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Fuzzy Theory
After Zadeh [1] introduction of Fuzzy Logic and Fuzzy Sets, a 

vast volume of literature appeared about fuzzy logic and Fuzzy System 
Modeling (FSM). There are at least two advantages of FSM that attracts 
researchers: (i) its power of linguistic explanation with the resulting 
ease of understanding, and (ii) its tolerance to imprecise data which 
provides flexibility and stability for prediction. But, very few studies, if 
any, have been devoted to the study of the “Philosophical Grounding 
of Fuzzy Theory”. For this purpose, we briefly review the ontological 
and epistemological foundations of fuzzy theory. For this purpose, we 
ask certain essential questions. Our inquiry contains seven steps which 
are re-stated for Classical theory first and then for Fuzzy theory. Next 
we suggest some insights to be gained by the grand paradigm shift 
from the classical to the fuzzy theory. Naturally, this is a limited partial 
exposition [2]. 

Ontology lays the ground for the structural statements that are 
either equivalence for the case of the classical theory or uncertainty 
intervals for the case of the fuzzy theory. Furthermore we state the Laws 
of Conservation based on assumptions of existences. 

At this level, the inquiry is to be stated as:

•	 What linguistic expressions can capture our positions to realty in 
Computing with Words (CWW)? 

•	 What, Precisiated Natural Language (PNL), expressions can 
capture our positions to reality?

•	 What are the basic equivalences or uncertainty intervals and the 
Laws of Conservation that capture our position to reality?

This theoretical inquiry shown in Table 1 which is stated in general 
terms and it is captured in terms of the classical theory as shown in 
Table 2 and in terms of the fuzzy theory in Table 3.

Briefly in the fuzzy theory, every element belongs to a concept class, 
say A, to a partial degree, i.e., µA: X→[0,1], µA(x)=a∈[0,1], x∈X, where 
µA(x) is the membership assignment of an element ‘x’ to a concept 
class A in a proposition. In particular, most of all concepts in the fuzzy 
theory are assumed to be definable to be true to a degree. 

On the ontological level, the positions taken by fuzzy set and logic 

theorists are shown in Table 3 for the Hierarchy of the Levels of the 
Theoretical Inquiry. In particular, “a subject, s, in relation, R, to an 
object, o,” schema gives credence to both levels, i.e., the subject and the 
object interaction. In such a schema, CWW expressions ought to be 
structured on the basis of meta-linguistic axioms of the Fuzzy Sets and 
the Logic Theory. These meta-linguistic axioms generate an interval of 
uncertainty between the Fuzzy Disjunctive and Conjunctive Canonical 
Forms, FDCF and FCCF [3]. An investigation of the meta-linguistic 
axioms and the associated combination of concepts for any two fuzzy 
sets A and B turn out to generate an interval of uncertainty whose 
boundaries are defined by FDCF and FCCF.

It should be further emphasized that in CWW, the imprecise and 
varying meanings of linguistic connectives should not be precisiated 
in an absolute manner. Since in the fuzzy theory, our position is that 
there is no absolute precisiation of the meaning of words. This provides 
a framework for the representation of “deterministic uncertainty” 
in the combination of words and hence in reasoning with them as a 
foundation for CWW.

Fuzzy system models

Here first, historically significant fuzzy system model developments 
are reviewed in order to identify their unique structures and to point 
out how they differ from each other. Then we show the details of our 
FULL TYPE 2 Fuzzy System developments with a new algorithm. 

Type 1 fuzzy rule base models
The most commonly applied fuzzy system models are fuzzy rule 
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Abstract
We first present a brief review of the essentials fuzzy system models: Namely (1) Zadeh’s rule base model, 

