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Abstract
A typical speech recognition system is push button operated (Push-to-talk), which requires hand movement 

and hence mixed multi-modal interface. However, for disabled patients and those who use hands-busy applications 
(e.g., where the user has objects to manipulate or device to control while asking for assistance from another device) 
movement may be restricted or impossible. One alternative is to use Speech Only Interface. The method that is 
being proposed is called Wake-Up-Word Speech Recognition (WUW-SR). A WUW-SR system would allow the user 
to operate (activate) many systems (Cell phone, Computer, Elevator, etc.) with speech commands instead of hand 
movements. This paper introduces a new front-end paradigm of the Wake-Up-Word Speech Recognition. The state of 
the art WUW-SR system is based on three different sets of features: (1) Mel-frequency Cepstral Coefficients (MFCC), 
(2) Linear Predictive Coding Coefficients (LPC), and (3) Enhanced Mel-frequency Cepstral Coefficients (ENH_MFCC),
these features are decoded with corresponding Hidden Markov Models (HMMs) in the back-end stage of the WUW-
SR. We present an experimental FPGA design and implementation of a novel architecture of a real time feature
extraction processor that generates MFCC, LPC, and ENH_MFCC features simultaneously. In the WUW-SR system,
the recognizer front-end is located at the terminal which is typically connected over a data network to remote back-end 
recognition (e.g., server). The three sets of feature extraction of speech (MFCC, LPC, and ENH-MFCC) are performed
at the front-end. These extracted features are then compressed and transmitted to the server via a dedicated channel,
where subsequently they are decoded. Our front-end can be added to any hand-held electronic device compatible
with WUW-SR and command (activate) it by using our voice only (no push to talk as is presently done). Our front-end
is designed, simulated and implemented in Altera DSP development kit with Cyclone III FPGA as a portable system
acting as a processor that is capable of computing three different sets of features at a much faster rate than software.
It is cost effective, consumes very little power, and it is not limited by having to operate on a general-purpose computer 
so it can be used on any portable device.

*Corresponding author: Veton Z. Këpuska, Electrical and Computer Engineering 
Department, Florida Institute of Technology, Melbourne, FL 32901, USA, E-mail: 
vkepuska@fit.edu 

Received June 11 2013; Accepted July 10, 2013; Published July 12, 2013

Citation: Këpuska VZ, Eljhani MM, Hight BH (2013) Front-end of Wake-Up-Word 
Speech Recognition System Design on FPGA. J Telecommun Syst Manage 2: 
108. doi:10.4172/2167-0919.1000108

Copyright: © 2013 Këpuska VZ, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Keywords: Speech Recognition System; Mel-frequency Cepstral
Coefficients; Linear Predictive Coding Coefficients; Enhanced Mel-
frequency Cepstral Coefficients; Hidden Markov Models; Field-
Programmable Gate Array

Introduction
“Operator (WUW for Elevator Simulator)! Take me to the last 

floor.” “Operator” responds by “Taking you to the last floor.” The ideas 
of being able to talk to a machine and have it understand you have 
been a reoccurring theme in science fiction for decades. While we are 
not yet at the stage where electronic machines can comprehend our 
every word and act as necessary on it, these machines are becoming 
ever more complex and ubiquitous.

For the past several decades, designers have processed speech for 
a wide variety of applications ranging from mobile communications 
to automatic reading machines. Speech has not been used much in the 
field of electronics and computers due to the complexity and verity 
of speech signals. However with modern processes and methods we 
can process speech signals in Field-Programmable Gate Array (FPGA) 
chips. While others concentrate on developing the algorithms and 
models, there still remains the question of how to implement them on 
portable device. Several speech recognition software packages already 
exist including the Wake-Up-Word Speech Recognition System that 
can run on a PC successfully; however, they are limited by having to 
operate on a general-purpose processor. In the end, to achieve the 
maximum processing power, application-specific hardware is the 
answer. A great deal of work has been conducted in this paper to 
address this problem by designing an efficient hardware front-end of 
state of the art WUW-SR [1] with an FPGA using an Altera DSP-based 
system, acting as a processor that is responsible for extracting three 
different sets of features from the input audio signal. These features 
are Mel-frequency Cepstral Coefficients (MFCC), Linear Predictive 
Coding Coefficients (LPC), and Enhanced Mel-frequency Cepstral 
Coefficients (ENH-MFCC).

