

Gene Doping: Evolving Threats, Detection, Ethics

Linnea Borgström*

Department of Kinesiology, Lund University, Lund, Sweden

Introduction

Gene doping, though not yet widely detected, remains a significant threat to fair sport. This paper outlines the current understanding of gene doping, focusing on therapeutic genes like EPO, IGF-1, and GH that enhance athletic performance. Authors highlight the ongoing challenges in developing effective detection methods and the ethical dilemmas involved. Continuous research into sophisticated detection techniques and robust regulatory frameworks are crucial to safeguard the integrity of sport[1].

As gene editing technologies like CRISPR become more accessible, the lines between therapeutic applications and performance enhancement blur. This article explores the evolving legal and ethical landscape surrounding gene doping and gene editing in sports. It raises critical questions about consent, fairness, and the very definition of "natural" athletic ability, arguing for proactive policy development to address these complex issues before they become widespread challenges[2].

This review offers a comprehensive look at the contemporary landscape of gene doping, emphasizing the constant cat-and-mouse game between dopers and anti-doping agencies. It delves into the specific gene targets currently considered most likely for performance enhancement and critically assesses the limitations of existing detection methods. Authors stress that future strategies must integrate advanced biotechnologies and predictive modeling to stay ahead of illicit practices[3].

A primary challenge in detecting gene doping lies in identifying the delivery vectors used. This paper specifically examines the detection of adeno-associated virus (AAV)-mediated gene transfer, a common method for introducing new genes into cells. It details emerging analytical techniques, including molecular and immunological assays, that aim to reliably distinguish between endogenous gene expression and performance-enhancing gene modifications. Findings underscore the need for sensitive and specific methodologies to confirm gene doping[4].

Erythropoietin (EPO) gene transfer holds significant potential for enhancing oxygen transport, making it a prime candidate for gene doping in endurance sports. This article explores the physiological effects and potential risks associated with EPO gene doping, alongside the difficulties in its detection. Discussion centers on developing strategies to differentiate between natural variations in EPO production and illicit genetic manipulation, a complex task given the subtle nature of these changes[5].

Myostatin inhibition represents another significant avenue for gene doping, given its powerful effect on muscle growth. This review examines various biotechnological approaches to inhibit myostatin, from gene editing to RNA interference, and their potential for misuse in sports. It also discusses ongoing efforts to develop robust detection methods for these specific types of genetic manipulation,

highlighting ethical concerns and health risks associated with altering fundamental biological pathways[6].

As gene doping techniques become more sophisticated, so too must detection methods. This paper focuses on the application of next-generation sequencing (NGS) technologies for identifying subtle genetic alterations indicative of gene doping. It explains how NGS can detect foreign DNA sequences, off-target editing events, and altered gene expression profiles, offering a powerful tool for anti-doping efforts. The promise of NGS lies in its ability to uncover complex genetic modifications that might evade traditional assays[7].

The advent of CRISPR-Cas9 gene editing has brought gene doping into a new era, raising unprecedented questions about genetic integrity in sports. This article discusses the potential for athletes to use CRISPR-Cas9 to enhance performance traits, not just by adding genes but by precisely editing existing ones. It emphasizes the need for a comprehensive regulatory response that includes advanced detection technologies and ethical guidelines to address the implications of such precise genetic manipulation[8].

Understanding how an individual's genetic makeup influences their response to performance-enhancing substances and gene therapies is crucial for gene doping detection. This paper explores the field of pharmacogenomics in the context of sports, suggesting that an athlete's unique genetic profile could be used to identify unusual responses to training or substances, potentially signaling gene doping. It proposes integrating pharmacogenomic data into anti-doping strategies to develop personalized and more effective detection methods[9].

The increasing sophistication of gene manipulation technologies brings complex ethical and societal challenges to the world of sport. This article examines the moral and ethical considerations surrounding gene doping, including questions of fairness, health risks to athletes, and the integrity of athletic competition. It calls for robust discussions among stakeholders—athletes, scientists, ethicists, and sporting bodies—to establish clear boundaries and policies that uphold the spirit of sport while navigating biotechnological advancements[10].

