ISSN: 2472-1026 Open Access

Forensic Pathology: Evolution, Techniques, Future

Hannah L. McIntyre*

Department of Forensic Medicine University of Edinburgh School of Medicine, UK

Introduction

Forensic pathology is constantly advancing, integrating innovative methods to improve death investigations. A critical area is the handling of mass fatality incidents, where advanced postmortem imaging techniques such as CT scans and MRI are now complementing traditional autopsy methods. These modalities are crucial for swift victim identification and precise cause-of-death determination, especially when conventional examinations become logistically challenging or time-consuming due to the sheer scale of a disaster [1].

Further enhancing imaging capabilities, a systematic review and meta-analysis has scrutinized the efficacy of forensic Postmortem Computed Tomography Angiography (PMCTA). This assessment highlights PMCTA's diagnostic accuracy and acknowledges its limitations across diverse forensic scenarios. Notably, PMCTA excels in detecting vascular injuries and hemorrhages, presenting a less invasive yet remarkably informative method for forensic death investigations, particularly relevant in complex trauma cases [2].

Beyond macroscopic and microscopic analyses, the field has embraced molecular autopsy for cases of sudden cardiac death. This evolving area, with its current recommendations and challenges, utilizes genetic testing and molecular analysis. These tools are becoming indispensable for uncovering underlying inherited cardiac conditions, even when traditional examinations yield ambiguous results, thereby providing vital information to affected family members [3].

The applications of forensic entomology and forensic pathology are deeply interconnected, offering powerful synergistic approaches to investigations. Insect evidence found on decomposed bodies offers critical insights, assisting in estimating the postmortem interval, pinpointing geographic locations, detecting toxicology, and identifying potential cases of neglect or abuse, proving invaluable in complex scenarios [4].

In pediatric forensic autopsies, particularly in sensitive cases involving infants and children, the application of ancillary techniques is paramount. A systematic review underscores their importance, detailing how methods beyond conventional macroscopic and microscopic examination – including advanced imaging, comprehensive toxicology, and detailed molecular studies – significantly aid in accurately determining the cause and manner of death, especially in contexts of suspected child abuse or neglect [5].

Forensic pathologists consistently face the intricate landscape of drug-related deaths. This area demands an examination of current trends and significant challenges, encompassing the identification of novel psychoactive substances, patterns of poly-drug use, and the careful interpretation of toxicological findings within the broader autopsy context. This highlights the dynamic nature of investigations

as drug availability rapidly shifts [6].

Diagnosing fire fatalities presents its own unique set of investigative complexities. A comprehensive review outlines the meticulous approach required, covering critical aspects like establishing vital signs of life at the time of fire, analyzing carbon monoxide poisoning, soot distribution, and thermal injuries. This detailed process is necessary to accurately differentiate antemortem injuries from postmortem changes and definitively determine the true cause and manner of death [7].

Excited Delirium Syndrome (ExDS) remains a challenging condition within forensic practice, frequently associated with sudden deaths in custody. A systematic review provides an updated understanding, delving into diagnostic criteria, the underlying pathophysiological mechanisms, and the considerable difficulties forensic pathologists encounter in recognizing and attributing death to ExDS, amidst ongoing controversies and evolving perspectives in the field [8].

Navigating the ethical dilemmas inherent in forensic autopsies is critical for current practice. This involves crucial discussions around consent for autopsy, the respectful handling of human remains, transparent disclosure of findings to families, and managing potential conflicts of interest. Forensic pathologists must uphold professional integrity while meticulously balancing legal obligations with essential humanitarian considerations [9].

Looking to the future, the burgeoning role of Artificial Intelligence (AI) and Machine Learning (ML) in forensic pathology promises to revolutionize the field. These technologies are detailed for their current applications and immense future potential, offering innovative tools for enhancing accuracy and efficiency. AI can assist in advanced image analysis for postmortem imaging, sophisticated pattern recognition in histological slides, and even provide predictive analytics for specific death investigations [10].