The feature extraction of speech is one of the most important issues 
in the field of speech recognition. There are two dominant acoustic 
measurements of speech signal. One is the parametric modeling 
approach, which is developed to match closely the resonant structure of 
the human vocal tract that produces the corresponding speech sound. 
It is mainly derived from Linear Predictive analysis, such as LPC-based 
cepstrum (LPCC). The other approach is the nonparametric modeling 
method that is basically originated from the human auditory perception 
system. Mel-Frequency Cepstral Coefficients (MFCCs) are utilized 
for this purpose [2]. In recent studies of speech recognition system, 
the MFCC parameters perform better than others in the recognition 
accuracy [3,4]. This paper presents the feature extraction solution 
based on LPC, MFCC and new set of features named Enhanced Mel-
frequency Cepstral Coefficients (ENH –MFCC) with the architecture 
specially optimized for implementation in FPGA structures. The 
presented system is designed to be implemented in FPGA device as 
a System-on- Programmable-Chip (SOPC). This design not only has 
a relatively low resource usage, but also maintains a reasonably high 
level of performance. The remainder of this paper is organized as 
follows. Section II describes the Wake-Up-Word speech recognition 
architecture. Section III describes the front-end of WUW-SR design 
procedure and architecture. Section IV describes the Mel-Frequency 
Cepstrum Coefficients (MFCC) algorithm. Section V describes the 
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Autocorrelation Linear Predictive Coding (LPC) algorithm. Section 
VI describes the Enhanced Mel-Frequency Cepstrum Coefficients 
(ENH-MFCC) algorithm. In section VII the results and comparisons 
of three features spectrogram from MATLAB, and FPGA hardware 
implementation are described and compared with the C++ front-end 
algorithm. These are followed by conclusions in Section VIII.

WUW-SR System Architecture
As shown in Figure 1, the WUW-SR can be broken down into three 

components [1]. The front-end system process takes an input pressure 
waveform (audio signal) and output a sequence of characteristic 
parameters MFCCs, LPCs, and ENH-MFCCs features. Whereas the 
back-end process takes this sequence and outputs the recognized 
command.

The signal processing module accepts raw audio samples and 
produces spectral representations of short time signals. The feature-
extraction module generates features from this spectral representation, 
which are decoded with the corresponding hidden Markov’s models 
(HMMs). The individual feature scores are classified using Support 
Vector Machines (SVMs) into INV, OOV: in-, out-of-vocabulary 
speech.

Front-end of WUW-SR System Architecture
As shown in Figure 2, the design is divided into twenty six-modules 

(five-stages). The first seven yellow-colored modules represent the 
pre-processing stage and are used as the basic modules to provide 
windowed speech signal to the other stages.

Stage A: Pre-processing

a. Analog to Digital Converter ADC.

b. DC Filtering.

c. Serial to 32-bit parallel converter.

d. Integer to floating-point converter.

e. Pre-emphasis filtering.

f. Window advance buffering.

g. Hamming window.

Stage B: Linear predictive coding coefficients

The five brown-colored modules represent the Linear Predictive 
Coding Coefficients (LPC) stage and are used to generate 13-Linear 
Predictive Coding features. 

a. Autocorrelation Linear Predictive Coding.

b. Fast Fourier Transform FFT.

c. LPC Spectrogram.

d. Mel-scale Filtering.

e. Discrete Cosine Transform DCT.

Stage C: Mel-frequency cepstral coefficients

The four pink-colored modules represent the MFCC stage and are 
used to generate 13 MFCCs features. 

a. Fast Fourier Transform FFT. 

b. MFCC Spectrogram. 

c. Mel-scale Filtering. 

d. Discrete Cosine Transform DCT.

Stage D: Enhanced Mel-frequency cepstral coefficients

The four green-colored modules represent the ENH-MFCC stage 
and are used to generate 13 ENH-MFCC features. 

a. Enhanced Spectrum (ENH).

b. Enhanced MFCC Spectrogram.

c. Mel-scale Filtering. 

d. Discrete Cosine Transform DCT. 

Stage E: Voice activity detector

The five blue-colored modules represent the Voice Activity 
Detector (VAD) stage. The VAD is responsible for finding utterances 
spoken in the correct context and segmenting them from the rest of 

Feature Extraction
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Multi Scoring

SVM Classification
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t

… …

Front-end Back-end (Server)

Figure 1: Overall WUW-SR architecture.



