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Abstract The theory of generalized matric Massey products has been applied for some time to A-modules M , A
being a k-algebra. The main application is to compute the local formal moduli ĤM , isomorphic to the local ring of
the moduli of A-modules. This theory is also generalized to OX -modulesM, X being a k-scheme. In these notes,
we consider the definition of generalized Massey products and the relation algebra in any obstruction situation (a
differential graded k-algebra with certain properties), and prove that this theory applies to the case of graded R-
modules, R being a graded k-algebra and k algebraically closed. When the relation algebra is algebraizable, that
is, the relations are polynomials rather than power series, this gives a combinatorial way to compute open (étale)
subsets of the moduli of graded R-modules. This also gives a sufficient condition for the corresponding point in the
moduli of OProj(R)-modules to be singular. The computations are straightforwardly algorithmic, and an example
on the postulation Hilbert scheme is given.
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1 Introduction

The theory of generalized matric Massey products (GMMP) for A-modules, A being a k-algebra, is given by Laudal
in [4], and applied to the theory of moduli of global and local modules in [6,7]. This theory can obviously be
applied also to the study of various Hilbert schemes, leading to GMMP for graded R-modules M , R being a graded
k-algebra. Let (A•, d•) be a differential graded k-algebra, and let α = {αe1 , . . . , αed} be a set of elements in
H1(A•). For n ∈ (N− {0})d and |n| = n1 + · · ·+ nd = 2 we have the ordinary cup-products α⊗k α→ H2(A•)
given by

〈α;n〉 =
∑

m1+m2=n

mi∈(N∪{0})d

αm1
· αm2

.

For example,

〈
α; (1, 0, . . . , 0, 1)

〉
= αe1 · αed + αed · αe1 ,

〈
α; (1, 1, 0, . . . , 0)

〉
= αe1 · αe2 .

By inductively adding elements αm ∈ A1, m ∈ B ⊆ (N ∪ {0})d due to some relations, we define the higher-
order generalized matric Massey products 〈α;n〉, n ∈ B′ ⊆ (N∪{0})d, for some n of higher-order |n|, provided A•

satisfies certain properties. The inductive definition of GMMP is controlled at each step by the relations between the
monomials in an algebra Ĥα constructed in parallel. We call this algebra the relation algebra of α. It is interesting
in its own right to study the GMMP structure and the relation algebra of various sets of α ∈ H1(A•).

Deformation theory is introduced as a tool for studying local properties of various moduli spaces. It is well
known that the prorepresenting hull of the deformation functor of a point M in moduli is the completion of
the local ring in that point [5]. Consider a graded R-module M , R being a graded k-algebra. Choose a minimal
resolution 0 ← M ← L• of M and consider the degree zero part Hom•

R,0(L•, L•) of the Yoneda complex. Then,
(Hom•

R,0(L•, L•), d•) is a differential graded k-algebra. Let

x∗ =
{
x∗1, . . . , x∗d

} ⊆ H1(Hom•
R,0

(
L•, L•

)) ∼= Ext1R,0(M,M)

� This article is a part of a Special Issue on Deformation Theory and Applications (A. Makhlouf, E. Paal and A. Stolin, Eds.).
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be a k-basis. Then, the relation algebra Ĥx∗ is isomorphic to the prorepresenting hull ĤM of the (graded) deforma-
tion functor DefM , that is Ĥx∗ ∼= ĤM . In addition to the definition of the graded GMMP, this is the main result of
the paper, implying that general results about the GMMP give local information about moduli. In addition, we get
the following result, telling us how GMMP on R can be used to study the singular locus of sheaves on Proj(R).

Proposition 1. Let M = Γ∗(M) forM being a coherent OProj(R)-module. Assume that

ext1R,0(M,M) = ext1Proj(R)(M,M).

Then, the hulls of the two deformation functors DefR,M and DefR,M are isomorphic, that is HM ∼= HM .

We conclude the paper with an explicit application to the postulation Hilbert scheme, suggested by Professor
Jan Kleppe.

2 Classical graded theory

2.1 Notation

We let R = ⊕d∈ZRd be a graded k-algebra, k being algebraically closed of characteristic 0 and R finitely generated
in degree 1. We let M = ⊕d∈ZMd be a graded R-module, and let M(p) denote the twisted module of M with
grading Md(p) = Mp+d.

We will reserve the name S for the free polynomial k-algebra S = k[x1, . . . , xn], so that R is a quotient of some
S by some homogenous ideal I, that is R = S/I.

By � we mean the category of local Artinian k-algebras with residue field k. If U ∈ ob(�), we will use the
notation mU for the maximal ideal in U . A surjective morphism π : U � V in � is called small if kerπ ·mU = 0.
The ring of dual numbers is denoted by k[ε], that is k[ε] = k[ε]/(ε2).

If V is a vector space, V ∗ denotes its dual.

2.2 Homomorphisms

Classically, homomorphisms of graded k-algebras R are homogenous of degree 0. This is also the case with mor-
phisms of graded R-modules. We might extend this definition by giving a grading to the homomorphisms:

HomR

(
⊕
d∈Z

Md, ⊕
d∈Z

Nd

)
= ⊕

d∈Z

HomR,d(M,N),

where φd ∈ HomR,d(M,N) ⊆ HomR(M,N) has the additional property φd(Mp) ⊆ Np+d = Np(d).

2.3 Construction of graded S-modules

For the graded R-modules M and N , M ⊕ N does certainly not inherit a total grading by (M ⊕ N)d =

⊕d′+d′′=d(Md′ ⊕ Nd′′). Thus, the sentence “a free graded R-module” does simply not make any sense. In this
section, we clarify how the grading is given.

Recall that if M , N are graded R-modules and f : N →M is a homogenous homomorphism (of degree 0), then
ker(f) and im(f) are both graded submodules.

Lemma 2. Let N = ⊕d∈ZNd be a graded R-module, M any R-module and f : M � N a surjective R-module
homomorphism. Then, gr(f−1) = ⊕d∈Zf

−1(Nd) has a natural structure of graded R-module.

