Journal of

Applied \& Computational Mathematics

Folding of Digraphs

Elkholy EM ${ }^{1 *}$, Sakr IA ${ }^{2}$ and Ahmed \mathbf{H}^{2}

${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Shoubra Engineering, Banha University, Banha, Egypt

Abstract

In this paper we introduced the definition of dibipartite graphs, complete dibipartite graphs and digraph folding, and then we proved that any dibipartite graph can be folded but the complete dibiparatite graph can be folded to an arc. By using adjacency matrices we described the digraph folding.

Keywords: Digraphs; Dibipartite graphs; Complete dibipartite graphs; Folding of dibipartite graphs; Adjacency matrices

Introduction

1) A digraph D consists of a set of elements, called vertices and a list of ordered pairs of these elements, called arcs. The set of vertices is called the vertex set of D, denoted by $V(D)$, and the list of arcs is called the arc list of D, denoted by $A(D)$. If v and ware vertices of D, then an arc of the form vw is said to be directed from v to w [1].
2) A dibipartite graph is a digraph whose vertex set can be split into sets A and B in such a way that each arc (directed edge) of the digraph runs from a vertex in A to a vertex in B (or a vertex of B to a vertex of A). we can distinguish the vertices in A from those in B by drawing the former in black and the latter in white, so that each arc is incident from a black (or white) vertex to a white (or black) vertex (Figure 1).
3) A complete dibipartite graph is a dibipartite graph in which each black (or white) vertex is joined to each white (or black) vertex by exactly one arc. The complete dibipartite graph with r black vertices and s white vertices is denoted by $K_{r \text { s }}$. We call a complete dibipartite graph of the form $K_{1, s}$ star sink or star source diagraphs (Figure 2).

D_{1}

D_{2}

Figure 1: Arc incidence from a black (or white) vertex to a white.

4) Let D_{1} and D_{2} be digraphs and $f: D \rightarrow D_{2}$ is a continous function. Then f is called a digraph map if,
a) For each vertex $v \in V\left(D_{1}\right), f(v)$ is a vertex in $V\left(D_{2}\right)$.
b) For each $\operatorname{arc} \mathrm{e} \in A\left(\mathrm{D}_{1}\right)$, $\operatorname{dim}(\mathrm{f}(\mathrm{e})) \leq \operatorname{dim}(\mathrm{e})$.

Folding of Dibipartite Graphs

Definition

Let D_{1} and D_{2} be simple digraphs, we call a digraph map $f: D \rightarrow D_{2}$ a digraph folding if f maps vertices to vertices and arcs to arcs, i.e., for each $\mathrm{v} \in \mathrm{V}\left(\mathrm{D}_{1}\right), \mathrm{f}(\mathrm{v}) \in V\left(\mathrm{D}_{2}\right)$ and for each $\mathrm{e} \in A\left(\mathrm{D}_{1}\right), \mathrm{f}(\mathrm{e}) \in \mathrm{A}\left(\mathrm{D}_{2}\right)$.

If the digraph contains loops, then the digraph folding must send loops to loops but of the same direction. We denote the set of diagraph foldings between diagraphs D_{1} and D_{2} by $\mathrm{D}\left(\mathrm{D}_{1}, D_{2}\right)$ and the set of diagraph foldings of D into itself by $Đ(\mathrm{D})$. In the case of a diagraph folding f the set of singularities, $\Sigma \mathrm{f}$, consists of vertices only [2]. The diagraph folding is non-trivial if $\sum \mathrm{f} \neq \emptyset$. In this case the no.V $\left(\mathrm{f}\left(\mathrm{D}_{1}\right)\right) \leq$ no.V $\left(\mathrm{D}_{1}\right)$, also no.A $\left(\mathrm{f}\left(\mathrm{D}_{1}\right)\right) \leq$ no.A $\left(\mathrm{D}_{1}\right)$.

Example

Let D be the diagraph shown in Figure 3.Then the graph map $\mathrm{f}: D \rightarrow$ d defined by $f\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{4}\right)=\left(\mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right)$ and $\mathrm{f}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right)=\left(\mathrm{e}_{4}, \mathrm{e}_{3}, \mathrm{e}_{3}\right.$, $\left.e_{4}, e_{5}\right)$ is a diagraph folding. The image $f(D)$ is shown in Figure 3. From now on the omitted vertices or arcs will be mapped into themselves.