Volume 2 • Issue 1 • 1000108J Telecommun Syst Manage
ISSN: 2167-0919 JTSM, an open access journal

Citation: Këpuska VZ, Eljhani MM, Hight BH (2013) Front-end of Wake-Up-Word Speech Recognition System Design on FPGA. J Telecommun Syst 
Manage 2: 108. doi:10.4172/2167-0919.1000108

Page  3  of 10

the audio stream, then the system will identify whether or not the 
segmented utterance is a WUW. 

a. Spectrogram features. 

b. Energy features. 

c. MFCC features. 

d. Voice activity detection logic VAD. 

e. Estimation of stationary background spectrum.

“FIFO module” is used to synchronize the LPC spectrum data with 
the Estimation Stationary Background Spectrum output data by 20 
frames (160 msec).

Figure 2: Front-end of WUW-SR Block Diagram.
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Mel-scale Frequency Cepstral Coefficients (MFCC) 
Feature Extraction

The feature extraction involves identifying the formants in 
the speech, which represent the frequency locations of energy 
concentrations in the speaker’s vocal tract. There are many different 
approaches used: Mel-scale Frequency Cepstral Coefficients (MFCC), 
Linear Predictive Coding (LPC), Linear Prediction Cepstral Coefficients 
(LPCC), Reflection Coefficients (RCs). Among these, MFCC has been 
found to be more robust in the presence of background noise compared 
to other algorithms [5]. Also, it offers the best trade-offs between 
performance and size (memory) requirements. The primary reason 
for effectiveness of MFCC is that, it models the non-linear auditory 
response of the human ear which resolves frequencies on a log scale [6].

Intensive efforts have been carried out to achieve a high 
performance front-end. Converting a speech waveform into a form 
suitable for processing by the decoder requires several stages as shown 
in Figure 3.

Filtration
The waveform is sent through a low pass filter, typically 4 kHz 

to 8 kHz. As is evidenced by the bandwidth of the telephone system 
being around 4 kHz; this is sufficient for comprehension and used a 
minimum bandwidth required for telephony transmittal.

Analog-to-digital conversion

The process of digitizing and quantizing an analog speech waveform 
begin with this stage. Recall that the first step in processing speech is to 
convert the analog representations (first air pressure, and then analog 
electric signals from a microphone), into a digital signal.

Sampling rate

The resulting waveform is sampled. Sampling rate theory requires a 
sampling (Nyquist) rate of double the maximum frequency (so 8 to 16 
kHz as appropriate). The sampling rate of 8 kHz was used in our front-
end (we used CODEC Chip to perform first, second, and third stages).

Serial to parallel converter

This model gets serial digital signal from CODEC and converts it 
to 32-bit.

Integer to floating-point converter

This module converts 32-bit, signed integer data to single-precision 
(32-bit) floating-point values. The input data is routed through the 
int_2_float Mega function core named ALTFP_CONVERT.

Pre-emphasis 

The digitalized speech signal s(n) is put through a low-order LPF 
to spectrally flatten the signal and to make it less susceptible to finite 
precision effects later in the signal processing. The filter is represented 
by:

y[n] = x[n] – αx [n-1],

Output = Input – (PRE_EMPH_FACTOR * Previous_input)

where we have chosen the value of PRE_EMPH_FACTOR (α) as 
0.975.

Window buffering

 A 32-bit, 256 deep dual-port RAM (DPRAM) stores 256 input 
samples. A state machine handles moving audio data into the RAM, 
and pulling data out of the RAM (64 samples) to be multiplied by the 
Hamming coefficients, which are stored in a ROM memory.

Windowing

The Hamming window function smoothes the input audio data 
with a Hamming curve prior to the FFT function. This stage slices the 
input signal into discrete time segments. This is done by using window 
N milliseconds, typically 32 ms wide (256 samples). A Hamming 
window size of 32 ms which consists of 256 samples at 8 KHz sampling 
frequency and 8 ms frame shift (64 samples) is picked for our front-end 
windowing.

Figure 3: MFCC Feature Extraction.
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Fast Fourier transform
In order to map the sound data from the time domain to the 

frequency domain, the Altera IP Megafunction FFT module is used. The 
module is configured so as to produce a 256-point FFT. This function 
is capable of taking a streaming data input in natural order, and it can 
also output the transformed data in natural order, with maximum 
latency of 256 clock cycles once all the data (256 data samples) has been 
received.

Spectrogram
This module takes the complex data generated by the FFT and 

performs the function:

20 * log10 (fft_real^2 + fft_imag^2)

We designed spectrogram to show how the spectral density of a 
signal varies with time. We used spectrogram module to identify 
phonetic sounds. Digitally sampled data, in the time domain, are 
broken up into chunks, which usually overlap, and Fourier transformed 
to calculate the magnitude of the frequency spectrum for each chunk. 
Each chunk then corresponds to a vertical line in the image; a 
measurement of magnitude versus frequency for a specific moment in 
time. The spectrums or time plots are then “laid side by side” to form 
the image surface.