Remark 3. The proof of the above lemma is immediate, but it is not always the case that M ∼= gr(f−1) for some
f . In fact, this is equivalent with M being graded.

For the sake of simplicity, assume that M = ⊕d∈ZMd is a finitely generated graded module, generated by a
finite number of homogenous elements m1, . . . ,mn of degrees p1, . . . , pn, respectively. Then, we have a surjective
homomorphism

ε : R
(− p1

)⊕R
(− p2

)⊕ · · · ⊕R
(− pn

) −→M −→ 0

sending ei of degree pi to mi (also of degree pi).
We easily see that R(−p1)⊕R(−p2)⊕· · ·⊕R(−pn) ∼= gr(ε−1), making R(−p1)⊕R(−p2)⊕· · ·⊕R(−pn) into

a graded module. As the kernel is also generated by a finite number of homogenous elements, say by (g1, . . . , gl),
where gi =

∑
j gij with gij being homogenous in R, we have the following proposition.
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Proposition 4. Every finitely generated, graded R-module M has a minimal resolution of the form

· · · −→ mn⊕
i=1

R
(− dni

)βn,i −→ · · · −→ m1⊕
i=1

R
(
d1i
)β1,i −→M −→ 0.

Conversely, given homogenous elements g1, . . . , gn ∈ R of degrees d1, . . . , dn, respectively, then R(−d1) ⊕ · · · ⊕
R(−dn) maps surjectively onto the graded module (g1, . . . , gn) ⊆ R, and so it is a graded R-module.

2.4 Families of graded modules

A finitely generated graded R-module M defines a coherent sheaf M̃ of OProj(R)-modules. In the same way, an
ideal I ⊆ R defines a sheaf of ideals on Proj(R), and this gives a subscheme of Proj(R). Thus, the study of various
moduli spaces is influenced by the study of graded R-modules.

Let us denote R = Spec(R) for short, and let X be a scheme/k. Then, a sheaf of graded OR×kX -modules is an
OR×kX -module G such that G(R ×k U) is a graded R ⊗k OX(U)-module for every open U ⊆ X . We define the
contravariant functor GrR : Schk → Sets by

GrR(X) =
{

coherent graded OR×kX -modules GX | GX is X-flat
}
/ ∼= .

The moduli spaces that we want to give results about are the schemes representing various restrictions of the functor
CR : Schk → Sets given by

CR(X) =
{

coherent OProj(R)×kX -modules F | F is X-flat
}
/ ∼= .

The restrictions can be that F is an ideal sheaf with fixed Hilbert polynomial p(t). Then, the above functor in the

case where R = k[t1, . . . , tn] is the Hilbert functor Hilb
p(t)
P
n
k

. If F is locally free of rank r with fixed chern classes,
we getM(Pn

k ; c1, . . . , cr) and so forth.
The two functors GrR and CR are usually not equivalent, that is, there exist graded modules M such that

Γ∗(M̃) � M . However, Γ∗(F) ∼= Γ∗(G)⇒ F ∼= G, and this, as we will see, is sufficient for given applications.
In general, for a contravariant functor F : Sch → Sets, and an element x ∈ F(Spec(k)), we define the fiber

functor Fx : Sch /k × {pt} → Sets from the category of pointed schemes over k to the category of sets by

Fx(X) =
{
F ∈ F(X) | F(Spec(k) pt−−→ X

)
(F ) = Fpt = x

}
.

If F is represented by a scheme M, and if x ∈M is a geometric point, then the tangent space in this point is
(
mx/m

2
x

)∗ ∼= Homx Spec
(
k[ε], X

) ∼= Fx
(
Spec

(
k[ε]
))
.

The fiber functors define covariant functors Dx : �→ Sets and Dx(V ) = Fx(Spec(V )). In our situation, we obtain
the two deformation functors

DGrR
M = DefR,M , DCR

M = DefR,M : � −→ Sets

given by

DefR,M (V ) =
{

f.g. graded R⊗k V -modules MV |MV is V -flat, MV,0
∼= M

}
/ ∼=,

DefR,M(V ) =
{

coherent OProj(R⊗kV )-modulesMV | MV is V -flat, MV,0
∼=M

}
/ ∼= .

For the rest of this section, we assume thatM = M̃ . We will use the notations DefM and DefM when no confusion
is possible.

By definition, the tangent spaces of the moduli spaces are

DefM
(
k[ε]
) ∼= Ext1R,0(M,M), DefM

(
k[ε]
) ∼= Ext1Proj(R)(M,M),

respectively (Ext1R,0(M,M) will be defined below). For every V ∈ �, the morphism˜ is surjective with section Γ∗.
That is, we have the diagram

DefR,M (V )
˜

DefR,M(V )

Γ∗

, where Γ∗(F)˜ = F .
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For a surjective small morphism π : U � V in �, given a diagram

MU ∈ DefM (U)
˜

DefM(U) 
 M̃U

Γ∗

Γ∗
(FV

) ∈ DefM (V )
˜

DefM(V ) 
 FV
Γ∗

with MU mapping to Γ∗(FV ), Γ∗(FV ) mapping to FV , then it follows by functoriality of ˜ that M̃U is a lifting
of FV .

This has obvious consequences, and we will eventually prove the following.

Proposition 5. Let M = Γ∗(M) forM ∈ CR(Spec(k)). Assume that ext1R,0(M,M) = ext1Proj(R)(M,M). Then
the hulls of the two deformation functors DefR,M and DefR,M are isomorphic, that is HM ∼= HM .

Remark 6. This proof says that if Γ∗(F2) = M2, where F2, M2, are the liftings to k[ε] corresponding to the
canonical morphism Ĥ → Ĥ/m2, then HM ∼= HM . This can be used correspondingly in the higher-order liftings,
but it is very hard to check.

