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Abstract

In quantitative forecasting models and tracking signal methods, input noise is often assumed to be normally and
independently distributed. The goal of this research was to study the distribution of tracking signal and build new
monitoring schemes for when the input noise distribution is not necessarily normal. A demand process in the Wilson
inventory model was simulated using several input noise distributions. The effectiveness of a proposed tracking
signal model was evaluated and compared to existing methods using an inventory cost model. It was found that it is
not realistic to assume a normal distribution for the tracking signal even when the noise is normal. Because of the
dependency of tracking signal elements, and since there is no specific distribution for it, we used simulation to
estimate the best value for the standard deviation and suggest ±3 �⌢�� as the control limits. We compared this value

with those suggested by other papers, and showed that the proposed limits work better when the process is under
control and also when there are different amounts of shifts in mean demand. We also studied different values for the
tracking signal smoothing parameter and analyzed the inventory costs for each.

Keywords: Quantitative forecasting; Tracking signal; Inventory
control

Introduction
The aim of a forecast monitoring system is to monitor how well a

system is functioning, to detect “out of control” signals expeditiously,
and to provide an unbiased estimate of the forecast error. This
monitoring can be achieved efficiently with the use of a “tracking
signal.” Tracking signal methods have been used as alarm mechanisms
to ensure that forecasting systems remain in control, and to detect any
abnormalities in a timely manner in order to provide information to
decision makers. This allows for appropriate corrective action to be
taken so that the forecasting system can be brought back to an “under
control” status.

Time series forecasting systems as applied to inventory systems have
been extensively studied using many different types of tracking signals.
Brown [1] was the first to suggest the use of tracking signals, and
subsequent researchers such as Trigg continued and expanded upon
Brown’s tracking signal method [2]. Some of these researchers also
suggested new methods of using tracking signals. For example, Deng et
al. used fuzzy-neural to suggest a new tracking signal [3].

To be confident that the tracking signal provides reasonable
assurance against missing out of control signals (type II error), and
balancing this with the probabilty of false alarms (type I error), it is
important to calculate control limits carefully and include the costs of
committing type I and type II errors in such calculations.

Many researchers calculate tracking signal control limits by
assuming that the input noise is normally distributed. The main goal in
this paper is to answer the question “What is the effect on the control
limits if the input noise is not normally distributed, but rather follows
some other distribution such as Beta or Gamma?” The second question

that follows the first is “How will the performance of the tracking
signal be affected with these new control limits?”

Literature Review
Tracking signal methods have been used to check the bias of

forecasting methods or the change of a demand process over time. The
first form of a Tracking Signal (TS) was developed by Brown [1].
Brown proposed the Cumulative Sum test (CUSUM) as a tracking
signal to control inventory forecast. Briefly, the CUSUM TS is the ratio
of the cumulative errors to the Mean Absolute Deviation (MAD). This
method contains disadvantages, such as when the tracking signal goes
out of control limits because the forecasting system has gone out of
control, in which case the tracking signal may not return to its under
control state even though the forecasting system has returned back to
control. Additionally, even with an unbiased and accurate forecasting
system, the tracking signal may go outside the control limits in the
event that the MAD approaches zero and the cumulative error
continues to grow.

Trigg [2] updated Brown’s [1] tracking signal by developing a
smoothed error tracking signal. This was accomplished by dividing the
smoothed error (Et) by the MAD [2]. Then Trigg et al. [4] developed
adaptive exponential smoothing to improve the tracking signal
performance. Trigg et al. [4] proposed a method of varying the
response rate of the system according to the value of the tracking
signal. Trigg et al. [4] suggested the ratio of (Et) divided by smoothed
absolute error (MADt) to be used as the value of the smoothing
constant αt for the next period of forecasting. Brown later showed how
to calculate the best smoothing constant [5]. Alstrøm et al. [6]
evaluated the quality of the tracking signal by how well it performed in
an inventory control system. They depended on the ability of the
tracking signal to detect changes in the level, trend and seasons on five
different demand processes.
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Ravi [7] made the assumption that the demand values in different
periods are independent and identically distributed (IID), as well as
normal. He suggested a simple modification to the tracking signal to
fix the flaw with the common assumption that the demand values in
different periods are IID. This modified unsmoothed tracking signal
computed at the end of period it was named “AVGMADTSt,” and they
analyzed the AVGMADTSt for a range of N values, where N is the
number of periods in months. Deng et al. developed a Neuro-fuzzy
model to propose a new smoothed error tracking signal test [3].

