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Introduction
The concept of “copulas1” was named by Sklar [1]. In statistics, 

the word copula describes the function that “joins” one dimensional 
distribution functions to form multivariate ones, and may serve to 
characterize several dependence concepts. It was initiated in the context 
of probabilistic metric spaces. Copulas function became a popular 
multivariate modeling tool in financial applications since 1999 [2]. 
They are used for asset allocation, credit scoring, default risk modeling, 
derivative pricing, and risk management [3,4]. They became more and 
more popular because as proven, the returns of financial assets are 
non-Gaussian and show nonlinearities; therefore, copulas became an 
imperative modeling device in a non-Gaussian world. They implement 
algorithms to simulate asset return distributions in a realistic way by 
modeling a multivariate dependence structure separately from the 
marginal distributions.

For multivariate distributions, the univariate margins and the 
dependence structure can be separated and the latter may be represented 
by a copula. The copula of a multivariate distribution whose marginals 
are all uniform over (0,1). Sklar’s Theorem states that a d-dimensional 
cumulative distribution function F evaluated at point X = (x1, …, xd) 
can be represented as 

F(X) = C (F1(x1), . . . , Fd(xd))	   (1)

Where C is the copula function and Fi, i = 1, ..d, are the margins. In 
most cases the latter function is uniquely defined by (1.1).

1The word copula, resp. copulare, is a latin noun, resp. verb, that 
means “bond”, resp. “to connect” or “to join”. Th e term copula is used 
in grammar and logic to describe that part of a proposition which 
connects the subject and predicate.

If F1, F2 are continuous, then C is unique; otherwise, C is uniquely 
determined on Ran (F1) x Ran (F2). Conversely, if C is a copula and 
F1, F2 are distribution functions, then the function F defined in (1) is 
a  joint distribution function with margins F1 and F2. For the proof 
demonstration, please refer to Nelsen [5]. It is the converse of the Sklar’s 
theorem that is mostly used for modeling multivariate distributions 
in finance. Any group of n univariate distributions of any type can 
be linked with any copula while still obtaining a valid multivariate 
distribution.

Using copulas is attractive to practitioners because even under 
increasing transformations of the margins, copulas remain invariant. 
This requires the completion of two steps: modeling each univariate 
marginal distribution then specifying a copula that recapitulates all the 
dependencies between margins.

In this paper our aim is to simplify the implementation of copulas 
for the Lebanese banks since none of which is using copulas for risk 
assessment. Section 1 introduces the model that generates the copula 
through the Archimedian and elliptical copulas. Section 2 illustrates 
the use of the Gaussian copula in the assessment of a portfolio of loans 
belonging to one of the banks operating in Lebanon. Section 3 draws 
some concluding remarks.

Definition and Families of Copulas
The quantification of dependence in finance has led to the 

development of copulas. Copulas are now witnessing increasing interest 
in many areas of risk analysis. The rank order correlation2 used by most 
Monte Carlo simulation tools is certainly a meaningful measure of 
dependence but is still limited in the patterns it can produce.

As described in the introduction, copulas offer an efficient flexible 
procedure for combining marginal distributions into multivariate 
distributions and are able to deduce the real correlation pattern. The 
purpose of this paper is not to go through the explanations and proof 
of the mathematics related to copulas (that can be found in any related 
book), we will rather simplify the concept and depict what is just 
needed to run an analysis using the copula.

2The rank order correlation coefficient uses the ranking of the data, 
i.e. what position (rank) the data point takes in an ordered list from
the minimum to maximum values, rather than the actual data values
themselves. It is therefore independent of the distribution shapes of
the data sets and allows the integrity of the input distributions to be
maintained. Spearman’s rho is calculated as:

ρ = uv
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and where ui, vi are the ranks of the ith observation in samples 1 and 
2 respectively. The correlation coefficient is symmetric i.e., only the 
difference between ranks is important and not whether distribution 1 
is being correlated with distribution 2 or the other way round.

To this end, in what follows, we use the needed formulae for a 
bivariate copula for simplicity purpose. Related graphs of bivariate 
copulas will be illustrated. Multivariate copulas can be extended based 
on the bivariate concept.