3 Deformation theory

3.1 Generalized Massey products

In this subsection, we consider a differential graded k-algebra (A•, d•) with certain properties. We will assume that
0 ∈ N, and for n ∈ N

d, we will use the notation |n| =∑d
i=1 ni. For α = (αe1 , . . . , αed) ∈ (H1(A•))d, d ∈ N, we

will define some generalized Massey products 〈α;m〉 ∈ H2(A•), m ∈ B′, where B′ ⊆ {n ∈ N
d : |n| ≥ 2}. Notice

that the Massey products may not be defined for all (if any) n ∈ N
d. The overall idea is the following.

Let αe1 , . . . , αed be a set of d elements in H1(A•), let B′
2 = {n ∈ N

d : |n| = 2}, and put B1 = {n ∈ N
d :

|n| ≤ 1}. The first-order Massey products are then the ordinary cup-products in A•. That is

〈α;n〉 = y(n), y(n) =
∑

m1+m2=n

|mi|=1

αm1
· αm2

, n ∈ B′
2.

Definition 7. One will say that the Massey product is identically zero if y(n) = 0.

The higher-order Massey products are defined inductively. Assume that the Massey products are defined for
n ∈ B′

N , B′
N ⊆ {n ∈ N

d : |n| ≤ N}, N ∈ N. For each m ∈ BN ⊆ B′
N , assume that there exists a fixed linear

relation

bm =

N−2∑

l=0

∑

n∈B′
2+l

βn,m〈α;n〉 = 0,

and choose an αm ∈ A1 such that d(αm) = l(m). The set {αm}m∈B̄N
, B̄N = B̄N−1 ∪ BN , is called a defining

system for the Massey products

〈α;n〉 = y(n), y(n) =
∑

|m|≤N+1

∑

m1m2=m

mi∈B̄N

β′
n,mαm1

· αm2
, m ∈ B′

N+1,

where β′
n,m are chosen linear coefficients for each pair m, n such that 〈α;n〉 ∈ H2(A•).

One way to construct Massey products, that is to construct the relations b given above, is as follows. Let
αe1 , . . . , αed be a set of representatives of d elements in H1(A•). Let

S2 = k
[[
u1, . . . , ud

]]
/m2 = k

[
[u]
]
/m2, R3 = k

[
[u]
]
/m3,

B̄1 =
{
n ∈ N

d : |n| ≤ 1
}
, B′

2 =
{
n ∈ N

d : |n| = 2
}
, B̄′

2 = B̄1 ∪B′
2.
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Definition 8. The first-order Massey products are the ordinary cup-products in A•. That is, for n ∈ B′
2,

〈α;n〉 = y(n), y(n) =
∑

m1+m2=n
|mi|=1

αm1
· αm2

.

Choose a k-basis {y∗1 , . . . , y∗r} for H2(A•), and put

f2j =
∑

n∈B′
2

yj
(〈α;n〉)un, j = 1, . . . , r.

Let S3 = R3/(f
2
1 , . . . , f

2
r ), and choose B2 ⊆ B′

2 such that {un}n∈B2
is a monomial basis for

m2/m3 +
(
f21 , . . . , f

2
r

)
.

Put B2 = B1 ∪B2. For each n ∈ N
d with |n| ≤ 3, we have a unique relation in S3:

un =
∑

m∈B2

βn,mum

and for each m ∈ B2 we have

bm =
∑

n∈B′
2

βn,m〈α;n〉 = 0.

Choose for each m ∈ B2 an αm ∈ A1 such that d(αm) = −bm. Put

R4 = k
[
[u]
]
/m4 +m

(
f2, . . . , f

2
r

)
.

Choose a monomial basis {un}n∈B′
3

for m3/m4 +m3 ∩ (f21 , . . . , f
2
r ) such that for each n ∈ B′

3, un = uk · um for
some 0 ≤ k ≤ d and some m ∈ B2.

Definition 9. The set {αm}m∈B2
is called a defining system for the Massey products 〈α;n〉, n ∈ B′

3.

Assume that the k-algebras

Rn+1 = k
[
[u]
]
/
(
mn+1 +m

(
fn−1
1 , . . . , fn−1

r

))

π′
n+1

Sn = k
[
[u]
]
/
(
mn +

(
fn−1
1 , . . . , fn−1

r

))

and the sets Bn−1, Bn−1, B′
n, {αm}m∈Bn−1

have been constructed for 1 ≤ n ≤ N according to the above, in
particular

kerπ′
n+1 = mn +

(
fn−1
1 , . . . , fn−1

r

)
/
(
mn+1 +m

(
fn−1
1 , . . . , fn−1

r

))

∼= mn/
(
mn+1 +mn ∩m

(
fn−1
1 , . . . , fn−1

r

)⊕ (fn−1
1 , . . . , fn−1

r

)
/m
(
fn−1
1 , . . . , fn−1

r

))
,

and we assume (by induction) that {un}n∈B′
n

is a basis for

In+1 = mn/
(
mn+1 +mn ∩m

(
fn−1
1 , . . . , fn−1

r

))
.

Put B
′
N+1 = BN ∪B′

N+1. For each n ∈ B′
N+1 we have a unique relation in RN+1:

un =
∑

m∈B
′
N+1

β′
m,nu

m +
∑

j

βn,jf
n−1
j .

Definition 10. The N th-order Massey products are

〈α;n〉 = y(n), y(n) =
∑

|m|≤N+1

∑

m1+m2=m
mi∈BN

β′
m,nαm1

· αm2
, n ∈ B′

N+1.
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For this to be well defined, we need both that y(n) is a coboundary, and that its class is independent of the
choices of α. We will only consider algebras A• that obey this, and we call A• an obstruction situation algebra, or
concisely an OS-algebra.

Put

fNj = fN−1
j +

∑

n∈B′
N

yj
(〈α;n〉)un,

RN+2 = k
[
[u]
]
/
(
mN+2 +m

(
fN1 , . . . , fNr

))
,

π′
N+1

SN+1 = RN+1/
(
fN1 , . . . , fNr

)
= k
[
[u]
]
/
(
mN+1 +

(
fN1 , . . . , fNr

)) πN+1−−−−→ SN ,

pick a monomial basis {un}n∈BN
for kerπN+1 such that BN ⊆ B′

N , and put BN = BN−1 ∪ BN . For each
n ∈ N

d, |n| ≤ N , we have a unique relation in SN+1, un =
∑

m∈BN
βn,mum, and for each n ∈ BN ,

bn =

N−1∑

l=0

∑

n∈B′
2+l

βn,m〈α;n〉 = 0.