(2) Takagi and Surgeon’s model which is partly a rule base and partly a regression function and (3) Türkşen fuzzy 
regression functions where fuzzy regression functions correspond to each fuzzy rule. Next we review the well-known 
FCM algorithm which lets one to extract Type 1 membership values from a given data set for the development of Type 
1 fuzzy system models as a foundation for the development of Full Type 2 fuzzy system models. For this purpose, we 
provide an algorithm which lets one to generate Full Type 2 membership value distributions for a development of second 
order fuzzy system models with our proposed second order data analysis. If required one can generate Full Type 3. Full 
Type n fuzzy system models with an iterative execution of our algorithm. We present our application results graphically 
for TD_Stockprice data with respect to two validity indeces, namely: 1) Çelikyılmaz-Türkşen and 2) Bezdek indeces.
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bases. Here, we only deal with Multi-Input Single Output (MISO) 
systems. Generally fuzzy system models represent relationships between 
the input and output variables which are expressed as a collection of IF-
THEN rules that utilize linguistic labels, which are represented with 
fuzzy sets. The general fuzzy rule base structure which is known as 
Zadeh- Fuzzy Rule Base, Z-FRB, can be written as follows:

*

i i1
: (IF antecedent THEN consequent )

c

i
R ALSO

=
 

where c* is the number of rules in a rule base either given by experts 
or it is determined by a fuzzy clustering algorithm such as FCM, Fuzzy-
C-Means [4] or IFC, Improved Fuzzy Clustering [5]. The fuzzy rule 
base structures determined by various alternatives mainly differ in the 
representation of the consequents. If the consequent is represented with 
fuzzy sets then the fuzzy rule base is known as Zadeh [6-8] version 
which is originally applied by Ebrahim [9] and a modified version is 
proposed by Sugeno et al. [10] SY-FRB, Whereas, if the consequents are 
represented with linear equations of input variables, then the rule base 
structure is the Takagi et al. [11] Fuzzy Rule Base, TS-FRB structure. 
These are the main models amongst others which we do not review 

in this paper. In particular Zadeh Fuzzy Rule Bases, Z-FRB can be 
formalized as:

 ( )
*

1
:  IF  isr  THEN y  isr 

c

i ii
R ALSO x X A Y B

=
∈ ∈

In general, let nv be the number of selected input variables in the 
system. Then, the multidimensional antecedent, x, can be defined as 
x=(x1,x2,…,xnv), where xj is the jth input variable of the antecedent and 
the domain of x in X, can be defined as X=X1× X1×… ×Xnv, Xj ⊆R. 

In particular, the Z-FRB structure can be expressed as follow, 
where the multi-dimensional antecedent fuzzy subset of ith rule is 
Ai. This multi-dimensional antecedent fuzzy subset determination 
eliminates the search for the appropriate t-norm for the combination 
of antecedent fuzzy subsets with “AND”. Thus, variations of Z-FRB are 
Sugeno et al. [10], SY-FRB, and Takagi et al. [11] (TS-FRB) Fuzzy Rule 
Base structures: 

       (SY-FRB)             ( )
*

1
:  IF  isr  THEN y  isr 

c

i ii
R ALSO x X A Y B

=
∈ ∈

 (TS-FRB) 
*

1
:  (    =  + )

c
T

i i i ii
R ALSO IF antecedent THEN y a x b

=where, antecedent i = x∈X is r Ai , and ai=(ai,1,…, ai,NV) is the regression 

Application Level vii. How do people, decision-makers, feel, think, behave, and interact?
How can we provide them with better decision-making tools?
“How can we provide them with a better PNL?”

Domain-Specific 
Epistemological Level

vi. How do we validate knowledge appropriately in this domain specific field?
What methodological approaches are appropriate to it?
“What ought to be ‘Domain specific’ PNL for validity of our investigations?”
v. What can we know or hope to learn within this domain-specific field or discipline?
What are the limits or boundaries to it?
“What specific expressions of ‘Domain-specific’ PNL could and should be used to specify the limits or boundaries of our knowledge?”

General Epistemological 
Level

iv. How do we validate our knowledge?
How do we know it is true?
What criteria do we use to assess its truth-value?
“What PNL expressions cause the assessment of the truth and knowledge?”
iii. What is our access to the truth and knowledge in general?
Where is knowledge and its truth to be found?
How or from what are they constituted?
“What PNL encoding allows us to assess the truth or knowledge?”