Mel-scale filtering

 While the resulting spectrum of the FFT contains information 

in each frequency in linear scale, human hearing is less sensitive 
at frequencies above 1000 Hz. This concept also has a direct effect 
on performance of ASR systems; therefore, the spectrum is warped 
using a logarithmic Mel scale. In order to create this effect on the FFT 
spectrum, a bank of filters is constructed with filters distributed equally 
below 1000 Hz and spaced logarithmically above 1000 Hz.

Discrete cosine transform

DCT is a Fourier-related transform similar to the discrete Fourier 
transform (DFT), but using only real numbers. DCTs are equivalent 
to DFTs of roughly twice the length, operating on real data with even 
symmetry (since the Fourier transform of a real and even function is 
real and even). A DCT computes a sequence of data points in terms 
of summation of cosine functions oscillating at various frequencies. 
The idea of performing DCT on Mel Scale is motivated by extraction 
of the speech frequency domain characteristics. DCT module reduces 
the speech signal’s redundant information, and reaches the aim of 
regulating the speech signal into feature coefficients with minimal 
dimensions.

Autocorrelation Linear Predictive Coding (LPC) 
Feature Extraction

As shown in Figure 4, an additional module named Autocorrelation 
Linear Productive Coding (LPC) used to extract the speech as LPC 
features. The basic idea of LPC is to approximate the current speech 

Figure 4: LPC Feature Extraction.
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sample as a linear combination of past samples as shown in the 
following equation:

[ ] [ ] [ ]
1

p

k
k

x n a x n k e n
=

= − +∑
x[n-k]: Previous speech samples

p: Order of the model

ak: Prediction coefficient

e[n]: Prediction error

This module gets windowed data from the window module for 
representing the spectral envelope of a digital signal of speech in 
compressed form, using the information of a linear predictive model. 
We use this method to encode good quality speech and provide an 
estimate of speech parameters.

The LPC algorithm is executed as follows:

for i = 1:17

% calculate the sum

for j = 1: (i-1)

s = s + lpc_ram(j) * acc_ram(i-j);

end

% calculate k

k = - (acc_ram(i) + s) / alpha;

% calculate lpc_ram[1:(i-1)]

for j = 1:(i-1)

temp_ram(j) = lpc_ram(j) + (k * lpc_ram(i-j)));

end

for j = 1:(i-1)

lpc_ram(j) = temp_ram(j);

end

% store new value of lpc_ram[i] and calculate new alpha

lpc_ram(i) = k;

alpha = alpha * (1-k*k);

% next iteration

end

The goal of this method is to calculate prediction coefficients ka
for each frame. The order of LPC, which is the number of coefficients 
p, determines how closely the prediction coefficients can approximate 
the original spectrum. As the order increases, the accuracy of LPC also 
increases. This means the distortion will decrease. The main advantage 
of LPC is usually attributed to the all-pole characteristics of vowel 
spectra. Also, the ear is also more sensitive to spectral poles than zeros 
[7]. In comparison to non-parametric spectral modeling techniques 
such as filter banks, LPC is more powerful in compressing the spectral 
information into few filter coefficients [8].

Enhanced Mel-scale Frequency Cepstral Coefficients 
(ENH-MFCC) Feature Extraction

The spectrum enhancement module is used to generate ENH-

MFCC set of features. We have implemented this module as shown 
in the Figure 5, to perform an enhancement algorithm on the LPC 
spectrum signal. The ENH-MFCC features have a higher dynamic 
range than regular MFCC features, so these new features will help the 
back-end in improving the recognition quality and accuracy [1].

The algorithm uses only the single-sided spectrum, so the state 
machine starts the calculations when 128 data points have been written 
into the input RAM. The ENH-MFCC algorithm is executed as follows:

% “Silence Factor” Computation

normz=0;

for i=1:SPECL

normz=normz+temp_spec_vector(i);

end

normz=SF*normz+SIL_EN_FLOOR;

neighborhood_sum=zeros(SPECL,1);

% Computation of initial neighborhood sum for bin i=0

local_sum=temp_spec_vector(1);

for j=2:HALF_NEIGHB_SIZE+1

local_sum=local_sum+temp_spec_vector(j);

end

neighborhood_sum(1)=local_sum;

%Computing Neighborhood Sum X[j+i]

for i=2:SPECL

j=i+HALF_NEIGHB_SIZE;

k=i-HALF_NEIGHB_SIZE-1;