For each m ∈ BN , choose αm ∈ A1 such that d(αm) = −bm.

Definition 11. The set {αm}m∈BN
is called a defining system for the Massey products 〈α;n〉, n ∈ B′

N+1.

Choose a monomial basis {un}n∈B′
N+1

for

mN+1/mN+2 +mN+2 +mN+1 ∩m
(
fN1 , . . . , fNr

)

such that for each n ∈ B′
N+1, we have un = uk · um for some 1 ≤ k ≤ d and m ∈ BN+1. The construction then

continues by induction.

Definition 12. Let (A•, d•) be a differential graded OS k-algebra, and let α1, . . . , αd = α be a set of elements in
H1(A•). Let {y∗1 , . . . , y∗r} be a k-basis for H2(A•), and for 1 ≤ j ≤ r, let

fj =

∞∑

l=2

∑

n∈B′
l

yj
(〈α;n〉)un.

Then, one defines

Ĥα = k
[[
u1, . . . , ud

]]
/
(
f1, . . . , fr

)

and calls it the relation algebra of α.

3.2 Obstruction theory

In this section, fix once and for all a minimal (graded) resolution of the graded R-module M :

0 M L0
ε

L1
δ1

L2
δ2 · · ·δ3

with Ln ∼= ⊕mn
i=1R(−di,n)βi,n . Consider a small surjective morphism π : U � V in �, and let MV ∈ DefM (V ).

Then, an element MU ∈ DefM (U) such that DefM (π)(MU ) = MV is called a lifting of MV to U .

Lemma 13. Giving a lifting MU ∈ DefM (U) of the graded R-module M is equivalent to giving a lifting of
complexes:

0 MU L0 ⊗k U
εU

L1 ⊗k U
δU1

L2 ⊗k U
δU2 · · ·δU3

0 M L0ε
L1

δ1
L2

δ2
· · ·

δ3

One also has that εU (l ⊗k 1) ∈M ⊗k mU , δUi (l ⊗k 1) ∈ Li−1 ⊗k mU for all i ≥ 1, and that the top row is exact.
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Proof. Because U is Artinian, its maximal ideal mU is nilpotent. We will prove the lemma by induction on n such
that mn

U = 0, the case n = 1 being obvious. Assuming the result true for n, then assume mn+1
U = 0 and put

V = U/mn
U . Thus, the sequence of U -modules 0→ I → U

π→ V → 0 with I = mn
U = kerπ is exact with π being a

small morphism, and such that mn
V = 0. Notice that MU⊗U V is V -flat and that (MU⊗U V )⊗V k ∼= MU⊗U k ∼= M

such that MV := MU⊗U V ∈ DefM (V ). Also notice that MU⊗U I ∼= (MU⊗U k)⊗kI ∼= M⊗kI. Thus, tensorizing
0→ I → U

π→ V → 0 over U with MU we get the exactness of the first vertical sequence in the diagram

0 0 0 0

0 M ⊗k I L0 ⊗k I
ε⊗id

L1 ⊗k I
δ1⊗id

Ł2 ⊗k I
δ2⊗id · · ·δ3⊗id

0 MU L0 ⊗k U
εU

L1 ⊗k U
δU1

L2 ⊗k U
δU2 · · ·δU3

0 MV L0 ⊗k V
εV

L1 ⊗k V
δV1

L2 ⊗k V
δV2

· · ·
δV3

0 0 0 0.

The exactness of the horizontal top row follows from exactness of I over k, the bottom row is exact by
assumption, and the middle row is constructed as follows: let εU be a lifting of εV , which obviously exists. By
assumption, εV (l ⊗ 1) = ε(l) ⊗ 1 + h, h ∈ M ⊗k mV . Thus, εV (l ⊗ 1) = ε(l) ⊗ 1 + h + v, h ∈ mU , v ∈ I,
that is εV (l ⊗ 1) = ε(l) ⊗ 1 + u, u ∈ mU . The commutativity of the first rectangle then follows from the fact that
mU · I = 0, that is, π is a small morphism.

Now, choose a lifting δ̃U1 of δV1 . As above, δ̃U1 (l⊗ 1) ∈ L0 ⊗k mU by the induction hypothesis, and therefore it
commutes with δ1 ⊗ id.

For each generator l of L1 ⊗k U , choose an x ∈ L0 ⊗k I such that (ε ⊗ id)(x) = εU (δ̃1(l)), and put δ1(l) =

δ̃1(l)− x. Then

εU
(
δ1(l)

)
= εU

(
δ̃1(l)

)− εU (x) = εU
(
δ̃1(l)

)− (ε⊗ id)(x) = 0.

This gives the desired lifting, and we may continue this way with δUi , i > 1. We have proved that the middle
sequence is a complex.

Conversely, given a lifting of complexes as in the lemma, then taking the tensor product over U with V = U/mn
U

in the top row, we get a lifting as in the above diagram. By the induction hypothesis, the bottom row is exact with
MV = H0(L• ⊗k V ) being a lifting of M .

Writing up the long exact sequence of the short exact sequence of complexes, we have that the sequence in the
middle is also exact, MU = H0(L•⊗k U) is flat over U because MU

∼= M ⊗k U as k-vector space implies that MU

is U -free and thus flat.

As the category of graded R-modules is the (abelian) category of representations of the graded k-algebra R, a
homomorphism φ : M → N between the two graded R-modules M and N is by definition homogenous of degree 0.
This implies that the derived functors of HomR in the category of graded R-modules are the derived functors of
HomR,0, where HomR,0 denotes R-linear homomorphisms of degree 0. Thus, we use the notation ExtpR,0(M,N).