Ontological Level

ii. What is our position or relation to that Reality (if we do assume that it exists on level 1 below)?
“What PNL expressions capture our positions to reality?”
Is there any reality independent or partially independent of us?
Does any absolute truth exist? Does fuzziness exists?

Table 1: Hierarchy of the levels of theoretical ınquiry and their questions.

Application Level vii. Emphasis on mechanistic Super additive systems theory of interactions, relations, equations, etc.

Domain-Specific Epistemological 
Level

vi. Validity and methodology dictated by meta-physical theories, e.g., principle of determinism, symmetry, invariance and 
randomness.

v. Objective facts and truth accessible, but limited only by, e.g., subjective distortions (introduction of uncertainty).
General Epistemological Level iv. Correspondence theory of Validity which is only Objective.

iii. Objectivist, empiricists, certain.

Ontological Level
ii. sRo Cartesian dualism
i. Realism, crisp meaning representation of linguistic
Variables and connectives are defined with two-valued sets and logic theory. Equivalences in “normal forms” together with classical 

laws of conservation, as well as formulae for Belief, Plausibility, Probability, etc.

Table 2: Positions taken by classical set and logic theorists on the hierarchy of the levels of theoretical ınquiry.

Application Level vii. Emphasis on humanistic Decision and Control Systems that contain highly complex non-linear interactions, relations, equations, etc.

Domain-Specific 
Epistemological Level

vi. Validity and methodology dictated by Meta theories of Modal Logics. e.g., principle of non-determinism and overlapping patterns.
v. Subjective and objective facts accessible by perceptions and meaning representation of linguistic terms of linguistic variables, linguistic 

quantifiers and linguistic connectives. Principle of uncertainty!!

General Epistemological 
Level

iv. Correspondence theory of Validity both objective and subjective.
Approximate Reasoning!!
iii. Subjective-objective, experimental and empiricist, e.g., expert and/or fuzzy data mining based.

Ontological Level

ii. ←→Rs o  Schema gives credence both the Level of the subject and the object interaction.
i. Realism - fuzzy and uncertain
Generation of “Fuzzy Canonical Forms” that are not equivalent to each other in contrast to “Classical Normal Forms”.
Generation of new Laws of Conservation for t-norms, co-norms, Belief, Plausibility, Probability, etc.

Table 3: Position taken by some of fuzzy set and logic theorists on the hierarchy of the levels of theoretical ınquiry.
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coefficient vector associated with the ith rule together with bi which is 
the scalar associated with the ith rule. For these special cases of Z-FRB, 
again each degree of firing, id , associated with the-ith rule, is determined 
directly from the corresponding ith multi-dimensional antecedent fuzzy 
subset Ai and applied to the consequent fuzzy subset for the SY-FRB or 
to the classical ordinary regression for the case of TS-FRB.

Fuzzy regression functions
There are a number of variations of the proposed Fuzzy Regression 

Functions. We discuss here only one alternative in this paper, namely, 
Fuzzy Regression Functions which we have proposed with LSE.

Fuzzy regression functions with LSE (FF-LSE): In ordinary 
LSE (Least Square Estimation) method, the dependent variable, y, is 
assumed to be a linear function of input, variables, x, plus an error 
component: 

0 1 1 ... nv nvy x xβ β β ε= + + + +
where y is the dependent output, xj’s are the explanatory variables 

input, for j=1,…, nv, nv is the number of selected inputs and ε is the 
independent error term which is typically assumed to be normally 
distributed. The goal of the least squares method is to obtain estimates 
of the unknown parameters, βj’s, j=0,1,…, nv , which indicate how a 
change in one of the independent variables affects the dependent 
variable.