CUSUM has been used in many applications, including medicine
and education. Biau et al. [8] used a CUSUM control chart to monitor
surgeon performance on knee replacement surgeries. Mele et al. [9]
used two time series models, the moving average model (MAM) and
the tracking signal model (TSM), for detecting oestrus and udder
health in dairy cows. Mele et al. [9] confirmed that the use of the TSM
was advantageous because it reduced the number of false positives in
healthy cows.

A tracking signal works as an alarm for any bias in the forecasting
system if the forecasting process is in control, and in another range if it
is out of control. Some researchers use three standard deviations [10]
for the control limits, and assume that the tracking signal is normally
distributed. Trigg [2] showed that the standard deviation of smoothed
error can be estimated from the relationship σ=1.2 MAD, where σ is
the standard deviation and the two sigma control limits for the

tracking signal are ±2.4 ( α2− α) , where α is the smoothing constant.
McClain [11] developed a new method to automatically monitor an
exponentially smoothed forecast. Ristroph [12] stated that
“Approximate confidence limits can be derived by first considering the
ratio of the smoothed error to its standard deviation”.

Some researchers have attempted to evaluate the performance of
various tracking signals. To the best of our knowledge, all prior studies
on tracking signals consider the input noise to be normally distributed.
Brown showed that the forecasting errors from exponential smoothing
are normally distributed if the input noise is also normally distributed
[1]. Moreover, many researchers [2,4,9-15] have considered the
forecasting errors from exponential smoothing to be normally
distributed since the input noise is normally distributed.

Batty [13] assumed that the distribution of the error and the
smoothed error was normal, and developed new equations to calculate
the MAD and the control limit of the tracking signal. McKenzie [10]
derived some statistical properties of tracking signals. McKenzie [10]
states that a tracking signal is “the ratio of two correlated random
variable each of which is the most recent element of a stochastic
process, it is extremely difficult to derive the distribution of the signal.”
McKenzie [10] suggests making some simplifying assumptions to
approximate the mean and variance, but these assumptions lead to
considering a normal distribution for the error. Alstrøm et al. [6]
ignored the real distribution of tracking signals and overestimated its
standard deviation. For Brown’s[1] TSM, the over-estimated standard

deviation is ��� = 0.88 2− �1− (1− �)2  , where Brown [1] used ± 3σTS

as control limits for the tracking signal, where α is the smoothing
constant. For Trigg’s [4] tracking signal, the standard deviation is��� = 0.88 �. McKenzie [10] used a different smoothing constant in
the forecasting system and showed that the use of an appropriate
smoothing constant greatly improves the performance of the tracking
signal compared to the CUSUM scheme.

None of the above researchers consider non-normal distributions
for the input noise. In this research we consider normal, Beta, and
Gamma distributions for the input noise, and we investigate the
distributions of the tracking signals. Additionally, we consider an
inventory system similar to the one used by Alstrøm et al. [6]. Matlab
R2013a was used to simulate the demand process and the inventory
system. Two different demand processes were considered. In the first
process, the demand is level with constant variance and is subject to
random changes. In the second process, the demand has a trend and its
mean changes during the study time period with the same pattern as
the first process.

As mentioned before, all past studies have considered the input
noise to be normally distributed. In this paper, we consider three
different distributions for the input noise and study their effects on the
tracking signal distribution and control limits. In the level demand
process, three different random data distributions were generated.
First, authors assumed that the input noise is normally distributed. The
second distribution is a Beta distribution with α=β=a, where a>1, as
parameters. Finally, the third distribution is a Gamma distribution.

The tracking signal suggested by Trigg [4] was used here. In the first
step authors attempted to fit some distributions to the tracking signal
value and build control limits based on them. Then, authors ran the
inventory model using the proposed control limits and those suggested
by Trigg [4] and Alstrøm et al. [6]. The effectiveness of the TSMs was
evaluated under in-control and out-of-control demand processes.

This paper is organized as follows. The methodology is presented in
Section 3. Subsection 3.1 describes the demand process, and the input
noise distributions are discussed in 3.2. Subsection 3.3 and 3.4
illustrate the forecasting models and tracking signal methods,
respectively. Subsection 3.5 introduces the inventory model and the
costs related to inventory forecasting. Section 4 presents the numerical
results of the simulated data and the distribution of tracking signal. A
discussion of the control limits for each follows. An approach to the
determination of control limits is proposed, and a sensitivity analysis
related to the smoothing parameter is presented. The conclusions and
recommendations for future research are provided in Section 5.