Description

Forensic pathology is witnessing significant advancements through the integration of sophisticated technologies and multidisciplinary approaches. In mass fatality incidents, the reliance on advanced postmortem imaging techniques, such as CT scans and MRI, has become paramount. These methods effectively complement traditional autopsies, proving invaluable for victim identification and determining the cause of death, especially when faced with large-scale disasters that render conventional techniques challenging or time-consuming [1]. Further illustrating the impact of imaging, forensic Postmortem Computed Tomography Angiography (PM-CTA) has been rigorously evaluated. A systematic review and meta-analysis confirmed its diagnostic accuracy and identified its limitations across various forensic cases, particularly highlighting its utility in detecting vascular injuries and hemor-

McIntyre L. Hannah J Forensic Med, Volume 10:3, 2025

rhages. This represents a less invasive yet highly informative avenue for death investigations, especially in trauma-related fatalities [2]. The application of ancillary techniques is also crucial in pediatric forensic autopsies, extending beyond traditional examinations to include advanced imaging, toxicology, and molecular studies. These methods are essential for accurately determining the cause and manner of death in complex cases involving infants and children, especially where child abuse or neglect is suspected [5].

The scope of forensic investigation increasingly delves into molecular diagnostics, exemplified by the rise of molecular autopsy for sudden cardiac death cases. This innovative approach integrates genetic testing and molecular analysis, establishing itself as an indispensable tool for identifying underlying inherited cardiac conditions. It offers crucial information for family members, particularly when macroscopic and microscopic examinations yield ambiguous results [3]. Complementary to internal investigations, the interconnected applications of forensic entomology and forensic pathology provide critical external insights. Insect evidence recovered from decomposed bodies offers a wealth of information for death investigations, including estimations of the postmortem interval, determination of geographical location, detection of toxicological substances, and the identification of potential neglect or abuse cases. This demonstrates a powerful synergy between biological disciplines in solving complex scenarios [4].

Pathologists regularly confront unique and challenging death investigations that demand specialized expertise. For instance, the diagnosis of fire fatalities requires a comprehensive and meticulous approach. Key elements involve establishing vital signs of life at the time of the fire, careful assessment of carbon monoxide poisoning, detailed analysis of soot distribution, and precise interpretation of thermal injuries. This rigorous process is fundamental for accurately differentiating antemortem injuries from postmortem changes, which is critical for definitively determining the true cause and manner of death [7]. Similarly, the evolving landscape of drug-related deaths presents continuous complexities. Investigations must encompass the identification of novel psychoactive substances, the common occurrence of poly-drug use, and the intricate interpretation of toxicological findings within the broader context of autopsy observations. This highlights the dynamic nature of forensic work in an era of rapidly changing drug availability and composition [6].

Another area of intense scrutiny in forensic practice is Excited Delirium Syndrome (ExDS), a condition frequently associated with sudden deaths in custody. A systematic review has provided an updated understanding, meticulously examining the diagnostic criteria, underlying pathophysiological mechanisms, and the considerable difficulties forensic pathologists encounter in recognizing and attributing death to ExDS. This includes addressing contentious aspects and evolving perspectives within the field, reflecting ongoing debate [8]. Beyond the scientific and medical complexities, forensic autopsies are inherently interwoven with profound ethical dilemmas. Addressing these challenges is paramount for contemporary practice, encompassing critical issues such as obtaining proper consent for autopsy, ensuring the respectful handling of human remains, transparently disclosing findings to families, and judiciously managing potential conflicts of interest. Forensic pathologists must consistently uphold professional integrity while carefully balancing legal obligations with essential humanitarian considerations [9].

Looking towards future innovations, the burgeoning role of Artificial Intelligence (AI) and Machine Learning (ML) in forensic pathology is set to revolutionize the field. These advanced technologies are currently being explored for their substantial applications and immense future potential to significantly enhance accuracy and efficiency. AI can provide invaluable assistance in advanced image analysis for postmortem imaging, facilitate sophisticated pattern recognition in histological slides, and even contribute to predictive analytics for specific death investigations, thereby offering innovative tools that promise to transform forensic science [10].

Conclusion

Forensic pathology is undergoing rapid evolution, integrating advanced techniques to enhance death investigations across diverse scenarios. Modern approaches complement traditional autopsies with sophisticated tools like advanced postmortem imaging, including CT scans and MRI, crucial for victim identification and cause-of-death determination in mass fatalities and trauma cases where Postmortem Computed Tomography Angiography (PMCTA) proves highly informative. Beyond imaging, molecular autopsy is pivotal for sudden cardiac death, utilizing genetic testing to uncover inherited conditions. Similarly, ancillary techniques, encompassing imaging, toxicology, and molecular studies, are vital in pediatric autopsies, particularly in suspected child abuse cases.

