)=exp(λx), then Y (k)= k
k!
λ exp(λx0), where λ is any 

arbitrary constant.
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where w and α are constants.
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X) If y(x) = a, then Y (k) = aδ (k), where a is a constant.
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The five firsts terms of Y (k) of this theorem are given in the 
extended form in the Appendix (5.1).

Applications of DTM to the Analytical and Numerical 
Results

In this section, some examples are given to illustrate the procedure 
outlined above.

The DTM in analytical results

The exact analytical solution of any set of solvable ordinary 
differential equations can be obtained by using properties i, ii, iii,..,xi 
and by choosing the initial differentiation point to be the origin x0=0. 
Let us first consider for illustrating the efficiency of the DTM, the 
following set of differential equations:
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and subjected to the initial conditions y1(0)=y2(0)=y4(0)=1, y3(0)=0, 
where the prime stands for the derivation with respect to variable x. 
Note that these equations under these initial conditions have exact 
analytical solutions in the form:
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By using the above properties around the expansion point x0=0, 
Eq.(6) is transformed in differential form as follows:
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and subjected to the initial condition:
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From the above initial condition and accounting to the set of Eqs.
(8), the values of Yi(k), with i=1; 2; 3; 4 are progressively computed, 
leading to: Substituting the results of the above Table 1 into Eq.(2) leads 
to the following solution of the set of Eqs.(6)

2 3 4 5
1 ! ! !

3 5 2 4
2 ! ! ! !

3 5
3 ! !

2 3 4 5
4 ! ! ! !

8 16 32( ) 1 2 2 ....
3 4 5

1 1 1 1( ) ... 1 ...
3 5 2 4
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1 1 1 1( ) 1 ...
2 3 4 5
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         (10)

which coincide with solution (7) expanded as a power series near the 
origin x0=0.

The DTM in numerical investigations

As proved above, by considering the differential transformation 
near the constant and fixed initial value x0 (Figure 1), one obtains 
just the solution as a power series of the exact solution near this initial 
value. In order to seek the solution of the above problem with the DTM 
and valid for all values of x, we divide the space in small subspace, with 
space step h. To find the value of y(x+h) knowing the value of y(x), this 
method requires first the calculation of Y(k) at position x using the 

Order of the differentiation Y1(k) Y2(k) Y3(k) Y4(k)
k=1 2 1 1 -1
k=2 2 -1/2 0 1/2
k=3 8/3 -1/3 -1/3 -1/3
k=4 16/4 -1/4 0 1/4
k=5 32/5 -1/5 -1/5 -1/5

Table 1: Table into Eq.(2).
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transformation (1) and the iterative process needs the value of y(x) at 
the initial space x=x0 and next, values of

0
( ) ( )k

k
y x+h h Y k

∞

=

=∑  				               (11)

As the differentiation is obtained here at kth order, with k → ∞, 
this method is accurate to (k + 1)th order in step size h, which tend to 
zero, leading this method more stable in numerical investigations as 
compared to other scheme. The proposed numerical technique that we 
can use to calculate Eq.(11) is summarized in the flow chart shown in 
Figure 2. In what follows, the above example and two others are chosen 
to illustrate the procedure outlined in this subsection.

Example 1: Let us first consider the set of Eq.(6), with the arbitrary 
initial conditions (y1(x0); y2(x0); y3(x0); y3(x0)), leading to the fact 
that the solution of this equation is not necessary given by (10). By using 
properties i, ii, iii,..,xi with now x0=0, instead of Eq.(8), Equation(6) is 
now transformed in the following differential form:

1
2

1 2 0 1 0 4 2 1 4 2!
1

2 1 3

3 2 4

4

4 exp(4 )2( ) ( ) ( )
1

2 exp(2 )2 1( ) ( ) ( ) cos
1 ! 2 !

( 1) exp( )2 1( ) ( ) ( ) sin
1 ! 2 !