Methodology
The goal of this research was to study the distribution of a tracking

signal and build new monitoring schemes when the input noise
distribution is not necessarily normal. The input noise distributions
considered here are Normal (0, σ2), Beta, and Gamma. Authors
simulated these conditions by generating a level demand process
(explained in Subsection 3.1) using several input noise distributions
(described in Subsection 3.2). After generating random demand data
using the above input noise distributions, we used the simple
exponential smoothing method to forecast the demand (Subsection
3.3). We then used Trigg’s [2] TSM and Trigg et al. [4] adaptive
smoothing parameter method to monitor future forecast errors and
calculate the tracking signal for each period (Subsection 3.4). Next,
authors experimented with fitting several distributions to the tracking
signal and found new limits for controlling the forecast error using
those tracking signals (Subsection 3.5). Finally, authors used an
inventory cost model to evaluate the performance of the proposed
tracking signal limits and compared it to the other limits suggested by
Trigg et al.’s [4] and Alstrøm et al. [6] under in control and out of
control demand processes (Subsection 3.6).
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Demand process
To study the tracking signal distribution characteristics and evaluate

its performance while the underlying process is changing, the
following level demand process is considered here:�� =   �     +   �� (1)

Where xt is the demand at time t, μ is the mean demand, and εt is
the random error component. In this process, there may be random
shifts in mean demand over time. The distribution of the random error
component in the demand process will be discussed later in Subsection
3.2. The mean changes between various time periods, but remains fixed
within each period. Figure 1 shows an example of a level demand
process.

Figure 1: An example of a level demand process with shifts in mean
demand.

Input Noise Distribution
To study the effect of different input noise distributions on the

tracking signal distribution, we generated demand processes with three
different input noise distributions as follows:

Normal distribution
In most forecasting literature, the input noise distribution is

considered to have a normal distribution. In this paper, we too
consider the Normal (0,��2), distribution as one of the input noise
distributions to compare the results with those obtained using two
other distributions shown below.

Beta distribution
Since the Beta distribution is a general form of many different

distributions, here we used a Beta distribution with parameters α=β>1.

Gamma distribution
The Gamma distribution is also a general form for several other

distributions. Therefore, we considered a Gamma distribution with
parameters α and β for the input noise.

Forecasting Model
In the level demand process, simple exponential smoothing was

used as an effective forecasting method. The simple exponential
smoothing equation can be written as:�0 = �0 (2)�� = ��� − 1+ 1− � �� − 1                  � > 0  (3)

Where:

xo is the actual demand in the first period,

xt−1is the actual demand in period (t-1),

st is the demand forecast for period t (i.e., the value of the smoothed
statistic at the end of period t), and

α is the smoothing constant, 0α1.

Tracking Signal Method
As mentioned before, different tracking signal methods have been

developed to monitor the forecasting process. In this paper, we
consider the tracking signal introduced by Trigg [2] and the adaptive
smoothing parameter suggested by Trigg et al. [4]. Trigg’s tracking
signal method can be expressed as follows [2]:

Tracking Signal=Smoothed Error/Smoothed Absolute
Error=SE/SAE (4)��� = 1− � ��� − 1+   � *��� (5)���� = 1− � ���� − 1+   � * ���  (6)

Where SEt is the smoothed error at time t, SAEt is the smoothed
absolute error at time t, Ert is the error at time t, and βis the tracking
signal parameter. Trigg stated that if the process is in control then the
tracking signal will occur around zero within the range ±1 [4]. A large
tracking signal value indicates a bias in the forecast.

For the tracking signal parameter, β, we initially used the forecasting
parameter α. However, based on Gardner et al. [16] and Batty [13], the
tracking signal has a better performance if

β<α (7)

In order to study the best performance of a tracking signal, we also
performed a sensitivity analysis on the value of as a proportion of α,
and the results are presented in Section 3.

Trigg et al. [4] suggested the use of the following equation when the
process goes out of control to adapt the response rate:

α=modulus of tracking signal (8)

They suggested using the tracking signal value as the forecasting
parameter to adjust the next period’s forecasting. In this paper, we used
this method when there was a shift in the mean demand and the
tracking signal model showed the process was out of control.

Tracking Signal Distribution and Control Limits
The methods explained in Subsection 3.4 were used to calculate the

tracking signal for each period when the process was under control
and there were no shifts in the mean demand. In the next step, we
analyzed the tracking signal distribution. We fit several distributions
(Normal, Beta, Gamma, Weibull, and Exponential) to either the
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tracking signal data or their absolute value. The Chi-square test was
applied to test the goodness of fit of these distributions. As shown in
Section 4, Chi-square test rejected the goodness of fit for these
distributions.

Since we could not fit a specific distribution to the TS values, we
tried to estimate its variance and build the control limits based on this
estimated variance. Based on Trigg et al. [4], Brown [1], and Alstrøm et
al. [6], there is a relationship between the TS constant and its variance.