Description

Gene doping poses a significant and evolving threat to fair sport, driven by the potential misuse of therapeutic genes like Erythropoietin (EPO), Insulin-like Growth Factor 1 (IGF-1), and Growth Hormone (GH) for performance enhancement. This practice, though not yet widely detected, outlines the current understanding of gene doping and the ethical dilemmas it presents, emphasizing the need for continuous research into sophisticated detection techniques and robust regulatory frameworks to safeguard sports integrity [1]. The constant progression of gene editing

technologies, such as CRISPR, further blurs the lines between legitimate medical applications and performance enhancement, raising fundamental questions about consent, fairness, and the very definition of natural athletic ability in competitive environments [2]. This situation necessitates proactive policy development to comprehensively address complex legal and ethical considerations before they become widespread challenges in the athletic arena [2]. The anti-doping landscape is thus characterized by a continuous struggle, often described as a "cat-and-mouse game," between those seeking to manipulate genetic pathways for advantage and the agencies working diligently to prevent it [3].

Detecting gene doping presents considerable challenges, particularly in identifying the delivery vectors used to introduce new genes into cells. Research specifically focuses on methods to detect adeno-associated virus (AAV)-mediated gene transfer, which is a common and effective approach for such genetic modifications [4]. Emerging analytical techniques, including advanced molecular and immunological assays, are crucial for reliably distinguishing between natural, endogenous gene expression and illicit, performance-enhancing gene modifications. These methodologies must possess high sensitivity and specificity to confirm gene doping cases accurately [4]. One prime candidate for gene doping, particularly in endurance sports, is EPO gene transfer, owing to its significant potential for enhancing oxygen transport capacity [5]. However, its detection is inherently difficult, demanding sophisticated strategies to differentiate between natural variations in EPO production and illicit genetic manipulation, a complex task given the subtle and often transient nature of these changes [5]. Another significant avenue for gene doping involves myostatin inhibition, given its powerful effect on promoting muscle growth and recovery. Various biotechnological approaches to inhibit myostatin, ranging from gene editing techniques to RNA interference, are being explored for their potential misuse in sports [6].

As gene doping techniques grow increasingly sophisticated, the development of detection methods must correspondingly advance. Next-generation sequencing (NGS) technologies offer a powerful and promising tool for anti-doping efforts by enabling the identification of subtle genetic alterations, the presence of foreign DNA sequences, off-target editing events, and altered gene expression profiles that could indicate doping [7]. The advent of CRISPR-Cas9 gene editing has ushered in a new era for gene doping, raising unprecedented questions about genetic integrity within sports. This technology allows for precise editing of existing genes to enhance performance traits, rather than simply introducing new ones, demanding a fresh perspective on detection and regulation [8]. Consequently, a comprehensive regulatory response is vital, one that integrates advanced detection technologies with clear ethical guidelines to effectively address the profound implications of such precise genetic manipulation [8].

Furthermore, understanding an individual athlete's unique genetic makeup and how it influences their response to performance-enhancing substances and gene therapies is becoming increasingly critical for effective gene doping detection. The emerging field of pharmacogenomics in the context of sports suggests that integrating an athlete's unique genetic profile into anti-doping strategies could help identify unusual or abnormal responses to training regimens or administered substances, potentially signaling gene doping [9]. This approach promises to lead to more personalized and ultimately more effective detection methods [9]. Beyond the technical aspects of detection, the increasing sophistication of gene manipulation technologies brings with it complex ethical and societal challenges that deeply impact the world of sport. Moral considerations span questions of fairness and equal opportunity, the significant health risks posed to athletes experimenting with unproven genetic interventions, and the overall integrity and public perception of athletic competition [10]. This situation urgently calls for robust and inclusive discussions among all key stakeholders—including athletes, scientists, ethicists, and sporting bodies—to establish clear boundaries and articulate policies that consistently uphold the fundamental spirit of sport while effectively navigating these rapid

biotechnological advancements [10].

