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Abstract 
In this paper we consider the resource-sharing and 

scheduling problem, with makespan minimization as an 

objective. Although this problem was optimally solved 

through a customized branch-and-bound algorithm, its 

complexity motivated the use of heuristics such as genetic 

algorithms. A previous genetic algorithm used for solving 

this problem was significantly faster than the branch-and-

bound algorithm; however, it suffered from a high rate of 

infeasible offspring. We propose a new genetic approach, 

which produces only feasible offspring via a much more 

compact, genotype representation of the solution. While in 

the previous genetic algorithm the chromosome consisted of 

all the solution 0-1 variables (genotype=phenotype), in the 

new algorithm we define a much smaller chromosome 

(genotype) that stores sufficient information for efficiently 

generating a solution for the 0-1 variables (phenotype). 
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1. Introduction 
Within the resource-sharing and scheduling problem (RSSP) 

as modeled by Rabinowitz et al. [1], a set of precedence 

constrained operations should be scheduled such that the 

makespan is minimized. Renewable resources (RRs) 

required for accomplishing the operations should also be 

scheduled. An operation may share different RRs 

simultaneously, each of which may be used for a portion of 

the operation time. Once started, an operation may not be 

interrupted (i.e., non-preemptive). Each operation can be 

performed in one of several modes (Elmaghraby [2]), with 

each mode representing an alternative assignment of 

different RRs with different durations. Also, operations may 

have several sequencing alternatives on each RR according 

to their precedence constraints. The objective of the 

scheduling problem is to allocate resources to operations and 

schedule them to minimize the makespan. 

The RSSP arises in various practical scenarios such as 

production scheduling. However, as shown by Samaddar et al. 

[3,4], the branch and bound (B&B) algorithm, which is the only 

optimization procedure available for solving the RSSP, was 

able to find optimal schedules for only small problems within 

satisfactory runtimes. Efficient and effective heuristic 

procedures, therefore, must be developed for larger problems. 

A heuristic procedure for solving the RSSP has been proposed 

by Pinto et al. [5]. They proposed a genetic algorithm (GA) 

which was based on the mixed integer linear programming 

(MILP) model of Rabinowitz et al. [1], the constraints of which 

are categorized into two groups, selection-type and time-type 

constraints. The selection-type constraints guarantee a feasible 

selection of one mode for each operation and the assignment of 

tasks for the RRs required by each operation-mode. These 

constraints contain only 0-1 variables and form the main layer 

of the model. The time-type constraints involve continuous time 

variables in addition to the 0-1 variables. Pinto et al. [5] referred 

to the 0-1 variables and the selection-type constraints as the GA 

phenotype and proposed a GA based on a phenotype 

representation (encoding). Once the result of the selection-type 

constraints and the 0-1 variables is obtained by the GA, 

production of the time-type constraints and the continuous time 

variables is easy. This GA suffers from a high rate of infeasible 

offspring, which is a major issue in the genetic process. 

Arbitrary crossovers of two feasible solutions often produce 

infeasible offspring. This can result from one of three possible 

situations: (1) two operation-modes are assigned as the same 

resource task number; (2) violation of the precedence 

constraints of the operation, and (3) gaps of unused resource 

task numbers. In order to ensure feasibility of the offspring, the 

GA applies a repair operator to the newly produced offspring. 

This paper introduces a new GA approach for solving the 

RSSP. The stepping stone is producing only feasible offspring 

by using a genotype representation, successfully employed by 

Hartmann [6] for solving the multi-mode resource-constrained 

project scheduling problem (MRCPSP). Adopting this 

approach, we develop a genotype representation that consists of 

a mode assignment for each operation and a precedence feasible 

operation list for each resource. The phenotype, i.e., schedule, 

related to a genotype is generated using the MILP model for the 
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RSSP as presented by Rabinowitz et al. [1]. 

The remainder of this paper is organized as follows. In 

Section 2, we briefly present the RSSP. Section 3 describes 

a new GA for the RSSP. Section 4 presents the basic 

assumptions, definitions, and theorems regarding the 

feasibility of the offspring. Finally, Section 5 summarizes 

the study. 
 
2. The RSSP 
We consider a problem where a predetermined job requires 

a set of non-preemptive operations {}iI =  with precedence 

relationship constraints defined by the immediate 

predecessor-successor set S . A set of RRs of the same or 

different types { }rR =  is used to perform these operations. 

Each operation i  can be performed using an alternative 

mode { }mM
i

= . A mode m  specifies the subset of 

resources 
m,i

R , as well as the exact timing s
r,m,i

t  and f

r,m,i
t  of 

the use of r  during an operation i . An operation may share 

different resources simultaneously, each of which may be 

used for a portion of the operation time. Each resource r  

has 
r

L  sequence locations for its tasks, which are labeled 

r
L,l K1,= . The set 

r
D  defines sequence-dependent delay 

requirements between operations on a specific resource r . 

The processing time is assumed to be deterministic and 

continuous. The problem is to select a single mode for each 

operation and, accordingly, to allocate and schedule the 

resources to minimize the makespan time. 

