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Nomenclature

a : radius of the cylinder

fC : skin friction coefficient

Da : Darcy parameter

Γ : inertia coefficient

fS : non-dimensional velocity slip parameter

TS : non-dimensional thermal slip parameter

 f : non-dimensional steam function

g : acceleration due to gravity

Gr : Grashof number

K : thermal diffusivity

0N : velocity slip factor

0K : thermal slip factor

Nu : Local Nusselt number

Pr : Prandtl number

T : temperature

u, v: non-dimensional velocity components along the x- and y- 
directions, respectively

x, y: non-dimensional Cartesian coordinates along the surface of 
the cylinder and normal to it, respectively

Greek Symbols
α : thermal diffusivity

Ω : the coefficients of thermal expansion 

β : the non-Newtonian Casson parameter

Φ : the azimuthal coordinate

η : the dimensionless radial coordinate

µ : dynamic viscosity

 ν : kinematic viscosity

θ : non-dimensional temperature

 ρ : density

ξ : the dimensionless tangential coordinate

ψ : dimensionless stream function

Subscripts

w: conditions on the wall

∞ : free stream conditions

Introduction
Non-Newtonian transport phenomena arise in many branches of 

chemical and materials processing engineering. Such fluids exhibit 
shear-stress-strain relationships which diverge significantly from the 
Newtonian (Navier-Stokes) model. Most non-Newtonian models 
involve some form of modification to the momentum conservation 
equations. These include power-law, thixotropic and viscoelastic fluids 
[1]. Such rheological models however cannot simulate the micro 
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Abstract
In the Present study, the steady flow and heat transfer of Casson fluid from a permeable horizontal cylinder in 

the presence of slip condition in a non-Darcy porous medium is analyzed. The cylinder surface is maintained at a 
constant temperature. The boundary layer conservation equations, which are parabolic in nature, are normalized into 
non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite-difference 
scheme. Increasing the velocity slip parameter is found to decrease the velocity and boundary layer thickness and 
increases the temperature and the boundary layer thickness. The velocity decreases with the increase the non-
Darcy parameter and is found to increase the temperature. The velocity increases with the increase the Casson fluid 
parameter and is found to decrease the temperature. The Skin-friction coefficient and the local Nusselt number are 
found to decrease with the increase in velocity and thermal slip parameters respectively.
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structural characteristics of many important liquids including polymer 
suspensions, liquid crystal melts, physiological fluids, contaminated 
lubricants, etc.

The steady flow of non-Newtonian fluids in the presence of heat 
transfer is an important research area due to its wide use in food 
processing, power engineering, and petroleum production and in many 
industries for example polymers melt and polymer solutions employed 
in the plastic processing. Several fluids in chemical engineering, 
multiphase mixtures, pharmaceutical formulations, china clay and 
coal in water, paints, synthetic lubricants, salvia, synovial fluid, jams, 
soups, jellies, marmalades, sewage sludge etc are non-Newtonian. 
The constitutive relations for these kinds of fluids give rise to more 
complex and higher order equations than the Navier-Stokes equations. 
Considerable progress even through has been made on the topic by 
using different models of non-Newtonian fluids [2-11].

Transport processes in porous media can involve fluid, heat and 
mass transfer in single or multi-phase scenarios. Such flows with 
and without buoyancy effects arise frequently in many branches of 
chemical engineering and owing to their viscous-dominated nature 
are generally simulated using the Darcy model. Applications of such 
flows include chip-based micro fluidic chromatographic separation 
devices [12], dissolution of masses buried in a packed bed [13], heat 
transfer in radon saturating permeable regimes [14], flows in ceramic 
filter components of integrated gasification combined cycles (IGCC) 
[15], separation of carbon dioxide from the gas phase with aqueous 
absorbents (water and di-ethanolamine solution) in micro porous 
hollow fibre membrane modules [16], and monolithic adsorbent flows 
consisting of micro-porous zeolite particles embedded in a polyamide 
matrix [17]. Porous media flow simulations are also critical in 
convective processes in hygroscopic materials [18], electro remediation 
in soil decontamination technique wherein an electric field applied to 
a porous medium generates the migration of ionic species in solution 
[19], reactive transport in tubular porous media reactors [20], perfusive 
bed flows [21], situ gelation of biopolymers in porous media which arise 
in petroleum recovery and in subsurface heavy metal stabilization [22].