Because the copula of a multivariate distribution describes its 
dependence structure, we can use measures of dependence such 
as Kendall’s3 tau and Spearman’s4 rho, as well as the coefficient of 
tail dependence, which are copula-based. The relationship between 
Kendall’s tau t of two variables X and Y and the copula C(u,v) of the 
bivariate distribution function of X and Y gives a tool for fitting a 
copula to a set of data. This consists in determining Kendall’s tau then 
applying a transformation in order to get the appropriate parameters 
for the fitted copula.

3Kendall’s tau and Spearman’s rho provide the best alternatives 
to the linear correlation coefficient as a measure of dependence for 
nonelliptical distributions, for which the linear correlation coefficient 
is inappropriate and often misleading. For more details we refer to 
Kendall and Stuart [6], Kruskal [7], Lehmann [8] and Capéraà and 
Genest [9].

Kendall’s tau for a two observed sets of variables is given by:

 ( )2

τ̂ − −
= =

+ n

C D C D
C D

Where C is the number of concordant pairs and D the number of 
discordant pairs. This can also be written as:

( ) 1

2ˆ [( )( )]τ
−

<

= − −∑n
i j i j
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sign X X Y Y

 This is used to measure the degree of correspondence between two 
variables (paired observations): Perfect correspondence between the 
two variables means that the coefficient has a value of 1

Perfect disagreement between the two rankings means that the 
coefficient has a value of -1.

For all other arrangements, the value lies between -1 and 1, 0 
meaning the variables are completely independent.

Therefore, Kendall’s tau for (X, Y)T is simply the probability of 
concordance minus the probability of discordance.

4Kendall’s tau and Spearman’s rho are both carried out on the ranks 
of the data as explained and defined in note 2. That is, for each variable 
separately the values are put in order and numbered.

 The copula families

The most frequently used copula families are the elliptical and 
Archimedean copulas. Table 1 summarizes and compares the two 
families.

5The normal copula is given by:
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6The Student-t copula is an elliptical copula defined as:
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7It is an asymmetric copula, exhibiting greater dependence in the 
negative tail than in the positive. This copula is written as:
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The relationship between Kendall’s tau τ and the Clayton copula 

parameter α is given by:
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Elliptical Copulas Archimedean Copulas
1. Definition Elliptical copulas are the 

copulas of elliptically 
contoured	 (or elliptical) 
distributions. The  most  
famous  elliptical distributions 
are the multivariate:
1. Normal5  (Gaussian copula) 
and
2. Student-t6 distributions.

Archimedean copulas are 
easily constructed and 
enjoy attractive properties. 
The most commonly used 
distributions are:

1. Clayton7

2. Frank8

3.  Gumbel9 
The relationship between the	
linear correlation coefficient ρ 
and Kendall’s tau t for  all  the  
elliptical  copulas’  families  is 
given by: ( , ) sin

2
X Y πρ τ =  

 
 

The general relationship
between Kendall’s tau t 
and the generator of an 
Archimedean copula φa(t)for 
a bivariate data set is given 

by: 
1

0
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( )
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t
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2. Advantages Different levels of correlation 
between the
marginals can be easily 
determined.

Easy to be deduced.

3. Disadvantages Absence of	closed form 
expressions,
impossibility to have radial 
symmetry.

The definition doesn’t extend
to a multivariate data set of n 
variables  because  there  will 
be multiple values of tau, one 
for each pairing10.

Table 1: Comparison between the most frequently used Copulas.

Where v (the number of degrees of freedom) and ρ (linear 
correlation coefficient) are the parameters of the copula. When v is large 
(greater than 30) the copula converges to the Normal copula just as the 
Student distribution converges to the Normal. In the opposite case, the 
behavior of the copulas is different: the t-copula has more points in the 
tails than the Gaussian one and a star like shape. A Student-t copula 
with n = 1 is sometimes called a Cauchy copula.
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( )
( )

exp 1
( ) ln

exp 1
t

tα

α
ϕ

α
 − −

= −   − − 
Where:

 ( ) { }\ 0α ∈ −∞∞

The relationship between Kendall’s tau τ and the Frank copula 
parameter α is given by:
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9The Gumbel-Hougard copula is asymmetric, exhibiting greater 
dependence in the positive tail than in the negative. It is given by:
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The relationship between Kendall’s tau τ and the Gumbel copula 
parameter α is given by:
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10This constraint can be solved by calculating tau for each pair and 

then using the average (Figure 1).