 
3. A New Genetic Agorithm for  the RSSP 
This section presents a new GA for solving the RSSP. 

Introduced by Holland [7], GAs play an important role in 

solving hard optimization problems. Following the law of 

nature, the GA recombines existing solutions to obtain new 

ones. The idea is to produce better solutions by selecting and 

recombining the best solutions of the current generation. For 

an introduction to GAs, see Goldberg [8] and Chambers [9]. 

In this paper, j  defines the current individual, and the 

stopping criteria of our GA was a pre-specified number of 

generationsG . 

 
3.1. Genotype Representation 
Our main goal was to develop an individual representation 

that will produce only feasible offspring. With this idea in 

mind, we used the genotype representation successfully 

employed by Hartmann [6] to solve the MRCPSP. We made 

some changes to Hartmann's genotype representation, 

however, because of the differences between the MRCPSP 

and the RSSP. 

The individual genotype representation 

( )Rr,V,mj
r

∈∀=  comprises a precedence feasible 

operation sequence list ( )
Ir

i,,iV K
1

=  for performing on 

each resource Rr ∈  and a mode assignment 

( ) ( )( )
I

im,,imm K
1

= . The mode determines which 

resources will actually perform the operation. If S  is the set 

of the immediate precedence relationship between 

operations, then for each Ii ∈ , there exists a set 

{ },...iS
i 1=  which is the set of all predecessors of operation 

i . An operation sequence list is precedence feasible if all 

the predecessors of an operation are sequenced before this 

operation in the list. That is, if 
pi

S  is the set of all predecessors 

of the p th operation in the operation sequence list, then 

{ }
1−

⊆
pi

i,,iS
p

K1  for I,,p K1∈ . A mode assignment m  

is a mapping that assigns one of its modes ( )
i

Mim ∈  to each 

operation Ii ∈ . We will use the following alternative notation 

for the individuals: 
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Since operation i  in mode m  is not assigned to all the 

resources, but only to RR
m,i

⊆  in contrast to Hartmann [6], 

for the sequencing step on each r  we consider only the 

operations that were assigned to it by activating the following 

operator for each i . For each 
m,i

Rr ∈ , the corresponding 

operation i  is marked with an asterisk ( )
∗

i  in the genotype 

operation sequence list 
r

V . 

For each genotype ( )Rr,V,mj
r

∈∀=  we produce its 

phenotype by transforming the genotype into a MILP 

formulation of the RSSP. The fitness (T ) of individual j  is 

then calculated via a customized critical path method. 
 
3.2. Initial Generation 
The initial individual for the first generation is produced by 

repeatedly and randomly selecting the next schedulable 

operation, choosing its mode, and scheduling the operation as 

the next task for its resources. This process is repeated until J  

individuals are produced. Each individual is assigned a 

reproduction probability based on its fitness function value, 

which in our case is the schedule makespan time. 

 
3.3. Reproduction Probability and Selection 
Since the fitness function is of a minimization type, the lower 

the value, the higher the reproduction probability is expected to 

be. Therefore, there is a need to apply a transformation 

function. We construct such a transformation function as 

follows (Oĝuz and Ercan [10]): 

 

1. Let ( ) T1jf =  denote the transformation function 

value of individual j ; Jj K1= . 

2. Find the total value ( F ) of the generation 

( )∑
=

=
J

j

jfF 1 , 

3. Calculate the reproduction probability 

( ( ) Fjfp
j
= ) for individual j , Jj K1= . 

 

Several selection methods were considered, such as the 

"roulette wheel sampling" method (Goldberg [8]), and all of 

them follow Darwin's strategy of "natural selection". The 
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selection determines the two parent solutions for "breeding" 

according to their reproduction probabilities. A parent can 

be selected more than once or not at all. This selection is 

repeated 2J  times per generation. 

 
3.4. Crossover and Mutation 
Once the two parent individuals are selected we use the 

crossover and mutation operators to produce the two 

offspring. As the genotype representation of our problem is 

very unique, we had to develop special crossover and 

mutation operators. The new operators we present here are 

based on those developed by Hartmann [6]. 

Two parent individuals are selected for crossover, 

( )Rr,V,mj P
r

PP ∈∀= 111  and 

( )Rr,V,mj P
r

PP ∈∀= 222 . Then two random integers 
1

q  

and 
2

q  with Iq,q1 ≤≤
21

 are generated. From the two 

parent individuals, two offspring are produced, 

( )Rr,V,mj O
r

OO ∈∀= 111  and 

( )Rr,V,mj O
r

OO ∈∀= 222 . The crossover algorithm 

contains two stages, the assignment stage and the 

sequencing stage. The stages for producing offspring 1Oj  

are described as follows (offspring 2Oj  is produced in the 

same way). 

 

Assignment Stage – The mode assignments of the offspring 

are produced as follows: 

( ) ( ) ( )( ) ( )( )IqmIqmqmqm POPO
KKKK 11,11 2

2
2

1
2

1
2

1 +=+= . 