%Handling edge effects

if j >= SPECL 

indx1 = SPECL;

else

indx1 = j;

end

if (k<1)

indx2 = 1;

else

indx2 = k;

end

%Adding New Element - Dropping Old one from local

local_sum=local_sum+temp_spec_vector (indx1)-temp_spec_
vector(indx2);

%Removing Center Element from local_sum

neighborhood_sum (i)=local_sum-temp_spec_vector(i);

end

% Computing denominator
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denom=zeros(SPECL,1);

for i=1:SPECL

denom (i)=normz + NF*neighborhood_sum(i)+BG*background_
estm(i);

end

% Scaling the output

out_spec_vector = zeros(SPECL,1);

for i=1:SPECL

tmp = EG * (temp_spec_vector(i) / denom(i));

out_spec_vector(i) = tmp * tmp;

end

The algorithm uses the following constants

LPC_INDEX_MAX= 8’h7F;    // max. Spectrum 
index (128 total)

HALF_NBRHOOD_MAX= 8’h05;

SILENCE_FACTOR= 32’h3C23D70A;   // 1.0e-2

SIL_EN_FLOOR= 32’h501502F9;   // 1.0e10

NBRHOOD_FACTOR= 32’h3C23D70A;  // 1.0e-2

ENHANCE_GAIN= 32’h4CBEBC20;   // 1.0e8

Results and Comparisons
Because Wake-Up-Word Speech Recognition is a new concept, 

it is difficult to compare its front-end processor performance with 
existing front-ends. In order to perform a fair analysis we tested the 
performance of this system by comparing its three sets of feature 
spectrograms (MFCC, LPC, and ENH-MFCC) with the software (C, 
C++) WUW’s front-end algorithm implementation, and MATLAB 
front-end model which is implemented specially for this reason. The 
front-end processor described in this paper has been modeled in 
Verilog HDL and implemented in low cost, high speed, and power 
efficient (Cyclone III EP3C120F780C7) FPGA on DSP development kit. 
The development of the front-end was conducted block by block based 
on software (C, C++) algorithm implementation and on equivalent 
floating-point MATLAB implementation. Each block was tested after 
it was completed to ensure correct operation before the next block was 
developed. The word “Onward” with 8KHz sampling rate was chosen 
as input audio data for testing our Front-end; we tested and compared 
(MFCC, LPC, and ENH-MFCC) spectrograms obtained from the 
hardware front-end model, with the MATLAB front-end model and, 
the software (C, C++) front-end model. The results show:

a. As shown in Figures 6-8, the MFCC, LPC, and ENH-MFCC 

Figure 5: ENH-MFCC Feature Extraction.
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spectrograms generated from MATLAB, Hardware, and Software 
(C++) are identical and hence proper implementation.

b. In Figure 9, we generated the audio signal with the software 
(C++) front-end spectrograms that shows that they are sufficiently 
close with the Hardware front-end spectrograms (Figure 10).

Conclusions and Applications
In this study, we present an efficient hardware architecture and 

implementation of front-end of WUW-SR in FPGA. This front-
end is responsible for generating three sets of features MFCC, LPC, 
and ENH-MFCC. These features are needed to be decoded with 

Figure 6: Front-end MFCC Spectrograms.

Figure 7: Front-end LPC Spectrograms.
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Figure 8: Front-end Enhanced MFCC Spectrograms.

Figure 9: Software (C++) Front-end Spectrograms.
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corresponding HMMs in the back-end stage of the WUW Speech 
Recognizer (e.g. server). WUW Speech Recognition presented a novel 
solution. The most important characteristic of a WUW-SR system is 
that it should guarantee virtually 100% correct rejection of non-WUW 
(out of vocabulary words - OOV) while maintaining correct acceptance 
rate of 99% or higher (in vocabulary words - INV). This requirement 
sets apart WUW-SR from other speech recognition systems because 
no existing system can guarantee 100% reliability by any measure. 
The computational complexity and memory requirement of three 
features algorithms is analyzed in detail and improved greatly [1]. The 
partitioned table look-up method is adopted and modified to be suitable 
in our case with very small table memory. The overall performance and 
area is highly improved. The proposed front-end is the first hardware 
system specially designed for WUW-SR speech feature extraction 
based on three different sets of features algorithms. To demonstrate its 
effectiveness, the proposed design has been implemented in cyclone III 
FPGA hardware. The custom DSP board developed is a power efficient, 
flexible design and can also be used as a general purpose prototype 
board. 
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