T 1(X X) TX yβ −=

The proposed generalization of LSE as FF-LSE (Fuzzy Functions 
with LSE, more appropriately know as Fuzzy Regression Functions 
with LSE), requires that a fuzzy clustering algorithm, such as FCM, 
or IFC be available to determine the interactive (joint) membership 
values of input-output variables in each of the fuzzy clusters that can 
be identified for a given training data set. Let (Xk,Yk), k=1,…, nd, be 
the set of observations in a training data set, such that Xk=(xjk | j=1,…, 
nv ). First, one determines the optimal (m*, c*) pair for a particular 
performance measure, i.e., a cluster validity indeces such as Bezdek [4], 
and Celikyılmaz et al. [5] With an iterative search and an application 
of FCM or IFC algorithm, where m is the level of fuzziness (in our 
experiments we usually take m=1.4,…,2.5), Ozkan et al. [12] and c is 
the number of clusters (in our experiments we usually take c=2,…,10). 
The well-known FCM [4] algorithm can be stated as follows:
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Where J is objective function to be minimized, ||.||A is a norm that 
specifies a distance based similarity between the data vector xk and a 
fuzzy cluster center vi. In particular, A=I is the Euclidian Norm and 
A=C-1 is the Mahalonobis Norm, etc. 

Once the optimal pair (m*, c*) is determined with the application 
of FCM algorithm, and a cluster validity index one next identifies the 
cluster centers for m=m* and c=1,…,c* as:

 | , 1, 2, ,
*

( , , , , )c c c c
X Y j j j nv j j
m

v x x x y= ⋅⋅ ⋅
From this, we identify the cluster centers of the input space again 

for m=m* and c=1,…,c* as:

, 1, 2, ,
*

( , , , )c c c
X j j j nv j
m

v x x x= ⋅⋅ ⋅

Next, one computes the normalized membership values of each 
vector of observations in the training data set with the use of the cluster 
center values determined in the previous step. There are generally two 
steps in these 3.

Calculations
First we determine the (local) optimum membership values uik‘s 

and then determine µik ‘s that are above an α- cut in order to eliminate 
harmonics generated by FCM as:     

12
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∑ µ α  

where µik denotes the membership value of the kth vector, k=1,…,nd, 
in the ith rule, i=1,…,c* and xk denotes the kth vector and for all the input 
variables j=1,…, nv, in the input space. (2) Next, we normalize them as:

 

'
' 1

( )
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where γij is the normalized membership value of xj , j=1,…, nv, in 
the ith rule, i=1,…,c*, which in turn will indicate the membership value 
that will constitute an new input variable in our proposed scheme of 
function identification for the representation of ith cluster. Let 

( | 1,..., *; 1,..., )i ij i c j nvγΓ = = =  be the membership values of X 
in the ith cluster, i.e., rule.

Next we determine a new augmented input matrix X for each of 
the clusters which could take on several forms depending on which 
transformations of membership values we want to or need to include 
in our system structure identification for our intended system analyses. 
Examples of these are:

[ ]1, ,i iX X′ = Γ , 2' 1, ,i iX X′  = Γ  , 21, , , exp( ),m
i i i iX X′′′  = Γ Γ Γ  etc, 

where Xi`, Xi``, Xi``` are the new input matrices to be used in least 
squares estimation of a new system structure identification where

( | 1,..., *; 1,..., )i ij i c j nvΓ = = =γ
The choice depends on whether we want to or need to include just 

the membership values or some of their transformations as new input 
variables in order to obtain a best representation of a system behavior. 
In particular, this is done in order to get a higher value of R2 to show 
that a better model is obtained for an application. A new augmented 
input matrix, say Xi`, would look as shown below for the special case 
of X=Xj , i.e., the matrix X is just a vector of a single variable, Xj=(xjk | 
k=1,…,nd ) for the jth variable:

1 1
`

1
[1, , ]

1
i

i ij

j i ij

ind ijnd

x
X X

x

 
 = Γ =  
  

  

γ

γ

Thus the fuzzy regression function, 0 1 2i i i i i ijY Xβ β β= + Γ +  , 
that represents the ith rule corresponding to the ith interactive (joint) 
cluster in space ( , , )i i jY XΓ

, 
* 1( ` `) ( ` )T T

i ij ij ij iX X X Y−=β
, 

1, ,ij i ijX X′  = Γ 
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Such that * * * *
0 1 2( , , )i i i i=β β β β  and the estimate of Yi would be 

obtained as * * * *
0 1 2i i i i i ijY X= + Γ +β β β

Within the proposed framework, the general form of the shape of 
a cluster can be conceptually captured by a second order (cone) in the 
space of U x X xY which can be illustrated with a prototype shown in 
Figure 1.                                                             

One usually determines Type 1 membership values with an 
application of FCM […] algorithm shown below: 

Algorithm 3.1. Fuzzy c-means clustering algorithm 
(FCM)

Given data vectors, X={x1,..,xn}, number of clusters, c, degree of 
fuzziness, m, and a termination constant, ε (maximum iteration number 
in this case). Initialize the partition matrix, U, randomly.