Previous studies indicate that not much has been presented yet 
regarding Casson fluid. This model [23-25] in fact is a plastic fluid that 
exhibits shear thinning characteristics and that quantifies yield stress and 
high shear viscosity. Casson fluid model is reduced to a Newtonian fluid 
at very high wall shear stresses, when wall stress is much greater than 
yield stress. This fluid has good approximations for many substances 
such as biological materials, foams, molten chocolate, cosmetics, nail 
polish, some particulate suspensions etc. The boundary layer behaviour 
of viscoelastic fluid has technical applications in engineering such as 
glass fiber, paper production, manufacture of foods, the aerodynamic 
extrusion of plastic sheets, the polymer extrusion in a melt spinning 
process and many others.

The objective of the present paper is to investigate the steady 
boundary-layer flow and heat transfer of Casson fluid past a 
horizontal cylinder in a non-Darcy porous medium. Mathematical 
modelling through equations of continuity and motion leads to a 
nonlinear differential equation even after employing the boundary 
layer assumptions. The velocity and thermal slip conditions along 
with conservation law of mass, momentum and energy completes 
the problems formulation for velocity components and temperature. 
The considered slip conditions especially are important in the non-
Newtonian fluids such as polymer melts which often exhibit wall slip. 
It has been experimentally verified that fluid possesses non-continuum 
features such as slip flow when the molecular mean free path length 

of fluid is comparable to the distance between the plates as in Nano 
channels/micro channels [26].

Mathematical Analysis
The steady, laminar, two-dimensional, viscous, incompressible, 

buoyancy-driven convection heat transfer flow from a horizontal 
permeable circular cylinder embedded in a Casson non-Newtonian 
fluid. Figure 1 shows the flow model and physical coordinate system. 
The x-coordinate is measured along the circumference of the horizontal 
cylinder from the lowest point and the y-coordinate is measured normal 
to the surface, with ' 'a  denoting the radius of the horizontal cylinder. 

/x aΦ = is the angle of the y-axis with respect to the vertical (0 )π≤ Φ ≤ . 
The gravitational acceleration, 'g '  acts downwards. Both the horizontal 
cylinder and the fluid are maintained initially at the same temperature. 
Instantaneously they are raised to a temperature wT  ,T∞>  the ambient 
temperature of the fluid which remains unchanged.

We also assume the rheological equation of Casson fluid, reported 
by Mustafa et al. [27] and recently Nadeem et.al [28] is:

 1/ 1/ 1/
0

n n nτ τ µγ= + 

                    (1)
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(2)

Where µ  is the dynamic viscosity, Bµ  the plastic dynamic viscosity 
of non-Newtonian fluid, ij ije eπ =  and ije  is the ( ), thi j  component 
of deformation rate, π  denotes the product of the component of 
deformation rate with itself, cπ  shows a critical value of this product 
based on the non-Newtonian model, and yp  the yield stress of fluid. 
We consider a steady state flow. An anonymous referee has suggested 
considering the value of n=1. However, in many applications this value 
is n ≫ 1.

In line with the approach of Yih [29] and introducing the boundary 
layer approximations, the governing conservation equations can be 
written as follows:
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Figure 1: Physical Model and Coordinate System.
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where u  and v  are the velocity components in the x - and y - 
directions respectively, ν -the kinematic viscosity of the conducting 
fluid, β -is the non-Newtonian Casson parameter, α -the thermal 
diffusivity, T -the temperature , K  and   Γ -the respective permeability 
and the inertia coefficient of the porous medium, Ω  is the coefficients 
of thermal expansion,  T∞ -the free stream temperature.  