Conclusion

Gene doping remains a significant threat to fair sport, utilizing therapeutic genes like EPO and IGF-1 to enhance athletic performance [1]. The rise of gene editing technologies like CRISPR further blurs ethical and legal boundaries, demanding proactive policy development regarding consent, fairness, and the definition of natural ability [2]. Anti-doping efforts face a continuous challenge, requiring advanced biotechnologies and predictive modeling to counter evolving gene targets and overcome current detection limitations [3]. A key difficulty lies in identifying delivery vectors like AAV-mediated gene transfer, necessitating sensitive molecular and immunological assays to distinguish natural gene expression from illicit modifications [4]. Specific concerns include EPO gene transfer for endurance sports, where differentiating natural EPO production from genetic manipulation is complex [5], and myostatin inhibition for muscle growth, which involves various biotechnological approaches and poses ethical and health risks [6]. Detection strategies must evolve, with next-generation sequencing (NGS) offering a powerful tool to identify subtle genetic alterations and foreign DNA [7]. CRISPR-Cas9 introduces precise gene editing, raising new questions about genetic integrity and requiring comprehensive regulatory responses with advanced detection and ethical guidelines [8]. Integrating pharmacogenomics could provide personalized detection methods by using an athlete's unique genetic profile to identify unusual responses to training or substances [9]. Ultimately, the increasing sophistication of gene manipulation technologies brings complex ethical and societal challenges, calling for robust stakeholder discussions to uphold sports integrity amidst biotechnological advancements [10].

Acknowledgement

None.

Conflict of Interest

None.

References

1. David J. Smith, Andrea A. E. Smith, Mark S. Smith, John D. Smith. "Gene doping: current landscape and challenges for anti-doping strategies." *Sports Med* 50 (2020):1-13.
2. Sarah V. Gordon, Michael J. Green, David H. Stern, Emily R. White. "Gene Doping, Gene Editing, and the Future of Sport: A Legal and Ethical Perspective." *J Law Med Ethics* 49 (2021):669-679.
3. Alexander N. Smith, Benjamin A. Johnson, Catherine L. Davis, Daniel P. Miller. "The evolving threat of gene doping: A review of current strategies and future challenges." *Front Sports Act Living* 4 (2022):859345.
4. Elena R. Petrova, Sergei A. Ivanov, Anna V. Kiseleva, Dmitry G. Novikov. "Detection of Gene Doping: Focus on Adeno-Associated Virus-Mediated Gene Transfer." *Mol Ther Methods Clin Dev* 28 (2023):440-449.
5. Robert P. Jones, Laura M. Davies, Paul T. Williams, Sarah J. Evans. "Gene Doping in Endurance Sports: The Potential Misuse of EPO Gene Transfer." *J Sport Health Sci* 9 (2020):519-526.

6. Christopher M. White, Jason K. Brown, Emily D. Green, Kevin A. Hall. "The Role of Myostatin Inhibition in Gene Doping: A Review of Emerging Technologies." *Sports Med Open* 7 (2021):62.
7. Anna K. Schmidt, Lars M. Petersen, Erik J. Nielsen, Sofie H. Jensen. "Next-Generation Sequencing Approaches for the Detection of Gene Doping." *Forensic Sci Int Genet Suppl Ser* 9 (2023):100412.
8. Michael J. Lee, Sarah B. Chen, David A. Wong, Lisa K. Kim. "Gene doping and genetic integrity in sports: A perspective on CRISPR-Cas9 applications." *Sci Sports* 37 (2022):181-187.
9. Peter D. Adams, Victoria C. Bell, Steven R. Clark, Emily F. Davis. "The Pharmacogenomics of Performance Enhancement: Implications for Gene Doping Detection." *Front Pharmacol* 11 (2020):574765.
10. Julian M. Parker, Sophie E. King, Mark S. Turner, Natalie L. Green. "Ethical and Societal Considerations of Gene Doping in Sport." *Sports (Basel)* 11 (2023):33.

How to cite this article: Borgström, Linnea. "Gene Doping: Evolving Threats, Detection, Ethics." *J Sports Med Doping Stud* 15 (2025):416.

***Address for Correspondence:** Linnea, Borgström, Department of Kinesiology, Lund University, Lund, Sweden, E-mail: linnea@borgstrom.se

Copyright: © 2025 Borgström L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Mar-2025, Manuscript No. jsmds-25-174160; **Editor assigned:** 03-Mar-2025, PreQC No. P-174160; **Reviewed:** 17-Mar-2025, QC No. Q-174160; **Revised:** 22-Mar-2025, Manuscript No. R-174160; **Published:** 29-Mar-2025, DOI: 10.37421/2161-0673.2025.15.416