Step 1. Find initial cluster centers using via equation 1 shown below 
using membership values of initial partition matrix as inputs. 

Step 2. Start iteration t=1…max-iteration value; 

Step 2.1. Calculate membership values of each input data object k 
in cluster i, 

( )t
ikµ , using the membership value calculation equation in 

via equ 1 below, where xk are input data objects as vectors and 
( 1)t
iυ
−

 are 
cluster centers from (t-1)th iteration,

Step 2.2. Calculate cluster center of each cluster i at iteration t, ( )t
iυ using the cluster center function in equ 2 shown below, where 

the inputs are the input data matrix, xk, and the membership values of 
iteration t, ( )t

ikµ .

Step 2.3. Stop if termination condition satisfied, e.g.,
(t) (t 1)

i iU U ε−− ≤
 
Otherwise go to step 1.

Where equation 1 stated in the algorithm above is:
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And equation 2 is:
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∑ ∑υ µ µ

Generation of Full Type 2 Membership Values
For this purpose, we propose and hence introduce a new algorithm 

in order to generate Full Type 2 membership value distribution from 
the results obtained with an application of FCM which produce a 
Type 1 membership value distribution for our studies of Full Type 2 
investigations.

Full Type 2 fuzziness i.e., membership of membership

Here we want to show how one determines the second order degree 
of fuzziness in order to develop Full Type 2 fuzzy system models. 

It should be noted that depending on where x X∈ is there may 
be more than one second order membership value distribution.

Full type 2 fuzzy set extraction algorithms

We propose the following Full Type 2 fuzzy set extraction algorithm 
from a given data set called FT2FCM [13]

Full type 2 fuzzy clustering algorithm
' 1

i(xk) (xk) l
1 1 0

'(U'(U), W) ( (z))( (z ))
nd c

i
k i l

Min J µ µµ µ
= = =

=∑∑∑
' 1

i( ) i( )
1 1

'(U'(U), W) ( (z)) ( ( )) ( ) ( ) ), 1,..., ;
nd c

xk xk l l
k i l o

MinJ z xk z A k ndµ µµ µ µ
= = −

= ∑ ∑ ∑ − =

1,..., 'i c=

( ).0 (z) 1i xkst µµ≤ ≤

0 ( ) 1i xkµ≤ ≤

1
0 ( )

nd

i k
k

x ndµ
=

≤ ∑ ≤

( )( ) [0,1]; (z) [0,1]; [0,1]
i ki k xx lµµ µ∋ ∋ ∋

Where J’ is the objective function to be minimized for a given
, .kx X A∈ is a norm, i.e., Euclidian or Mahalanobis, that specifies a 

distance measure based on a membership values for a given kx X∈  and 
its second order fuzzy cluster center ( )i kxµ .

Next one computes the normalized membership values of these 
Full Type 2 membership values for each vector of membership values 
obtained in an initial application of the original FCM or IFC algorithm 
in the first stage.

There are generally two steps in these calculations:

We first determine (local) optimum membership of membership 
values i ( )kxµµ ’s and then apply an α-cut in order to eliminate the second 
order harmonics generated by an application of FT2FCM as:
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Figure 1: Fuzzy cluster in U x X x Y space.
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' ( )i kx ≥µγ µ α

Where ' ( )i kxµγ µ denotes the membership values of the membership 
values of the kth vector k=1,..,nd in the ith rule, or ith fuzzy regression 
function [14,15] and kx X∈ denotes the kth vector and for all the input 
variables, k=1,.., nd in the input space.