1( )
1

k
k k 0
k k

k
0

0

k
0

0

xY k +1 Y k k Y k k
k k

xkY k +1 Y k Y k x
k k k

xkY k +1 Y k Y k x
k k k

Y k +1
k

π

π

= =

 
= − − +  

  = − + + −  +   
 − − = − + + +  +   

= −
+

∑ ∑

1
2

2 0 1 0 1 2 1 1 2!
1

( 5) exp( 5 ) ( ) ( )
k

k k 0
k k

x Y k k Y k k
k= =











  − −

− −  
  

∑ ∑

  (12)

which is well function of initial condition x0. This equation is subjected 
to the initial condition:
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By using the procedure (12) and the inverse DTM (11), the values 
of yi(x) can be progressively computed to give the profile of yi(x), which 
coincide with the solid line of Figure 3, which is the exact solutions 
given by Eq. (7) if the initial conditions (9) are considered. In Matlab 
the algorithm may be given by the function DTMequation1 as given in 
Appendix(5.2):

Example 2: The forced Vander Pol Duffing oscillator: Our second 
example is the forced Vander Pol Duffing oscillator

2 3(1 ) cos( )y y y y y F tε α ω− − + + =   		              (14)

where the dot stands for the derivation with respect to time t. This 
equation can be rewritten in the set of first order differential equations 
as follows:

1 2
2

2 2 1 2 1 1( ) cos( )
y y

y y y y y y F tε ε α ω
=

 = − − + +





                    (15)

with y1 ≡ y and y2=y˙1, and subjected to the initial condition y1(t0) 
and y2(t0). Using again the DTM, it is easy to show that the set of 
Eq.(15) can be rewritten in the differential transformation form as:

( )2

2 1

1 2

2 2 1 0 0 2 1 1 1 1 2 1 0!

1( 1) ( )
1

1( 1) ( ) ( ) ( ) ( ) ( ) cos
1 2
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kk
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∑ ∑
  (16)

As in the previous example, the values of y1(t) and y2(t) are 
progressively computed using both the procedure (16) and the inverse 
DTM (11), and the obtained results are plotted in Figure 4, which 
coincide exactly with results obtained by using the well-known four 
order Runge Kutta scheme. The Matlab algorithm used to compute 
yi(t) is now given by the function DTMequation2 as shown in 
Appendix(5.3):

Figure 1: Solution of Eq.(6). Solid line, exact solution of the system given by 
(7). Dash line, approximated solution (9) at the origin x=0. As one can see, 
they coincide only near the origin x=0.

 

Figure 2: Flow chart for solving nonlinear ordinary differential equations 
viaDTM.
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Example 3: Our third example is the following set of ordinary 
differential equation:

1 1 1 2 4 1 3

2 1 1 1 2 1 4

3 2 4 1 2

4 1 2 3 2 4

y (y y ) y (exp(y y ) 1),
y (y y ) y

y [y ( 1)(exp(y y ) 1)],
y (y y y y )


 = −σ + + − γ + − = −ε σ + + ε
 = ε + γ α − + −

= − + + +σ

                               (17)

subjected again to the initial condition y1(t0), y2(t0), y3(t0) and y4(t0), 
which can model several systems oscillators in which nonlinear diodes 
or nonlinear bipolar junction transistors are present, like the Colpitts 
oscillators [17,18]. This equation can be rewritten in the differential 
form as:

1 1 1 2 4

1
2 1 1 2 4

1
3 1 4

4 1 2 3 2 4

1y (k 1) [ (y (k) y (k)) y (k) (v(k) (k))]
k 1

y (k 1) [ (y (k) y (k)) y (k)]
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y (k 1) [ (y (k) ( 1)(v(k) (k))]
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1y (k 1) (y (k) y (k) y (k) y (k)]
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ε + = −σ + + +

 ε + = −σ + γ α − −δ
 +

 + = − + + +σ
 +

  (18)

where δ  is again the delta function and where
n 1 3

n 1 0 n 2 0

k k k k
1 0 3 0 3 0 k 1 2 1k k k2 0 k1 0

n 1 n 2 n 1

1v(k) exp(y (t ) y (t ) y (t ))[ N !U(k ) U(k k )
k!

..U(K k ) U(k k )]

−
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With k 1 2 1 n 1 n 2 n 1N (k ) (k k ) .. (k k ) (k k )− − −= δ + δ − + + δ − + δ −  and

2

2 1 3

U ( k) 1 if k 0
U ( k) Y ( k) Y ( k) else

∆ = ∆ =
 ∆ = ∆ + ∆

 			              (20)

In this work we have demonstrated the applicability of the 
differential transform method for solving analytically and numerically 
the set of nonlinear ordinary differential equations, with the help of 
some concretes examples. Firstly, we have ameliorated the existing 
properties of the DTM found in works preceding this work and we have 
next shown that the DTM is very powerful and efficient tool in finding 
exact solutions for a wide class of problems. The results of numerical 
simulation applied to certain classes of nonlinear differential equations 
show that the DTM is more accurate and the obtained solutions are 
very rapidly convergent in comparison with the traditional numerical 
schemes.
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