We have fixed the minimal graded resolution 0 ← M ← L• of M , and we define the graded Yoneda complex
by (Hom•

R,0(L•, L•), δ•), where

Homp
R,0

(
L•, L•

)
= Π

n≥p
HomR,0

(
Ln, Ln−p

)

and where the differential

δp : Homp
R,0

(
L•, L•

) −→ Homp+1
R,0

(
L•, L•

)

is given by

δp
({

ξn
}
n≥p

)
=
{
δn ◦ ξn−1 − (−1)pξn ◦ δn−p

}
n≥p+1

,

where the composition is given by ξ ◦ δ(x) = δ(ξ(x)). It is straightforward to prove the following.
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Lemma 14. Hn(Hom•
R,0(L•, L•)) ∼= ExtnR,0(M,N), n ≥ 0.

Proposition 15. Let π : U � V be a small morphism in � with kernel I. Let MV ∈ DefM (V ) correspond to the
lifting (L• ⊗k V, δV• ) of the complex (L•, δ). Then, there is a uniquely defined obstruction

o
(
MV , π

) ∈ Ext2R,0(M,M)⊗k I,

given in terms of the 2-cocycle o ∈ Hom•
R,0(L•, L•) ⊗k I, such that o(MV , π) = 0 if and only if MV may be

lifted to U . Moreover, if o(MV , π) = 0, then the set of liftings of MV to U is a principal homogenous space over
Ext1R,0(M,M).

Proof. Since Li is free for each i, we can choose a lifting δ̃Ri making the following diagram commutative for each i:

Li−1 ⊗k U Li ⊗k U
δ̃Ui

Li−1 ⊗k V Li ⊗k V.
δVi

As π is small, the composition δ̃Ui ◦ δ̃Ui−1 : Li ⊗k U → Li−2 ⊗k U is induced by a unique morphism oi : Li →
Li−2 ⊗k I, and so

o =
{
oi
} ∈ Hom2

R,0

(
L•, L•

)⊗k I.

Also, o is a cocycle, and

o
(
MV , π

)
= ō ∈ Ext2R,0(M,M).

Another choice δ̃R leads to an o ∈ Hom2
R,0(L•, L•)⊗kI differing by the image of an element in Hom1

R,0(L•, L•)⊗k

I such that o(MV , π) is independent of the choice of liftings. This also proves the “only if” part.
If o = o(MV , π) = 0, then there is an element ξ ∈ Hom1

R,0(L•, L•) ⊗k I such that o = −d1(ξ). Put δUi =

δ̃Ui + ξi, and one finds that δUi ◦ δUi−1 = 0. Thus, it follows from Lemma 13 that MV can be lifted to U .

For the last statement, given two liftings M1
U and M2

U corresponding to (l•⊗kU, δ
U,1
• ) and (l•⊗kU, δ

U,2
• ). Then

their difference induces morphisms ηi = δU,1
i − δU,2

i : Li → Li−1 ⊗k I, and (for each choice of basis element in I)
η = {ηi} ∈ Hom•

R,0(L•, L•) is a cocycle and thus defining η̄ ∈ Ext1R,0(M,M). This gives the claimed surjection

{
Liftings of MV to U

}× Ext1R,0(M,M) �
{

Liftings of MV to U
}
.

Notice that this proves that Hom•
R,0(L•, L•) is an OS-algebra as well.

We now combine the theory of Massey products and the theory of obstructions. We let ĤM = Ĥ denote the
prorepresenting hull (the local formal moduli) of DefM . All the way we will use the notations and constructions in
Section 3.1.

Pick a basis
{
x1, . . . , xd

} ∈ Ext1R,0(M,M)∗

and a basis
{
y1, . . . , yr

} ∈ Ext2R,0(M,M)∗.

Denote by {x∗i } and {y∗i } the corresponding dual bases. Put

S2 = k
[
u1, . . . , ud

]
/m2 = k

[
[u]
]
/m2, B1 =

{
n ∈ N

d : |n| ≤ 1
}
.

We set α0 = {di} and αej = {x∗j,i}. Let t
Ĥ

and tDefE denote the tangent spaces of Ĥ and DefM , respectively.
A deformation E2 ∈ DefE(S2) corresponding to an isomorphism t

Ĥ
→ tDefE is represented by the lifting {L• ⊗k

S2, d
S2• } of {L•, d•} where

dS2•
∣∣
L•⊗1

=
∑

m∈B1

αm• ⊗ um.
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Now, put π′
3 : R3 = k[[u]]/m3 → S2, choose B′

2 as in Section 3.1 and put B
′
2 = B1 ∪B′

2. Then

o
(
E2, π

′
3

)
= cl

{
dS2
i ◦ dS2

i−1

}
=
∑

n∈B′
2

y(n)⊗ un ∈ Ext2R,0⊗k ker
(
π′
3

)

with

y(n) =
∑

m1+m2=n

mi∈B1

αm1,i
◦ αm2,i−1.

This is to say 〈x∗;n〉 = y(n) for each n ∈ B′
2. Translating, we get

o
(
E2;π

′
3

)
=
∑

n∈B′
2

〈
x∗;n

〉⊗k un =

r∑

i=1

yi ⊗
⎛

⎝
∑

n∈B′
2

yi
(〈x;n〉)un

⎞

⎠ =

r∑

i=1

yi ⊗ f2i .

Following the construction in Section 3.1, for each m ∈ B2, we pick a 1-cochain αm ∈ Hom1
R,0(L•, L•) such that

d
(
αm
)
= −bm = −

∑

n∈B′
2

βn,my(n).

Then the family {αm}m∈B2
is a defining system for the Massey products 〈x∗;n〉, n ∈ B′

3. Define dS3 by

dS3
∣∣
Li⊗1

=
∑

m∈B2

αm,i ⊗ um.