Sequencing Stage – The operation sequence list 

( ( )
Ir

i,,iV K
1

= ) for each resource Rr ∈  of the offspring 

is defined and the operations assigned to resource r  are 

marked by an asterisk as follows: 

 

Set ( ) ( ) Rr,qVqV PO ∈∀=
1

1
1

1 11 KK , and the 

operation sequence list of positions ( )1 1i q I= + K  in 

Rr,V O ∈∀1  is taken from 2P
r

V  by the following 

procedure: 

For Rr ∈  do: 1
1
+= qt ; 

For 1=i  to I  do: If  ( ) 12 O
r

P
r

ViV ∉  then 

( ) ( )iVtV P
r

O
r

21 =  and set 1+= tt ; 

For 1=t  to I  do: If 

( ) ( )( )( )
m,i

O
r

OO
r

RtVm,tV ∈111  then mark ( )tV O
r

1  by an 

asterisk 

    End For 

 

A mutation approach is applied for some of the newly 

produced offspring. We used two mutation operators, one 

for the mode assignment m  and another for the operation 

sequence list Rr,V
r

∈∀ . The offspring to be mutated are 

chosen by a small mutation probability Mu
m

p  and Mu
I

p  for 

the mode assignment and for the operation sequence list 

accordingly. The mutation operator for the mode assignment 

m  changes the modes assigned for each operation 

randomly. For each Ii ∈  with 1≠
i

M  and a mode ( )im , 

a different or the same mode assignment m  is selected. The 

mutation operator for the operation sequence list Rr,V
r

∈∀  

changes the sequence list of operations on resource r  

(randomly selected). For all the resource tasks 11 −= Il K , 

operation ( )lV
r

 and ( )1+lV
r

 are swapped only if a precedence 

feasible operation list is received. 

 
4. Fesibility of the Offspring 
In this chapter, we provide the basic assumptions, definitions 

and theorems regarding the feasibility of the offspring. Due to 

the limits on the size of the paper, the proofs are not provided. 

Assumption 1 – For an assignment problem with {}iI =  and 

{ },iM m i I= ∀ ∈ , all the combinations of modes are legal. 

This means that no special interrelation constraints among the 

operation-modes ( )m,i s are considered in this paper. 

Assumption 2 – When sequencing a set {}iI =  of operations 

with ØS =  on a single resource ( 1=R ), all the 

permutations are legal. 

Definition – A feasible genotype is a Jj ∈  with ( ) truej =φ , 

where φ  is a Boolean function on j  and the pair ,j φ  

represents the genotype and its feasibility status. 

The function φ  receives true  when offspring j  is feasible, 

namely, it has a legal precedence operation sequence list 

( )
Ir

i,,iV K
1

=  for each resource Rr ∈  and a legal mode 

assignment ( ) ( )( )Iimimm ,,1 K= . We note that although in 

most scenarios a feasible genotype will lead to a feasible 

phenotype, this is not always guaranteed, as will be elaborated 

later. 

Theorem 1 – For an RSSP with {}iI = , { }mM
i

= , ØS ≠  

and 1≥R , from two feasible parent genotypes 

( ( ) truej P =1φ  and ( ) truej P =2φ ), the GA produces two 

feasible offspring genotypes ( ( ) truejO =1φ  and 

( ) truej O =2φ . 

Notice that when the order between two operations is not 

restricted by S , there may be task sequences of different r s 

that contradict each other by dictating conflicting orders for 

performing these two operations. Let 
ba m,bm,ab,a

RRR I=  be 

the set of shared resources of operations-modes ( )
a

m,a  and 

( )
b

m,b  in ( )Rr,V,mj
r

∈∀= . 

Definition – A cross schedule is an opposite sequence order 

between two operations-modes on two different resources as 

follows. For 

( ) ( ){ } kn,Rr,r,Sa,b,b,a,R
b,aknb,a

≠∈∉≥ 2  the 

sequence on resource nr  is ( ) ( ){ }KKK ,m,b,,m,a,V
ban

=  

and the sequence on resource kr  is  

( ) ( ){ }KKK ,,,,,, abk mambV = . 

Theorem 2 – For an RSSP, the genotype-phenotype 

transformation algorithm produces a single feasible phenotype 

(of the earliest time for each operation) from a feasible 

genotype that does not have any cross schedule. 

When a cross schedule does exist in a genotype, the existence 

of a feasible phenotype depends on the specific problem 

parameters. 
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5. Summary 
In this paper we proposed a solution to the RSSP via a GA 

that produces only feasible genotype offspring. The GA 

preserves offspring feasibility by employing a proper 

problem representation and using suitable genetic operators. 

The representation of the problem plays a major role in the 

success of the GA. In addition, the specific crossover and 

mutation operators that we used guarantee the feasibility of 

the offspring without loosing the evolutionary nature of the 

GA. Development of a generic tool for applying our GA to 

solve RSSPs and conducting empirical experiments is left 

for future research. 
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