Trigg et al. [4] provided the following approximate value for the
tracking signal’s standard deviation:�⌢TS = 1.5 *   �2− �   (9)

Alstrøm et al. [6] provided the following somewhat overestimated
value for the tracking signal’s standard deviation:�⌢TS = 0.88 * �   (10)

where β is the smoothing parameter for tracking signal.

We tried different relationships in our simulation models and used
regression to find the best relationship between the variance of the
tracking signal and its corresponding smoothing parameter. Based on
our simulation models, the standard deviation of the tracking signal
was estimated as:�⌢TS =  .85*β +  .125 (11)

In the next step, the estimated standard deviation was used to set
control limits for the tracking signal. We then established a monitoring
model for the future demand forecast. We used an inventory model
(Subsection 3.6) to compare this suggested model with Trigg et al. [4]
and Alstrøm et al. [6]. Next, we generated some shifts in the process
level and evaluated the performance of the tracking signal by
calculating the inventory costs.

Inventory Models
The ability of the tracking signal method to detect shifts in the levels

and trends is measured by the changes in inventory costs. Here we
used the Wilson Formula and a (B, Q) system, which consists of an
order quantity and a reordering point. The order quantity is calculated
using the Economic Order Quantity (EOQ) formula, and is updated
each month since the forecasted demand changes each month.� = 2���   (12)

Where A is the ordering cost per order, D is the average forecasted
demand for the next period, and H is the holding cost per unit of
product.

The order point should be large enough to cover stock-outs during
the lead-time. This can be determined using the following inventory
theory equation:

B=Safety Stock+Mean Demand During Lead − Time (13)

Safety stock can be calculated using a safety factor and the variance
of demand during the lead-time. Here we do not assume a normal
distribution for demand during the lead-time. Instead, we use the
forecasted lead-time demand and update the order point each month
based on it.

Finally, the following equation is used to calculate the total cost:

Total Cost=Holding Cost+Ordering Cost+Stock Out Cost (14)

Numerical Results

Tracking signal distribution and control limits
In this study, we consider three cases of different input noise

distributions. However, we generated the same level demand process
for each case. The length of the process ranged between 40 and 400
periods, and the first 20 periods were used to find the best smoothing
forecast constant, α, which minimizes the mean squared error (MSE).

We calculated the tracking signal for these periods and attempted to
fit a distribution to them. Figure 2 shows the results of fitting
distributions for 5,000 runs with normal input noise.

Figure 2: The percentage of each fitted distributions and the total
number of fitted distributions among 5,000 runs for normal (0, 0.5)
input noise.

Figure 2 shows the percentages of different fitted distributions and
also the percentage of the total number of fitted distributions when the
input noise is normal. For example, when the process length is 100
periods, among 5,000 runs, 38% of the time the Chi-squared test does
not reject the goodness of fit of a Beta distribution. It does not reject
the goodness of fit for Normal, Weibull, and Gamma distributions
26%, 17%, and 15% of the time, respectively. In general, when the input
noise is normally distributed and the process length is 100 months,
95% of the time the Chi-squared test does not reject the goodness of fit
for some distribution.

Figure 3: The percentage of each fitted distribution and the total
number of fitted distributions among 5,000 runs for Beta (2, 2)
input noise.

Figure 2 also shows that the total number of fitted distributions
decreases as the number of periods increases. Normal distribution is at
best only 45% of the total runs, and this number decreases as the
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number of period’s increases. In other words, assuming a normal
distribution for the tracking signal is not a realistic assumption even
when the input noise is normal.

Figures 3 and 4 show the same results for Beta (2, 2) and Gamma (8,
0.25) input noise, respectively. These figures indicate that when the
input noise is not normal, the result is similar. These figures show that
it is hard to fit a particular distribution to the tracking signal, especially
as the number of runs increases.

Figure 4: The percentage of each fitted distribution and the total
number of fitted distributions among 5,000 runs for Gamma (8,
0.25) input noise.

In-control process (no shift in the demand process)
We then tried to find a good estimate of the tracking signal variance

to build control limits around. As explained in Subsection 3.5, the
following relationship was used to find the variance of tracking signal:�⌢TS =  .85*β +  .125 (13)The control limits are defined as±3 �⌢��.

To test the capabilities of this monitoring method, we ran the
simulated inventory model 5,000 times for each of the following cases
and compared the cost of different methods.

Case 1: not using TS and only use forecasted demand.

Case 2: using control limits to monitor the process [4].

Case 3: using control limits to monitor the process [6].

Case 4: using suggested control limits.