Recall that we are able to obtain the membership value distribution 
as:

1 11
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We process each Гi via our Full Type 2 clustering algorithm given 
above, called FT2FCM, to determine Full Type 2 distribution for each 
cluster i, ( )*| 1, , ; 1, ,i ij i c j ndγ= = … = …Γ

Thus we apply to each iΓ  , Algorithm 2 given below to generate 
Full Type 2 membership, values, i.e., membership of membership.

Algorithm 2. Full Type 2 Fuzzy c-means Clustering 
Algorithm (FT2FCM)

Given data vectors, 

( )*| 1, , ; 1, ,i ij i c j ndγΓ = = … = … , number of clusters, c`, degree of 
fuzziness, m, and termination constant, ε (maximum iteration number 
in this case). Initialize a partition matrix, Γ, randomly.

Step 1. Find initial cluster centers using via equation 3 shown below 
using membership of membership values of initial partition matrix as 
inputs. 

Step 2. Start iteration t=1…max-iteration value; 

Step 2.1. Calculate Type 2 membership values of a given , Γ vector 
of each input data object k in cluster i, ( ),i xkµµ using each Γ vector of 
the membership values where xk are input data objects as vectors and  

( )i kxµ are Type 2 cluster centers from (t-1)th iteration.

Step 2.2. Calculate Type 2 cluster center wik of each cluster l 
at iteration t, the t-th  ( )i kxµ he cluster center function of Type 2 
membership values in equation 4 shown below, where the inputs are 
the input data matrix, and the membership of the membership values 
of iteration t, ,t( )

i kxµµ
Step 2.3. Stop if termination condition satisfied, e.g

Otherwise go to step 1.

Experimental Results
We present here our experimental results for TD_Stock Price Data 

set that is available for all researchers on the internet. 

Çelikyılmaz-Türkşen’s validity index results for TD_Stockprice data 
figures 2-13.

Results and Conclusion
In this paper, we have first review the essentials fuzzy system models: 

such as (1) Zadeh`s rule base model, (2) Takagi and Surgeon’s partly 
a rule base and partly a regression function model and (3) Türkşen`s 
“Fuzzy   Regression Functions” model where a fuzzy regression function 
correspond to each fuzzy rule and thus a fuzzy rule base is replaced 
with “Fuzzy Regression Functions” model. Next we review the well-
known FCM algorithm which lets one to extract Type 1 membership 
values from a given data set for the development of “Type 1” fuzzy 
system models as a foundation for the development of “Full Type 2” 
fuzzy system models. For this purpose, we provide an algorithm which 

Figure 2: Fuzzy classification of TD_Stockprice data: (c*=2,m*=1.8).
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Figure 3: Cluster-2 view for TD_Stockprice data.
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Figure 4: Çelikyılmaz-Türkşen’s Validity Index for µik dat.
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Figure 5: Cluster-2 results of TD-Stockprice data (c*=2,m*=1.8). cv.
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Figure 6: µlk(µik) for Cluster1 and 2 are shown above.
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Figure 7: A possible three cluster view.
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Figure 8: Fuzzy classification of TD_Stockprice data: (c*=3,m*=2.0).
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Figure 9: Cluster-2 view for TD_Stockprice data.
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Figure 10: Çelikyılmaz-Türkşen’s Validity Index for µik data.
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lets one to generate Full Type 2 membership value distributions for a 
development of second order fuzzy system models with our proposed 
second order data analysis. If required one can generate Full Type 3, 
Full Type n fuzzy system models with an iterative execution of our 
algorithm. Finally we present our results graphically for TD_Stockprice 
data with respect to two validity indeces, namely: 1) Çelikyılmaz-
Türkşen and 2) Bezdek indeces. Based on our development, we expect 
in the future new results would be obtained in “Full Type 3, Full Type 
n” fuzzy system model analyses.
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Figure 11: Cluster-2 results of TD-Stockprice data (c*=3,m*=2.0) for 
membership of membership.
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Figure 12: A possible three cluster view.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

muik

m
u'

lk
 (m

u ik
)

cluster2
cluster1

Figure 13: A possible three cluster view.
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