Then (dS3)2 = 0, and so, by Lemma 13, {L• ⊗k S3, d
S3
i } corresponds to a lifting E3 ∈ DefM (S3). We continue

by induction: given a defining system {αm}m∈BN
for the Massey products 〈x∗;n〉, n ∈ B′

N+1, assume that dSN is

defined by dSN |Li⊗1 =
∑

m∈BN
αm,i ⊗ um. Then it follows that

o
(
EN , π′

N+1

)
=

∑

n∈B′
N+1

⎛

⎜⎜⎜⎝
∑

m1+m2=m

mi∈BN

β′
n,mαm1,i

◦ αm2,i−1

⎞

⎟⎟⎟⎠
⊗ un +

r∑

j=1

y∗j ⊗ fNj .

For 1 ≤ j ≤ r, letting

fN+1
j = fNj +

∑

n∈B′
N+1

yj
(〈
x∗;n

〉)

as in Section 3.1 gives

o
(
EN , π′

N+1

)
=
∑

j

y∗j ⊗ fN+1
j .

Dividing out by the obstructions, that is letting SN+1 = RN+1/(f
N+1
1 , . . . , fN+1

r ), makes the obstruction 0, that
is
∑

n∈B′
N+1

βn,m〈x∗;n〉 = 0 for each m ∈ BN+1, such that the next order defining system can be chosen.

Thus we have proved the following.

Proposition 16. Let R be a graded k-algebra and M a graded R-module. Let {x∗} = {x∗1, . . . , x∗d} ⊆
Ext1R,0(M,M) = H1(Hom•

R,0(M,M)) be a k-vector space basis. Then, the relation algebra of {x∗} is isomorphic

to the prorepresenting hull ĤM of DefM , that is Ĥ{x∗} ∼= ĤM .

Proof. This follows directly from Schlessinger’s article [5].

Proof of Proposition 5. For each small morphism π : U � V , if MV is unobstructed, so is M̃V . Thus, if there are
no relations in HM , there are none in HM̃ either.

Proposition 17. Let R be a graded k-algebra and [M] a point in the moduli space M of OProj(R)-modules corre-

sponding toM. If all cup-products of M = Γ∗(M) are identically zero and ext1R,0(M,M) = ext1OProj(R)
(M,M),

then M is nonsingular in the point [M].
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Proof. We can choose all defining systems for M equal to zero so that there are no relations in HM . The result then
follows from Proposition 5.

4 An example of an obstructed determinantal variety in the postulation Hilbert scheme

The postulation Hilbert scheme is the scheme GradAlg parameterizing graded algebras with fixed Hilbert function.
The following example is given to me by Jan Kleppe. The theory is treated in [2,3].

Let R = k[x0, x1, x2, x3], k = k and consider the two R-matrices

GI =

(
x0 x1 x2 x33

x2 x0 x1 x32

)
, GJ =

(
x0 x1 x2 x33

x3 x0 x1 x32

)
.

We let I and J be the ideals generated by the minors of GI and GJ , respectively. Then the graded modules
MI = R/I and MJ = R/J belong to the same component in GradAlg. (This is because the irreducible variety
of fixed degree polynomials maps to an irreducible subset of GradAlg, contained in the same component.) Thus
if the dimension of the tangent space of the two modules differs, the one with the highest dimension necessarily
has to be obstructed (meaning that it corresponds to a singular point). Computing with Singular [1], we find that
ext1R,0(MI ,MI) = 24, ext1R,0(MJ ,MJ ) = 22. We then know that the first is an example of an obstructed module.

Notice that a computer program (a library in Singular [1]) can be made for these computations. This will be
clear in this example. However, for large tangent space dimensions, it seems that the common computers of today
are too small.

In this section, we will cut out the tangent space by a hyperplane where the variety in question is obstructed.
This will give readable information about the relations in the point corresponding to the variety, and the example
will be possible to read.

We put

s1 = x21 − x0x2, s2 = x0x1 − x22, s3 = x20 − x1x2,

s4 = x42 − x1x
3
3, s5 = x1x

3
2 − x0x

3
3, s6 = x0x

3
2 − x2x

3
3.

Then I = (s1, . . . , s6) and M = MI = R/I are given by the minimal resolution

0←−M ←− R
d0←− R(−2)3 ⊕R(−4)4 d1←− R(−2)2 ⊕R(−5)6 d2←− R(−6)3 ←− 0

with

d0 =
(
s1 s2 s3 s4 s5 s6

)
,

d1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 −x2 x33 0 0 x32 0 0

−x1 x0 0 x33 0 0 x32 0

x2 −x1 0 0 x33 0 0 x32

0 0 x1 x0 0 x0 x2 0

0 0 −x2 0 x0 −x1 0 x2

0 0 0 −x2 −x1 0 −x1 −x0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x33 x32 0

0 −x33 x32

−x0 −x2 0

x1 x0 0

−x2 −x1 0

0 −x0 x2

0 x1 −x0
0 −x2 x1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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To compute a basis for Ext1R,0(M,M), we apply the functor HomR,0(−,M), resulting in the sequence

M
dT
0−−→M(2)3 ⊕M(4)4

dT
1−−→M(2)2 ⊕M(5)6

dT
2−−→M(6)3 −→ 0.

We then notice that dT0 = 0 and so Ext1R,0(M,M) = (ker dT1 )0.
Programming in Singular’s work [1], a basis for Ext1R,0(M,M) is given by the columns in the following 6×24-

matrix:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

x0x
3
3 x0x2x

2
3 x0x

2
2x3 x0x

3
2 x0x1x

2
3 x0x1x2x3 x0x1x

2
2 x0x

2
1x3

x2x
3
3 x22x

2
3 x32x3 x42 x1x2x

2
3 x1x

2
2x3 x1x

3
2 x21x2x3

x1x
3
3 x1x2x

2
3 x1x

2
2x3 x1x

3
2 x21x

2
3 x21x2x3 x21x

2
2 x31x3

0 −x0x1 −x21 −x1x2 −x1x3 x0x2 x1x2 x22

0 −x20 −x0x1 −x0x2 −x0x3 0 0 0

0 0 0 0 0 −x20 −x0x1 −x0x2
x20x

2
3 x0x

3
3 x1x

3
3 x2x

3
3 x43 0 0 0

x0x2x
2
3 0 0 0 0 x0x

3
3 x1x

3
3 x2x

3
3

x0x1x
3
3 0 0 0 0 0 0 0

x2x3 0 −x0x3 x1x3 0 −x2x3 x0x3 x1x3

0 x2x3 −x2x3 0 x1x3 −x1x3 0 x0x3

−x0x3 x1x3 0 −x2x3 x0x3 0 −x1x3 0

0 0 x32x3 0 0 x1x
2
2x3 0 0

x43 0 0 x32x3 0 0 x1x
2
2x3 x32x3

0 x43 0 0 x32x3 0 0 x1x
2
2x3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Following the algorithm and notation given in Section 3.1, we compute cup-products. Of the 300 computed,
79 are identically zero in the meaning that