The boundary conditions are prescribed at the cylinder surface and 
the edge of the boundary layer regime, respectively as follows:

At  0 0
10, 1 , ,w w

u Ty u N v V T T K
y yβ

  ∂ ∂
= = + = − = +  ∂ ∂ 

 

As , 0,y u T T∞→∞ → →                     (6)

Where 0N  the velocity is slip factor and 0K  is the thermal slip 
factor. For 0 00N K= = , one can recover the no-slip case.  

The stream function ψ  is defined by u yψ= ∂ ∂  and v xψ= −∂ ∂ , 
and therefore, the continuity equation is automatically satisfied. In 
order to write the governing equations and the boundary conditions 
in dimensionless form, the following non-dimensional quantities are 
introduced. 
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In view of non-dimensional quantities (7), Equations (3)-(5) reduce 
to the following coupled, nonlinear, dimensionless partial differential 
equations for momentum and energy for the regime

( ) 2

1/2

1 1 sin1 1 f ff ff f f f f
DaGr
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β ξ ξ ξ
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                   (9)

The transformed dimensionless boundary conditions are:

At  10, , 1 (0), 1 (0)f Tf S f S f Sη θ θ
β

 ′ ′′ ′= = = + = + 
 

 
 

As , 0, 0fη θ′→∞ → →                  (10)

In the above equations, the primes denote the differentiation 
with respect to η , the dimensionless radial coordinate, and ξ  is the 
dimensionless tangential coordinate, Λ -the local inertia coefficient 
(Forchheimer parameter), Da - the Darcy parameter and Gr  is the 

Grashof (free convection) parameter. Pr ν
α

=  is the Prandtl number, 
1

4
0

f
N GrS

a
=  and 

1
4

0
T

K GrS
a

=  are the non-dimensional velocity 

and thermal slip parameters respectively and wf  is the blowing/suction 
parameter. 0wf <  for 0wV >  (the case of blowing), and 0wf >  for   

0wV < (the case of suction). Of course the special case of a solid cylinder 
surface corresponds to 0wf = . 

The engineering design quantities of physical interest include the 

skin-friction coefficient and Nusselt number, which are given by:

3
4 11 (0)fC Gr fξ

β
−   ′′= + 

 
                 (11)

4
(0)Nu

Gr
θ ′= −                        (12) 

Numerical Solution
In this study the efficient Keller-Box implicit difference method has 

been employed to solve the general flow model defined by equations 
(8)-(9) with boundary conditions (10). Therefore a more detailed 
exposition is presented here. This method, originally developed for 
low speed aerodynamic boundary layers by Keller [30], and has been 
employed in a diverse range of coupled heat transfer problems. These 
include Ramachandra Prasad et al. [31-32] and Beg et al. [33].

Essentially 4 phases are central to the Keller Box Scheme. 

These are:

a. Reduction of the Nth order partial differential equation system to 
N first order equations

b. Finite Difference Discretization

c. Quasilinearization of Non-Linear Keller Algebraic Equations

d. Block-tridiagonal Elimination of Linear Keller Algebraic 
Equations

Phase a: Reduction of the Nth order partial differential equation 
system to N first order equations

Equations (8)-(9) subject to the boundary conditions (10) are first 
written as a system of first-order equations. For this purpose, we reset 
Equations (8)-(9) as a set of simultaneous equations by introducing the 
new variables u, vandt:

f u′ =                     (13)

f v′′ =                  (14)

tθ ′ =                        (15)

 ( ) 2
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DaGr
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    (16)  
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                   (17) 

Where primes denote differentiation with respect to η . In terms of 
the dependent variables, the boundary conditions become:

 ( )10 : 1 0 , , 1

: 0, 0

wAt u f f f s

As u s

η
β

η

  ′′= = + = = 
 

→∞ → →

            (18)

Phase b: Finite difference discretization

A two dimensional computational grid is imposed on the ξ -η 
plane as sketched in Figure 2. The stepping process is defined by: 

0 10, , 1, 2,..., ,j j j Jh j Jη η η η η− ∞= = + = ≡              (19) 
 

0 10, , 1, 2,...,n n
nk n Nξ ξ ξ −= = + =                   (20)
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Where nk  and jh  denote the step distances in ξ  and η  directions 

respectively.