Theorem

Any dibipartite graph D can be folded.

Proof:

Let D be a dibipartite graph, then the vertex set $\mathrm{V}(\mathrm{D})$ can be split into two sets A and B. Let $f: D \rightarrow D$ be a digraph map such that f maps vertices of A to vertex of A, say u, and vertices of B to a vertex of B, say v. Thus each arc e will be mapped to the $\operatorname{arc} f(e)=(u, v)$, where $u \in V(A)$ and $v \in V(B)$ and hence f is a digraph folding.

[^0]

Figure 3: Diagraph.

Figure 4: Dibipartite graph.

Example

Let D_{1} be the dibipartite graph shown in Figure 4. A digraph folding $f \in Ð\left(D_{1}\right)$ can be defined as follows $f\left(v_{1}, v_{3}, v_{4}\right)=\left(v_{5}, v_{2}, v_{2}\right)$ and $\mathrm{f}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}, \mathrm{e}_{6}\right)=\left(\mathrm{e}_{4}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{4}\right)$. The image $\mathrm{f}\left(\mathrm{D}_{1}\right)=\mathrm{D}_{2}$ is shown in Figure 4.

Theorem

Any complete dibipartite graph D can be folded to an arc.

Proof:

Let D be a complete dibipartite graph with vertex set $\mathrm{V}(\mathrm{D})=\left\{v_{1}, v_{2}, \ldots \ldots, v_{r_{1}}, v_{r_{1}+1}, \ldots, v_{r}\right\}$ This set again can be split into two sets, $\mathrm{A}=\left\{v_{1}, v_{2}, \ldots, v_{r_{1}}\right\}$ and $\mathrm{B}=\left\{v_{r_{1}+1}, \ldots ., v_{r}\right\}$, such that each vertex of A is joined to each vertex of B by exactly one arc.

Thus

$$
A(D)=\left\{\left(v_{1}, v_{i+1}\right),\left(v_{1}, v_{i+2}\right), \ldots,\left(v_{1}, v_{r}\right),\left(v_{2}, v_{v_{1+1}+1}\right),\left(v_{2}, v_{i+1}\right), \ldots, \ldots,\left(v_{2}, v_{r}\right), \ldots, \ldots,\left(v_{r}, v_{r+1}\right),\left(v_{1}, v_{k_{1+1}+1}\right) \ldots, \ldots,\left(v_{1}^{1}, v_{r}\right)\right\}
$$

Now let $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$ be a diagraph map defined by
$f\left(v_{k}\right)=\left\{\begin{array}{l}v_{1}, \text { if } k=1, \ldots ., r \\ v_{r_{1}+1}, \text { if } k=r_{1}+1, \ldots \ldots, r\end{array}\right.$
Thus the image of any arc of $\mathrm{A}(\mathrm{D})$ will be the arc $\left(v_{1}, v_{i_{i+1}}\right)$. Of course, this map is a digraph folding.

Example

Consider the complete dibipartite graph $\mathrm{K}_{2,4}$ shown in Figure 5. A diagraph folding f of $K_{2,4}$ into itself may be defined as follows $\mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right)=\left(\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{3}, \mathrm{v}_{3}\right), \mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{e}_{8}, \mathrm{i}=1, \ldots, 8$. This may be done by the composition of the two digraph folding f_{1} and f_{2} shown in Figure 5 .

The Diagraph Folding and Adjacency Matrix

Definition

Let D be a diagraph without loops, with n vertices labeled $1,2,3, \ldots, \mathrm{n}$. The adjacency matrix $M(D)$ is the nxn matrix in which the entry in row i and column j is the number of arcs from vertex i to vertex j [1]. For example if D is the diagraph shown in Figure 6, then the matrix M(D) will be given by

$$
M(D)=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned} \left\lvert\,\left(\begin{array}{cccc}
v_{1} & v_{2} \\
0 & 0 & v_{3} & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)\right.
$$

Note that every entry on the main diagonal (top- left to bottomright) is $\mathbf{0}$, since the digraph has no loops.