Case 5: using the real demand as the forecast to minimize cost for
the cost index.

The parameters for the inventory simulation were as follows:
Holding Cost=$25 per unit, Backorder Cost=$35 per unit, and
Ordering Cost=$100 per order, and the lead time is 2 periods Figure 5.

In this case, there is no shift in mean demand and the process is
under control. Figures 5-7 present the mean inventory costs in 5,000
runs for each method with different input noise distributions. To have
a better comparison, we considered a case where real demand was used
as the forecasted one and the forecast was 100% accurate. This
minimum cost was used to find an index for the other methods' costs.

Figures 5-7 show that there is not much of a difference between the
TSMs when the process is in control, as the range of the index is very
narrow. For the normal noise, Figure 5 shows that using the forecast
method without the tracking signal has a cost index of 103.37 and
other methods are grouped around this value. The Trigg et al. [4] and

Alstrøm et al. [6] methods overlap. The proposed method moves closer
to the line and shows slightly lower costs, but the difference is
negligible. Figures 6 and 7 show similar results. The difference between
methods and not using a tracking signal is small. Since the process is in
control and there is no shift in mean demand, this result was expected.

Figure 5: The cost index of different tracking signals when the noise
is Normal (0, 0.5) and the process is in control.

Figure 6: The cost index of different tracking signals when the noise
is Beta (2, 2) and the process is in control.

Figure 7: The cost index of different tracking signals when the noise
is Gamma (8, 0.25) and the process is in control.

Based on Alstrøm et al. [6] and Batty [13] the tracking signal has a
better performance if β<α. Here we set β as a percentage of α, and the
horizontal axis shows this percentage. Figure 6 indicates that when the
noise is normal, the proposed method works better than the others
when0.30α<β<0.65α. When the input noise is Beta or Gamma
distributed, the proposed method shows lower costs when
0.40α<β<0.70α. However, since the process is in control, different
values of β do not affect the cost significantly. In the next subsection,
we generate some shifts to the mean demand and study the effect of the
β value.

Out-of-control process (shifts in the demand process)
Until now, the process was assumed to be under control. Now we

need to check the tracking signal’s ability to detect changes in the
underlying process. To do this, we shifted the mean for several periods
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and then reverted it back to its original value. Two different shifts were
considered here. The first shift was twice the mean demand, and the
second shift was half of the mean demand. Then all the steps followed
in the previous subsection were repeated, and the results are shown in
Figures 8-10.

Figure 8: The cost index of different tracking signals when the noise
is Normal (0, 0.5) and mean demand shifts.

Figure 9: The cost index of different tracking signals when the noise
is Beta (2, 2) and there are shifts in mean demand.

Figure 10: The cost index of different tracking signals when the
noise is Gamma (8, 25) and there are shifts in mean demand.

Figure 8 shows the case where the underlying input noise has a
normal distribution. In this case, using the forecasting method without
a tracking signal can raise the cost index to 130%, while using the
proposed control limits can reduce costs to just over 105%. The lower
costs are in the range of 0.55 α<β<0.75 α The Trigg et al. [4] and
Alstrøm et al. (1996) control limits are very close. As the value of β as a
percentage of α increases, the difference in cost for different methods
becomes more prominent.

Figure 9 indicates similar results for the Beta distribution. Using
tracking signal methods can reduce the costs by up to 30%. If the
tracking signal is constant and 0.35α<β<0.65α, the cost index can be
reduced to 105%. Here again, the Trigg et al. [4] and Alstrøm et al. [6]

models produce similar results and the proposed control limits result
in lower costs.

For the Gamma input noise distribution, Figure 10 shows up to 25%
decrease in costs when using the proposed control limits. The best
savings occur in the range of 0.60α<β<0.95α. In general,
0.60α<β<0.70α tends to decrease overall inventory costs.

Conclusion
In this paper we considered different distributions for the input

noise and studied the distribution of a tracking signal. We showed that
assuming a normal distribution for the tracking signal is not realistic
even when the noise is normal. Because of the dependency of tracking
signal elements, and since there is no specific distribution for it, we
used simulation to estimate the best value for the standard deviation
and suggested ±3 �⌢�� as the control limits. We compared this value
with those suggested by other results reported in the literature. Results
in Section 3 show that the proposed limits work better when the
process is under control and also when there are different sized shifts
in mean demand.

We also studied different values for the tracking signal smoothing
parameter and analyzed the resulting inventory costs. For the proposed
method, we found that using a value between 60-70% of the
forecasting parameter produces the minimum cost. Future researchers
may wish to consider other demand processes, such as the trend line
demand process. Our work could also be expanded upon to consider
seasonality in the demand process.
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