The field also leverages interdisciplinary insights, such as forensic entomology, which uses insect evidence for postmortem interval estimation, geographic determination, and toxicology in decomposed bodies. Forensic pathologists concurrently grapple with complex death investigations, including meticulous diagnoses in fire fatalities that require differentiating antemortem from postmortem changes, and navigating the dynamic landscape of drug-related deaths involving novel psychoactive substances and poly-drug use.

Furthermore, understanding conditions like Excited Delirium Syndrome (ExDS) in custody deaths remains a challenge, necessitating updated diagnostic criteria and a grasp of pathophysiological mechanisms. Ethical considerations are also central to forensic practice, demanding careful attention to consent, respectful handling of remains, and transparent communication of findings. Looking forward, Artificial Intelligence (AI) and Machine Learning (ML) are emerging as transformative tools, promising to enhance accuracy and efficiency in image analysis, pattern recognition, and predictive analytics within forensic pathology.

Acknowledgement

None.

Conflict of Interest

None.

References

- Marco B. S. M. Marinho, Djalma B. B. N. da Silva, Ana L. F. P. C. de Morais. "Forensic pathology in mass fatality incidents: The role of traditional autopsies and advanced postmortem imaging techniques." Forensic Sci Int Rep 7 (2023):100346.
- Yu-Hsin Chen, Yu-Feng Su, Ming-Shu Lee. "Forensic postmortem computed tomography angiography: A systematic review and meta-analysis." Forensic Sci Int 346 (2023):111666.
- Federica Corrado, Vincenzo L. La Rosa, Claudio Angrisani. "Molecular autopsy in sudden cardiac death: a review of current recommendations and challenges." Forensic Sci Med Pathol 18 (2022):277-285.
- M. D. L. V. Al-Mhanna, S. M. Al-Shaghdali, M. F. Al-Ajmi. "Forensic entomology and pathology: a review of their interwoven applications." Forensic Sci Med Pathol 19 (2023):139-145.
- Maria Carolina M. B. Vilella, Bruna E. A. P. Dias, Amanda S. T. Santos. "The use of ancillary techniques in pediatric forensic autopsies: a systematic review." Forensic Sci Med Pathol 19 (2023):440-454.

McIntyre L. Hannah J Forensic Med, Volume 10:3, 2025

 Daniele Rodriguez, Carlo M. M. Sempio, Giulia Bonacci. "Forensic pathology of drug-related deaths: Current trends and challenges." Forensic Sci Int 331 (2022):111116.

- S. S. Yadav, L. B. Thota, A. K. Aggarwal. "Forensic pathology of fire fatalities: A comprehensive review on diagnosis and investigative challenges." J Forensic Leg Med 95 (2023):102511.
- Ryan K. Gengler, Elizabeth M. Corley, Catherine R. Stewart. "Excited delirium in forensic practice: A systematic review." J Forensic Sci 69 (2024):193-207.
- 9. P. V. S. Raju, P. S. Rao, K. V. L. N. S. R. Murty. "Navigating ethical challenges

- in forensic autopsies: A review for current practice." J Forensic Leg Med 70 (2020):101905.
- Marco Iacopino, Federica Corrado, Francesca De Ferrari, Simone Cappelletti, Alessandro Zucconi, Paolo De Giorgio. "Applications of Artificial Intelligence and Machine Learning in Forensic Pathology: Current Status and Future Directions." Forensic Sci Med Pathol 20 (2024):105-117.

How to cite this article: McIntyre, Hannah L.. "Forensic Pathology: Evolution, Techniques, Future." *J Forensic Med* 10 (2025):412.

*Address for Correspondence: Hannah, L. McIntyre, Department of Forensic Medicine University of Edinburgh School of Medicine, UK, E-mail: hannah.mcintyre@ueme.uk

Copyright: © 2025 McIntyre L. Hannah This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-May-2025, Manuscript No. jfm-25-173730; **Editor assigned:** 05-May-2025, PreQC No. P-173730; **Reviewed:** 19-May-2025, QC No. Q-173730; **Revised:** 22-May-2025, Manuscript No. R-173730; **Published:** 29-May-2025, DOI: 10.37421/2472-1026.2025.10.412