Applications
The purpose of this section is to illustrate a direct example on 

how to implement a one factor model of the Gaussian copula (normal 
copula) on a portfolio of loans belonging to a Lebanese bank operating 
in Lebanon [10].

The portfolio is constituted of 30 different companies. We define 
Ti (1 ≤ i ≤ N) as the date upon which the company will default. We 
consider that all the studied companies in the portfolio can eventually 
default [11] however; this cannot happen except over long periods 
sometimes exceeding 50 years or more.

IFRS11

1133/31/13 1131/31/13 1112/31/13 1112/31/13
Assets Quality
Loan Loss Res. / Gross Loans 35.4 45.3 45.3 45.3
Loan Loss Prov. / Net Int. Rev .0503 3533 35.. .5.4
Loan Loss Res / Impaired 
Loans

50.5.. 5..54. 54.5.. .3.5.

Impaired Loans / Gross Loans 555. .534 .534 5554
NCO / Average Gross Loans 05.- 055.- 0504- n.a5
NCO / Net Inc Bef. Ln. Loss 550.- 35.3- 053.- n.a5
Impaired Loans / Equity .534 4533 35.. .5.3
Equity (Bil LBP) 2,484.800 2,456.400 1,952.800 1,618.409
Net Income (Bil LBP) 270.900 267.800 219.400 183.915
Capital
Total Capital Ratio 13.61 14.70 15.31 24.10
Equity / Total Assets 9.93 10.66 9.54 9.56
Capital Funds / Liabilities 12.56 13.60 12.37 12.75
Operations
Net Interest Margin 2.12 2.29 2.42 2.76
Return on Average Assets 1.13 1.23 1.17 1.17
Return on Average Equity 10.97 12.15 12.29 13.28
Cost to Income Ratio 43.38 45.53 46.28 47.34
Liquidity
Net Loans / Total Assets 24.14 24.67 23.55 24.85
Net Loans / Customer & ST 28.80 29.14 28.03 29.72
Liquid Assets / Cust & ST 28.66 24.26 34.20 33.64

Source: Bankscope
Table 2: Selected Consolidated Statements.

Description Variables
N 30
Type of Companies SMEs
Type of loans Commercial
Average Term of the loans 78 months
Average loan’s size USD 1.8 millions
Interest rate type Floating
Average interest rate 9.75%

Table 3: Description of the Portfolio.

2007                         2008                             2009                        2010                        2011                                                

Figure 1: Evolution of the Key Variable Loan Loss Reserves/ Gross Loans 
(2007-2011).

  2007                         2008                        2009                        2010                        2011                                                

Figure 2: Evolution of the Key Variable Equity / Net Loans (2007- 2011).
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The model

Qi is the distribution of Ti. In order to define a correlation structure 
among the Ti based on a one factor model of a Gaussian copula, we have 
transformed each variable, percentile per percentile, into a Ui variable, 
following a standardized bivariate distribution. We followed the below 
factorial model (one factor model) for the correlation structure:

Ui = aiF + √(1-a2
iZi)	  			                 (2) 

Where F and Zi follow a normal distribution N(0,1). The link 
between Ui and Ti implies:

Prob(Ui<U) = Prob(Ti<T)

Where U = N-1 [Qi (T)]				                  (3) 

According to equation (2), the probability of Ui < U conditional to 
the value of F is:

Prob(Ui<U/F) = N[U-aiF)/(√(1-a2iZi)]		                (4) 

Equation (4) can be written for Prob(Ti<T):

Prob(Ti<T/F) = N[(N-1 [Qi(T)]-aiF)/(√(1-a2i)]	                 (5)