If n
jg  denotes the value of any variable at ( ), n

jη ξ , then the variables 
and derivatives of equations. (13) – (17) at  ( )1/2

1/2 , n
jη ξ −
−  are replaced 
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We now show the finite-difference approximation of equations. (13) 
– (17) for the mid-point ( )1/2 , n

jη ξ− , below
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Where we have used the abbreviations
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The boundary conditions are

 0 0 00, 1, 0, 0n n n n n
J Jf u uθ θ= = = = =                (32)

Phase c: Quasilinearization of non-linear Keller algebraic 
equations

If we assume 1 1 1 1 1, , , ,n n n n n
j j j j jf u v s t− − − − −  to be known for 0 j J≤ ≤ , Equations 

(24)–(28) are a system of 5 5J +  equations for the solution of 5 5J +  
unknowns , , , , , 0,1, 2,3...n n n n n

j j j j jf u v s t j J= . This non-linear system 
of algebraic equations is linearized by means of Newton’s method as 
explained in [31].

Phase d: Block-tridiagonal elimination of linear Keller algebraic 
equations

The linear system (24)-(28) can now be solved by the block-
elimination method. The linearized difference equations of the system 
have a block-tridiagonal structure. Commonly, the block-tridiagonal 
structure consists of variables or constants, but here, an interesting 
feature can be observed that is, for the Keller-box method, it consists of 
block matrices. The complete linearized system is formulated as block 
matrix system, where each element in the coefficient matrix is a matrix 
itself. Then, this system is solved using the efficient Keller-box method 
as developed by Cebeci and Bradshaw [34]. The numerical results are 
affected by the number of mesh points in both directions. After some 
trials in the η-direction a larger number of mesh points are selected 
whereas in the   direction significantly less mesh points are utilized. 

maxη  has been set at 15 and this defines an adequately large value at 
which the prescribed boundary conditions are satisfied. maxξ  is set at 
3.0 for this flow domain. 

Results and Discussions
Comprehensive solutions have been obtained and are presented in 

figures 3-24. The numerical problem comprises 2 independent variables 
( , )ξ η , 2 dependent fluid dynamic variables ( ),f θ  and 8thermo physical 
and body force control parameters f TPr,  S ,  S , , , , ,wf Daβ ξ Λ . In the present 
computations, the following default parameters are prescribed (unless 
otherwise stated): Pr 10, 0.5, 1.0, 1.0, 0.5, 1.0f T wS S fβ ξ= = = = = =  

 η    Boundary layers 
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0.1 0.1Da and= Λ = . In addition we also consider the effect of stream 
wise coordinate location on flow dynamics. The value of the parameter 

ξ  is extremely important since in two extreme cases it corresponds 
to stagnation-point flows. For  ξ ∼ 0, the location is in the vicinity of 
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the lower stagnation point on the sphere. The governing dimensionless 
equations (8) to (9) in this case reduce to the following ordinary 
differential equations:

2
1

2

1 11 0v fv u u
DaGr

θ
β

   ′+ + − − + =  
   

                                           (33)
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1 0
Pr

t ft′+ =                   (34)

Since sinξ
ξ

 → 0/0 i.e. 1, so that sinξ
ξ

 θ→θ ; The extreme case is  ξ

∼ π , which physically corresponds to the upper stagnation point on the 
sphere surface (diametrically opposite to the lower stagnation point).  