Proposition

Let D be a connected digraph without loops with n vertices. Then a digraph folding of D into itself may be defined, if there is any, as a digraph map f of D to an image $f(D)$ by mapping:

1) The multiple arcs into one of its arc.
2) a. The vertex v_{i} to the vertex v_{j} if the numbers appearing in the adjacency matrix in the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows (or columns) are the same.
b. The vertex v_{i} to the vertex v_{j} if the entries of the $i^{\text {th }}$ and $j^{\text {th }}$ rows are zeros and if the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ columns are the same, or there exists a row k which has numbers 1 in the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ columns.
3) a. The $\operatorname{arc}\left(v_{i}, v_{k}\right)$ to the $\operatorname{arc}\left(v_{j}, v_{k}\right)$ if the $i^{\text {th }}$ and $j^{\text {th }}$ rows (or columns) are the same
b. The $\operatorname{arc}\left(v_{i}, v_{j}\right)$ to the $\operatorname{arc}\left(v_{i}, v_{k}\right)$ if the $j^{\text {th }}$ and $k^{\text {th }}$ columns (or rows) are the same.

In general the $\operatorname{arc}\left(v_{i}, v_{j}\right)$ will be mapped to the $\operatorname{arc}\left(v_{k}, v_{1}\right)$ if v_{i} maped to v_{k} and v_{j} maped to v_{1}.

Examples

(a) Let D_{1} be the digraph shown in Figure 7.

The adjacency matrix $M\left(D_{1}\right)$ is given by Figure 7 .
The adjacency matrix $\mathrm{M}(\mathrm{D} 1)$ is given by

Figure 7: Digraph 7.

Figure 8: Folding the multiple arcs.

$$
M\left(D_{1}\right)=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned}\left(\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then we can fold first D_{1} by folding the multiple arc into itself to get the digraph D_{2}.In this case $M\left(D_{2}\right)$ is nothing but $M\left(D_{1}\right)$ after replacing
the number 2 by the number 1 . Then a digraph folding $g \in Đ\left(D_{2}\right)$ can be defined by using $M\left(D_{2}\right)$ by mapping the vertex v_{1} to the vertex v_{3} since the first and the third row of $\mathrm{M}\left(\mathrm{D}_{2}\right)$ have the same entries. Thus the $\operatorname{arcs}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{4}\right)$ will be mapped to the $\operatorname{arcs}\left(\mathrm{v}_{3}, \mathrm{v}_{2}\right)$ and $\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right)$ respectively, since the first and the third row are the same.
(b) Let D be the digraph shown in Figure 8.

The adjacency matrix $M(D)$ is given by

$$
M\left(D_{1}\right)=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5} \\
& v_{6}
\end{aligned} \left\lvert\,\left(\begin{array}{cccccc}
v_{1} \\
0 & 0 & v_{3} & v_{4} & 0 & 1 \\
v_{5} & v_{6} \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)\right.
$$

Then a digraph folding $\mathrm{g}: \mathrm{D} \rightarrow \mathrm{D}$ can be defined by using M (D) by mapping the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}$ and v_{5} to $\mathrm{v}_{3}, \mathrm{v}_{4}$ and v_{6} respectively. Also the arcs $\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}_{5}\right)$ will be mapped to the arcs $\left(\mathrm{v}_{4}, \mathrm{v}_{3}\right)$ and $\left(\mathrm{v}_{3}, \mathrm{v}_{6}\right)$ respectively since $g\left(v_{1}\right)=v_{3^{\prime}}, g\left(v_{2}\right)=v_{4}, g\left(v_{5}\right)=v_{6}$. Also the image of the arc $\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)$ is $\left(\mathrm{v}_{4}, \mathrm{v}_{3}\right)$ since the first and third columns are the same. Finally the image of the $\operatorname{arc}\left(\mathrm{v}_{2}, \mathrm{v}_{6}\right)$ is $\left(\mathrm{v}_{4}, \mathrm{v}_{6}\right)$ since the second and fourth rows are the same, and so on. See the adjacency matrix M (D).

References

1. Wilson RJ, Watking JJ (1990) Graphs: An introductory approach, John Wiley and Sons, Inc.
2. El-kholy E, Al-Esawy A (2005) Graph folding of some special graphs. J math and statistics 1: 66-70.

[^0]: *Corresponding author: Elkholy EM, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, Tel: +20 40 3344352; E-mail: pro.entsarelkholy809@yahoo.com

 Received April 11, 2015; Accepted June 13, 2015; Published June 18, 2015
 Citation: Elkholy EM, Sakr IA, Ahmed H (2015) Folding of Digraphs. J Appl Computat Math 4: 226. doi:10.4172/2168-9679.1000226
 Copyright: © 2015 Elkholy EM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