0 ≡ αi1 ◦ αi′2 + αi′1 ◦ αi2 : R(−3)2 ⊕R(−5)6 −→ R.

Of the remaining 221, 205 are zero in cohomology, giving in total 16 nonzero cup-products. With respect to a basis
{ỹi}33i=1 for Ext2R,0(M,M), these products can be expressed by

v13v23 = y1, v13v24 = y2, v17v22 = −y1, v17v24 = y3, v18v22 = −y2, v18v23 = −y3,
v19v22 = −y2, v19v23 = −y3, v20v23 = y1, v20v24 = y2, v21v22 = −y1, v21v24 = y3,

v222 = y1, v22v23 = y2, v22v24 = −y3, v223 = y3.

Letting

f1 = v13v23 − v17v22 + v20v23 − v21v22 + v222,

f2 = v13v24 − v18v22 − v19v22 + v20v24 + v22v23,

f3 = v17v24 − v18v23 − v19v23 + v21v24 − v22v24 + v223,

we may conclude from Proposition 16 the following.

Proposition 18. The determinantal scheme given by the minors of the matrix GI has first-order relations given by
its second-order local formal moduli

Ĥ/m3 ∼= k
[[
v1, . . . , v24

]]
/
((
f1, f2, f3

)
+m3).

From [3] it follows that the obstruction space for M = R/I is H2(M,M,R), where M is considered as a graded
R-algebra. This k-vector space has dimension 3, and so we may conclude the following.
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Corollary 19. The determinantal scheme given by the minors of the matrix GI is maximally obstructed.

We are now going to put most (21) of the variables above to zero. That is, we choose the most interesting of
the 24 variables above; t1 = v22, t2 = v23, t3 = v24, all others are put to zero. We follow the algorithm given in
Section 3.1 and we work in the Yoneda complex Hom•(L•, L•), where L• denotes the R-free resolution of M given
above.

Notice that for α = {αi} ∈ Hom1(L•, L•), it is always sufficient to have the two leading morphisms α1 : L1 →
L0, α2 : L2 → L1. Also, it is known that finding these by the methods below, they can always be extended to the
full complex; see [7].

We find

αe1,1 =
(−x2x3 −x1x3 0 x1x

2
2x3 0 0

)
,

αe1,2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−x3 0 −x22x3 0 0 0 0 0

0 x3 0 −x22x3 0 −x22x3 0 0

0 0 0 0 0 0 0 0

0 0 0 −x3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −x3 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

αe2,1 =
(
x0x3 0 −x1x3 0 x1x

2
2x3 0

)
,

αe2,2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −x3 0 0 0 x22x3 0 0

0 0 0 0 −x22x3 0 0 0

−x3 0 0 0 0 0 0 0

0 0 0 0 −x3 0 0 0

0 0 x3 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

αe3,1 =
(
x1x3 x0x3 0 0 x32x3 x1x

2
2x3
)
,

αe3,2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 x22x3 0 x22x3 0

0 0 0 0 0 0 0 x22x3

0 −x3 0 0 0 0 0 0

0 0 x3 0 0 0 0 0

0 0 0 x3 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This given, it is an easy match to compute the cup products (or the first order generalized Massey products). These
are

〈
v∗; (2, 0, 0)

〉
= αe1,1 · αe1,2 = x23

(
x2,−x1, x32, 0, 0, x1x22, 0, 0

)
,

〈
v∗; (1, 1, 0)

〉
= αe1,1 · αe2,2 + αe2,1 · αe1,2 = x23

(− x0, x2,−x0x22, 0, 0,−x32, 0, 0
)
,

〈
v∗; (1, 0, 1)

〉
= αe1,1 · αe3,2 + αe3,1 · αe1,2 = x23

(− x1, x0,−x1x22,−x0x22,−x32,−x0x22,−x32,−x1x22
)
,

〈
v∗; (0, 2, 0)

〉
= αe2,1 · αe2,2 = x23

(
x1,−x0, x1x22, 0, 0, x0x22, 0, 0

)
,

〈
v∗; (0, 1, 1)

〉
= αe2,1 · αe3,2 + αe3,1 · αe2,2 = x23

(
0, 0, x32, x1x

2
2, 0, x1x

2
2, x0x

2
2, 0
)
,

〈
v∗; (0, 0, 2)

〉
= αe3,1 · αe3,2 = x23

(
0, 0, 0, x32, x1x

2
2, 0, x1x

2
2, x0x

2
2

)
.

As classes in cohomology, we find (as we already knew)

〈
v∗; (2, 0, 0)

〉
= y1,

〈
v∗; (1, 1, 0)

〉
= y2,

〈
v∗; (1, 0, 1)

〉
= −y3,

〈
v∗; (0, 2, 0)

〉
= y3,

〈
v∗; (0, 1, 1)

〉
= 0,

〈
v∗; (0, 0, 2)

〉
= 0.
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We put

f21 = t21, f22 = t1t2, f23 = t22 − t1t3,

and the restricted local formal moduli to the second order is

Ĥ ′
M/m3 = k

[[
t1, t2, t3

]]
/
(
f21 , f

2
2 , f

3
3

)
.