In figures 3 and 4 the influence of velocity slip parameter on velocity 
and temperature distributions is illustrated. Dimensionless velocity 
component (Figure 3) at the wall is strongly reduced with an increase 
in slip parameter fS . There will be a corresponding decrease in the 
momentum (velocity) boundary layer thickness. The influence of fS  is 
evidently more pronounced closer to the cylinder surface (η=0). Further 
from the surface, there is a transition in velocity slip effect, and the flow is 
found to be accelerated markedly. Smooth decays of the velocity profiles 
are observed into the free stream demonstrating excellent convergence 
of the numerical solution. These trends in the response of velocity field 
in external thermal convection from a cylinder were also observed by 
Wang and Ang [35] and Wang [36]. Furthermore the acceleration near 
the wall with increasing velocity slip effect has been computed by Crane 
and McVeigh [37] using asymptotic methods, as has the retardation in 
flow further from the wall. The switch in velocity slip effect on velocity 
evolution has also been observed for the case of a power-law rheological 
fluid by Ojadi et al. [38]. Figure 4 indicates that an increase in velocity 
slip parameter significantly enhances temperature in the flow field and 
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thereby increases thermal boundary layer thickness enhances. This 
will result therefore in the transport of more thermal energy from the 
cylinder surface to the Casson fluid and will therefore accentuate heat 
transfer to the fluid, as noted also by Wang [36]. Temperature profiles 
consistently decay monotonically from a maximum at the cylinder 
surface to the free stream. All profiles converge at large value of radial 
coordinate, again showing that convergence has been achieved in the 
numerical computations. A similar pattern of thermal response to 
that computed in figure 4. For a wide range of velocity slip parameters 
has been noted by Aziz [39] who has indicated also that temperature 
is enhanced since increasing velocity slip parameter decreases shear 
stresses and this permits a more effective transfer of heat from the wall 
to the fluid regime. 

In figures 5 and 6 the variation of velocity and temperature with 
the transverse coordinate (η), with increasing thermal slip parameter   
ST is depicted. The response of velocity is much more consistent 
than for the case of changing velocity slip parameter (Figure 3) it is 
strongly decreased for all locations in the radial direction. The peak 
velocity accompanies the case of no thermal slip (ST=0). The maximum 
deceleration corresponds to the case of strongest thermal slip (ST=5). 
Temperatures (Figure 6) are also strongly depressed with increasing 
thermal slip. The maximum effect is observed at the wall. Further 

into the free stream, all temperature profiles converge smoothly to the 
vanishing value. The numerical computations correlate well with the 
results of Larrode et al. [40] who also found that temperature is strongly 
lowered with increasing thermal slip and that this is attributable to the 
decrease in heat transfer from the wall to the fluid regime, although 
they considered only a Newtonian fluid. 

Figures 7 and 8 depict the influence Casson fluid parameter, β  
on velocity and temperature profiles. This parameter features in the 
shear term in the momentum boundary layer equation (8), and also 
in the velocity boundary condition (10). For Newtonian flow, yield 

stress py is zero and 2 c
B

yp
π

β µ= →∞  i.e. the appropriate term in 

eqn. (8) reduces from 11 1f
β

  ′′′+ → 
 

. Similarly the velocity boundary 

condition in (10) reduces from 
11 (0) (0)f fS f S f
β

  ′′ ′′+ → 
 

. An increase 

in β  implies a decrease therefore in yield stress of the Casson fluid. 
This effectively facilitates flow of the fluid i.e. accelerates the boundary 
layer flow close to the cylinder surface, as demonstrated by figure 7. 
Since the Casson parameter is also present in the wall boundary 
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condition, the acceleration effect is only confined to the region close 
to the cylinder surface. Further from this zone, the velocity slip factor, 
Sf will exert a progressively reduced effect and an increase in Casson 
parameter, β , will manifest with a deceleration in the flow. Overall 
however the dominant influence of β, is near the wall and is found to 
be assistive to momentum development (with larger βvalues the fluid 
is closer in behaviour to a Newtonian fluid and further departs from 
plastic flow) Only a very small decrease in temperature is observed with 
a large enhancement in Casson fluid parameter, as shown in figure 8. 
The Casson parameter does not arise in the thermal boundary layer 
equation (9), nor does it feature in the thermal boundary conditions. 
The influence on temperature field is therefore experienced indirectly 
via coupling of the thermal equation (9) with the momentum equation 
(8). Similar behaviour to the computations shown in figures 7 and 8 
has been observed by Attia and Sayed-Ahmed [41] who also observed 
acceleration in Casson fluid flow near a curved surface, and additionally 
by Mustafa et al. [42] who also observed an elevation in velocities 
near the wall and a slight reduction in temperatures throughout the 
boundary layer regime. 