In order to simplify the reasoning process, we can assume that the 
time distribution of default Qi is the same for each i and equals Q. We 
also assume for simplicity purpose that the copula correlation between 
each pair of companies is the same and equals ρ. In this case, for each 
pair of companies i and j, the correlation is aiaj, which means that for 
each i, ai = √ρ. Therefore we can rewrite equation (5) as follow:

Prob(Ti<T/F) = N[(N-1 [Q (T)]- √ρ F)/(√(1-ρ)]	               (6)

For a portfolio constituted of a huge number of loans, this equation 
offers a valid approximation of the proportion of companies that can 
default on date T. We name this proportion the default rate. When 
F decreases, the default rate increases. Therefore what is the cap level 
that this rate can reach? Since F follows a standardized bivariate 
distribution, the probability for F to have a value less than N-1(Y) is Y. 
Therefore, there is a probability Y for the default rate to be greater than:

N[(N-1 [Q (T)]- √ρ N-1(Y))/(√(1-ρ)]

We note that the default rate V(T,X) will not be exceeded with a 
probability of X. In other words, we are sure up to X% that the default 
rate V(T,X) will not be exceeded. The value V(T,X) is measured by 

substituting 1-X to Y:

V(T,X)= N[(N-1 [Q (T)]+ √ρ N-1(X))/(√(1-ρ)]	                                 (7) 

This output has been first developed by Vasicek [12].

If we assume that the total value of the loan in USD is L and the 
recovery rate in case of default is R. The VaR of a loan over a horizon 
period of T and a confidence level of X is:

                           	                (8)

The sample

11International Financial Reporting Standards 

Results
The total amount of loan on which we applied the model is USD 

56.4 millions. Based on our observation we have been able to determine 
a default probability over a horizon period of one year of 2%. The 
recovered amount in case of default was quantified by the bank at a 

level of 72%. Using the Vose Software12 we deduced a copula correlation 
rate of 0.1.

Based on the above and according to equation (7):

V(1, 0.999) = N[(N-1 [0.02]+ √0.1 N-1(0.999))/(√(1-0.1)] = 0.128

In other words, the bank is 99% confident that the default rate 
cannot exceed 12.8%. Therefore the Value at Risk, VaR, or the losses 
cannot exceed:

0.128 × 56.4 × (1-0.72) = USD 2, 021,376

Concluding Remarks
This work showed how the Gaussian copulas theory can be very 

powerful tool in estimating the expected losses on a portfolio of loans.

Risk managers often estimate the marginal distribution between 
each of the variables and face the obligation to set hypothesis on the 
structure of the variables’ correlation. When the marginal distributions 
are normal, it is natural to consider that these variables follow 
multivariate normal distributions. In the opposite cases, copulas are 
therefore used. Variables are transformed into normal variables bases 
on a percentile per percentile adjustment process. The correlation 
is then indirectly defined among the transformed variables. When 
many variables are studied, a factorial model is used by analysts. This 
approach allows reducing the number of correlation to be calculated. 
The correlations between variables are described by the correlations of 
variables toward the common factor. The default correlation between 
many firms can be modeled based on a Gaussian copula factorial model.

12 http://www.vosesoftware.com/

Despite all the benefits of copula models, specifying a copula that 
recapitulates all the dependencies between margins suffers from some 
statistical pitfalls especially for most of multivariate financial series. 
This is due to temporal dependencies such as serial autocorrelation, or 

Gumbel Clayton Frank

Normal T

Source: Vose Software, Risk Software Specialists 
Figure 3: Graphics of Copula Families.

VaR(T,X) = L × R × V(T,X) 

We were able to analyze the loan portfolio of a Lebanese bank 
operating in Lebanon. For discretion purpose we will omit the name of 
the bank however, the below tables 2, 3 and figures 2, 3 are enough to 
give an idea about the portfolio details and the financial performance 
of this bank. The main purpose of this section is to directly implement 
the Normal copula model in order to measure the expected loss on a 
portfolio of loan. 
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time varying heteroskedasticity, etc. Further research must be done in 
order to broaden the scope of implementations to higher dimensions 
while considering the limitations of copulas in general. 
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