We follow the algorithm given in Section 3.1 further. We choose a basis B2 for

m2/
(
m3 +

(
f21 , f

2
2 , f

2
3

))
,

for example,

B2 =
{
(0, 2, 0), (0, 1, 1), (0, 0, 2)

}

and choose a third-order defining system. Notice that by 〈v∗;n〉 we mean a representative of the cohomology class

b(0,2,0) =
〈
v∗; (0, 2, 0)

〉
+
〈
v∗; (1, 0, 1)

〉
= x23

(
0, 0, 0,−x0x22,−x32, 0,−x32,−x1x22

)
.

Similarly,

b(0,1,1) = x23
(
0, 0, x32, x1x

3
2, x1x

2
2, 0, x1x

2
2, x0x

2
2, 0
)
,

b(0,0,2) = x23
(
0, 0, 0, x32, x1x

2
2, 0, x1x

2
2, x0x

2
2

)
.

Writing up why these are cocycles, we find what αn to choose for d(αn) = −bn:

α(0,2,0),1 =
(
0 0 0 0 0 −x0x2x23

)
,

α(0,2,0),2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 −x2x23 0 −x2x23 0

0 0 0 0 0 0 0 −x2x23
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α(0,1,1),1 =
(
0 0 0 −x0x2x23 0 0

)
,

α(0,1,1),2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 x2x
2
3 0 0 0 0 0

0 0 0 x2x
2
3 0 x2x

2
3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α(0,0,2),1 =
(
0 0 0 0 0 x22x

2
3

)
,

α(0,0,2),2 ≡ 0.

Again, following the algorithm given in Section 3.1, we choose a monomial basis B′
3 = {(0, 2, 1), (0, 1, 2),

(0, 0, 3)} for m3/m4+m3 ∩m(f21 , f
2
2 , f

2
3 ), and can compute the Massey products (notice again that the next to last

expression is the representative in the Yoneda complex of its cohomology class):
〈
v∗; (0, 2, 1)

〉
= α(0,2,0) ∪ αe3 + α(0,1,1) ∪ αe2 + α(0,0,2) ∪ αe1

=
(
0, 0,−x22x33,−x1x2x33, 0,−x1x2x33,−x0x2x33, 0

)
= 0,

〈
v∗; (0, 1, 2)

〉
= α(0,1,1) ∪ αe3 + α(0,0,2) ∪ αe2 ≡ 0,

〈
v∗; (0, 0, 3)

〉
= α(0,0,2) ∪ αe3 ≡ 0.
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We now put

f31 = f21 , f32 = f22 , f33 = f23

and so

Ĥ ′/m4 ∼= k
[[
t1, t2, t3

]]
/
(
f31 , f

3
2 , f

3
3

)
+m4.

We put B3 = B′
3 = {(0, 2, 1), (0, 1, 2), (0, 0, 3)}, and the next order defining system is easy to find, only one of the

representations of the elements bn is different from zero:

b(0,2,1) = x0x
3
3

(
0, 0,−x1,−x0, 0,−x0,−x2, 0

)
+
(
0, 0, x33s2, x

3
3s3, 0, x

3
3s3, 0, 0

)
.

We choose

α(0,2,1),1 =
(
0 0 0 x0x

3
3 0 0

)
, α(0,2,1),2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 −x33 0 0 0 0 0

0 0 0 −x33 0 −x33 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rest of the elements in the defining system are chosen identically zero, and we put B′
4 = {(0, 2, 2), (0, 1, 3),

(0, 0, 4)} and compute the fourth-order Massey products:

〈
v∗; (0, 2, 2)

〉
= α(0,1,2) ∪ αe2 + α(0,2,1) ∪ αe3 + α(0,2,0) ∪ α(0,0,2) + α(0,1,1) ∪ α(0,1,1) + α(0,0,3) ∪ αe1 ≡ 0,

〈
v∗; (0, 1, 3)

〉
= α(0,1,2) ∪ αe3 + α(0,0,3) ∪ αe2 + α(0,1,1) ∪ α(0,0,2) ≡ 0,

〈
v∗; (0, 0, 4)

〉
= α(0,0,3) ∪ αe3 + α(0,0,2) ∪ α0,0,2 ≡ 0.

Now, put f4i = f3i , i = 1, 2, 3. Because these then are homogenous of degree two, the next order defining
systems involves only fourth-order Massey products, and these can all be chosen identically zero. Then, the fifth-
order Massey products involve αm1

∪ αm2
with at least one of |mi| = 3. We see that α(0,2,1) ∪ αm ≡ 0 for all m

with |m| = 2, and so all fifth-order Massey products are zero. Noting also that α(0,2,1) ∪ α(0,2,1) ≡ 0, we are ready
to conclude the following proposition.

Proposition 20. Let f1 = t21, f2 = t1t2, f3 = t22 − t1t3. Then, there exists an open subset of the component
of GradAlg, the moduli scheme of graded R-algebras, containing the determinantal scheme corresponding to the
matrix GI such that its intersection with the hyperplane t4 = · · · = t24 = 0 is isomorphic to

k
[
t1, t2, t3

]
/
(
f1, f2, f3

)

with the versal family

M(t1,t2,t3) = k
[
x0, x1, x2, x3

]
/I
((
t1, t2, t3

))

for t ∈ Z(f1, f2, f3) with

I
(
t1, t2, t3

)
=
(
s1 − x2x3t1 + x0x3t2 + x1x3t3, s2 − x1x3t1 + x0x3t3,

s3 − x1x3t2, s4 + x1x
2
2x3t1 − x0x2x

2
3t2t3 + x0x

3
3t

2
2t3,

s5 + x1x
2
2x3t2 + x32x3t3, s6 + x1x

2
2x3t3 − x0x2x

2
3t

2
2 + x22x

2
3t

2
3

)
.

Remark 21. When the local formal moduli with its formal family is algebraizable in this way, we get an open subset
of the moduli (at least étale). Thus, we get a lot more than just the local formal information. The conditions for when
ĤM is algebraizable is an interesting question.
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