Figures 9 and 10 present the effect of Prandtl number (Pr) on 
the velocity and temperature profiles along the radial direction, 
normal to the cylinder surface. Prandtl number embodies the ratio of 
viscous diffusion to thermal diffusion in the boundary layer regime. 
It also expresses the ratio of the product of specific heat capacity and 
dynamic viscosity, to the fluid thermal conductivity. When Pr high, 
viscous diffusion rate is exceeds thermal diffusion rate. An increase in 
Pr  from 0.7 through 1.0, 2.0, 4.0, 5.47.0,10.0,15.0,20.0 to 40.0 is found 
to significantly depress velocities (Figure 9) and this trend is sustained 
throughout the regime i.e. for all values of the radial coordinate, η. 
For  Pr<1, thermal diffusivity exceeds momentum diffusivity i.e. heat 
will diffuse faster than momentum. Therefore for lower Pr fluids (e.g.   
Pr=0.7), the flow will be accelerates whereas for greater Pr fluids (e.g.   
Pr=1) it will be strongly decelerated, as observed in fig. For Pr=1.0, 
both the viscous and energy diffusion rates will be the same as will 
the thermal and velocity boundary layer thicknesses. This case can 
be representative of food stuffs e.g. low-density polymorphic forms of 
chocolate suspensions, as noted by Steffe [27] and Debaste et al. [43]. 
Temperature is found to be strongly reduced with increasing Prandtl 
number. For larger Pr values, the decay is found to be increasingly 
monotonic. Therefore for lower thermal conductivity fluids (as typified 
by liquid chocolate and other foodstuffs), lower temperatures are 
observed throughout the boundary layer regime. 

Figures 11 and 12 illustrate the influence of wall transpiration on 
the velocity and temperature functions with radial distance η. With 
an increase in suction ( wf >0) the velocity is clearly decreased i.e. 
the flow is decelerated. Increasing suction causes the boundary layer 
to adhere closer to the flow and destroys momentum transfer; it is 
therefore an excellent control mechanism for stabilizing the external 
boundary layer flow on the circular cylinder. Conversely with increased 
blowing i.e. injection of fluid via the cylinder surface in to the porous 
medium regime, ( wf < 0), the flow is strongly accelerated i.e. velocities 
are increased. As anticipated the case of a solid cylinder ( wf = 0) falls 
between the weak suction and weak blowing cases. Peak velocity is 
located, as in the figures described earlier, at close proximity to cylinder 
surface. With a decrease in blowing and an increase in suction the 
peaks progressively displace closer to the cylinder surface, a distinct 
effect described in detail in several studies of non-Newtonian boundary 
layers [24,44-47]. Temperature θ is also elevated considerably with 

increased blowing at the cylinder surface and depressed with increased 
suction. The temperature profiles, once again assume a continuous 
decay from the cylinder surface to the free stream, whereas the velocity 
field initially ascends, peaks and then decays in to the free stream. The 
strong influence of wall transpiration (i.e. suction or injection) on 
boundary layer variables is clearly highlighted. Such a mechanism is 
greatly beneficial in achieving flow control and regulation of heat and 
mass transfer characteristics in food processing from a cylindrical 
geometry.

In figures 13 and 14 the variation of velocity and temperature fields 
with different transverse coordinate, ξ , is shown. In the vicinity of the 
cylinder surface, velocity ( )f ′  is found to be maximized closer to the 
lower stagnation point and minimized with progressive distance away 
from it i.e. the flow is decelerated with increasing ξ  However further 
from the wall, this trend is reversed and a slight acceleration in the flow 
is generated with greater distance from the lower stagnation point i.e. 
velocity values are higher for greater values of ξ , as we approach the 
upper stagnation point Temperature θ , is found to noticeably increase 
through the boundary layer with increasing ξ  values. Evidently the 
fluid regime is cooled most efficiently at the lower stagnation point and 
heated more effectively as we progress around the cylinder periphery 
upwards towards the upper stagnation point. These patterns computed 
for temperature and velocity evolution around the cylinder surface 
are corroborated with many other studies including work on non-
Newtonian Casson fluid convection by Kandasamy et al. [48] and 
studies of Newtonian convection from a cylinder by Wang [36] and 
Prasad et al. [49]. 

Figures 15 and 16 depicts the velocity response to a change in Darcy 
number, Da. This parameter is directly proportional to the permeability 

of the regime and arises in the linear Darcian drag force term in the 

momentum equation (8), via, 1
2

f

DaGr

′
− . As such increasing  Da will 

serve to reduce the Darcian impedance since progressively less fibres 
will be present adjacent to the cylinder in the porous regime to inhibit 
the flow. The boundary layer flow will therefore be accelerated and 
indeed this is verified in figure 15 where we observe a dramatic rise in 
flow velocity ( )f ′ , with an increase in Da  from 0.001 through 0.01, 
0.1, 0.2 and 0.5. In close proximity to the cylinder surface a velocity 
shoot is generated; with increasing Darcy number this peak migrates 
slightly away from the wall into the boundary layer. Evidently lower 
permeability materials serve to decelerate the flow and this can be 
exploited in materials processing operation where the momentum 
transfer may require regulation

Figure 17 depicts the velocity ( )f ′  response for different values 
of Forchheimer inertial drag parameter (Λ ), with radial coordinate 
( )η . The Forchheimer drag force term, ( )2fξ ′− Λ  in the dimensionless 
momentum conservation equation (8) is quadratic and with an increase 
in Λ  (which is in fact related to the geometry of the porous medium) 
this drag force will increase correspondingly. As such the impedance 
offered by the fibres of the porous medium will increase and this will 
effectively decelerate the flow in the regime, as testified to by the evident 
decrease in velocities shown in figure 17. The Forchheimer effect serves 
to super seed the Darcian body force effect at higher velocities, the latter 
is dominant for lower velocity regimes and is a linear body force. The 
former is dominated at lower velocities (the square of a low velocity 
yields an even lower velocity) but becomes increasingly dominant with 
increasing momentum in the flow i.e. when inertial effects override the 
viscous effects (Figure 17). 
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Figure 18 shows that temperature θ is increased continuously 
through the boundary layer with distance from the cylinder surface, 
with an increase in Λ , since with flow deceleration, heat will be diffused 
more effectively via thermal conduction and convection. The boundary 
layer regime will therefore be warmed with increasing Λ  and boundary 
layer thickness will be correspondingly increased, compared with 
velocity boundary layer thickness, the latter being reduced. 

Figures 19 and 20 show the effect of velocity slip parameter fS  
on cylinder surface shear stress ( )f ′′  and local Nusselt number ( )θ ′−  
variation. In consistency with the earlier graphs described for velocity 
evolution, with an increase in fS , wall shear stress is consistently 
reduced i.e. the flow is decelerated along the cylinder surface. Again 
this trend has been observed by Wang and Ang [35] and Wang [36] 
using asymptotic methods. There is also a progressive migration in 
the peak shear stress locations further from the lower stagnation 
point, as wall slip parameter is increased. The impact of wall slip is 
therefore significant on the boundary layer characteristics of Casson 
flow from a cylinder. With an increasing fS , the local Nusselt number 
is also considerably decreased and profiles are generally monotonic 
decays. Maximum local Nusselt number always arises at the cylinder 
surface and is minimized with proximity to the lower stagnation point 
i.e. greater distance from the upper stagnation point. This pattern of 
behaviour has also been observed and emphasized by Yih [29] for 
Newtonian flow. In both figures 19 and 20, skin friction coefficient and 
local Nusselt number are maximized for the case of no-slip i.e. fS =0, 
this result concurring with the analyses of Wang [36] and also Hayat et 
al. [47]. 

Figures 21 and 22 show the effect of thermal slip parameter ST on 
dimensionless wall shear stress function i.e. skin friction coefficient and 
local Nusselt number, respectively. Increasing ST is found to decrease 
both skin friction coefficient and local Nusselt number. A similar set 
of profiles is computed as in figure 21 for velocity distributions, and we 
observe that with increasing thermal slip, peak velocities are displaced 
closer to the lower stagnation point. For lower values of thermal slip, the 
plots are also similar to those in figure 22, and have a parabolic nature; 
however with ST values greater than 1, the profiles lose their curvature 
and become increasingly linear in nature. This trend is maximized for 
the highest value of ST (= 5.0) for which local Nusselt number is found 
to be almost invariant with transverse coordinate, ξ.

Figures 23 and 24 illustrate the effect of Casson fluid parameter, 
β , on skin friction coefficient and local Nusselt number, respectively. 
With an increase in β  the skin friction coefficient increases, since as 
computed earlier, the flow velocity is enhanced with higher values 
of β . Larger β  values correspond to a progressive decrease in yield 
stress of the Casson fluid i.e. a reduction in rheological characteristics. 
With higher β  the flow approaches closer to Newtonian behaviour 
and the fluid is able to shear faster along the cylinder surface. Local 
Nusselt number is conversely found to decrease slightly as Casson 
fluid parameter is increased. This concurs with the earlier computation 
(Figure 8) on temperature distribution. With increasing β  values, 
less heat is transferred from the cylinder surface to the fluid regime, 
resulting in lower temperatures in the regime external to the cylinder 
and lower local Nusselt numbers, as observed in figure 24. 

Conclusions
Numerical solutions have been presented for steady flow and heat 

transfer of Casson fluid from a permeable horizontal circular cylinder 
with partial slip in a Non-Darcy porous medium. A Robust, validated 
implicit finite difference scheme has been employed. The results in 
summary have shown that,

1. Increasing the velocity slip parameter, fS , reduces the velocity 
near the cylinder surface and also skin friction coefficient and also 
increases temperature and decreases local Nusselt number.

2. Increasing the thermal slip parameter, ST, decreases velocity and 
skin friction coefficient and also reduces temperature for all values 
of radial coordinate i.e. throughout the boundary layer regime, and 
furthermore decreases local Nusselt number.

3. Increasing the Casson fluid parameter, β , increases the velocity 
near the cylinder surface but decreases velocity further from the 
cylinder, and also fractionally lowers the temperature throughout the 
boundary layer regime. 

4. Increasing the Casson fluid parameter, β , strongly increases 
the wall shear stress (skin friction coefficient) and slightly decreases 
the local Nusselt number, with the latter more significantly affected 
at large distances from the lower stagnation point i.e. higher values of 
transverse coordinate.

5. Increasing Prandtl number, Pr, decelerates the flow and also 
strongly depresses temperatures, throughout the boundary layer 
regime.

6. Increasing suction at the cylinder surface ( fw>0) decelerates the 
flow whereas increasing injection ( fw< 0, i.e. blowing) induces a strong 
acceleration.

7. Increasing suction at the cylinder surface (fw>0) reduces 
temperature whereas increasing injection (fw< 0 i.e. blowing) induces 
the opposite response and elevates temperature. 

8. Increasing transverse coordinate, ξ , depresses velocity near 
the cylinder surface but enhances velocity further from the cylinder, 
whereas it continuously increases temperature throughout the 
boundary layer.

9. Increasing Darcy number (Da), velocity increases but reduces the 
temperature.

10. Increasing Forchheimer inertial drag parameter (Λ ) reduces 
velocity but elevates temperature.

The current study has been confined to steady-state flow i.e. ignored 
transient effects [50] and also neglected thermal radiation heat transfer 
effects [51,49]. These aspects are also of relevance to rheological food 
processing simulations and will be considered in future investigations.
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