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Introduction
Pollution of the environment has become a major concern of 

society [1]. One of the most sensitive concerns is the potential for 
exposure to substances that are genotoxic. A genotoxic chemical or 
physical agent has the ability to induce mutations or so called indicator 
effects which are mechanistically associated with the formation of 
mutations (for example, induction of DNA modifications, DNA repair, 
or recombination) [2]. 

Environmental contaminants can affect the genetic makeup of 
populations in three ways: via mutations, genetic drift, and genetic 
adaptation [2]. Some of these pollutants are carcinogenic and 
mutagenic with the capacity to affect both the structural integrity of 
DNA and the fidelity of its biological expressions [3].

Genetic toxicology is an area of science in which the interaction 
of DNA-damaging agents with the cellʹs genetic material is studied 
in relation to subsequent effects on the health of the organism [1]. 
Ecogenotoxicology (genetic ecotoxicology) is an approach that applies 
the principles and techniques of genetic toxicology to assess the 
potential effects of environmental pollution in the form of genotoxic 
agents on the health of the ecosystem [1]. Genetic hazard assessment, 
thus, deals with changes in genetic material of organisms, either human 
or other natural origin (OSPAR, 2002). Several reviews demonstrate the 
presence and potency of genotoxins from a broad range of industrial 
and municipal effluents [4-6] as cited by OSPAR [7]. There is a close 
association of DNA damage, mutation, and induction of various types 
of cancer [7]. Fish serves as useful genetic model for the evaluation of 
pollution in aquatic ecosystems [8,9]. Fish species from contaminated 
areas initiated studies in the aquatic environment [10-12], and evidence 
is growing that environmental mutagens can reduce the reproductive 
success of populations [13]. Different genotoxicity tests and their 
applications to environmental monitoring and assessment have been 

variously reported in fish [14-23]. Some of the methods are based on 
OECD and EC guidelines used for chemical risk assessment [7].

Genetic Mechanism of Changes in Ecogenotoxicology
One of the crucial questions in the field of environmental 

genotoxicology is how the potential hazards and risk of genotoxic 
substances should be evaluated [24]. To answer this question a 
distinction has to be made between the different pathways along which 
a chemical is able to affect the genetic structure of an organism and the 
subsequent effects this may have for the populations in the field [24].

It is difficult to demonstrate the effect of environmental stressors, 
including genotoxicants, at the ecosystem level, where population and 
communities are studied because the responses observed are latent and 
so far removed from the initial event(s) of exposure that causality is 
often almost impossible to establish [1]. A way to solve this problem 
is to view ecosystem as dynamic interactions of living and inert matter 
where the living material acclimates and adapts to environmental 
changes. These processes are physiological and have genetic basis, 
therefore, understanding changes at the genetic level (DNA) should 
help define the more complex changes at the ecosystem level [1]. 

The genetic apparatus of an organism can interact with 
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genotoxicants in a variety of ways and an understanding of the cellular 
mechanisms involved in these interactions provide the researcher the 
opportunity to predict and possibly prevent contaminant-induced 
genetic damage in exposed populations [1]. Genotoxicants can alter 
the structural integrity of the DNA, cause mutations and subsequent 
heritable effects or even cause non-mutagenic effects. Conversely, the 
organism may perceive the genotoxicant and attempt to eliminate 
the agent or repair changes to the DNA [25]. If the genotoxic agent 
directly attacks the DNA, the organism may perceive this damage and 
attempt repair [26]. The flow of genotoxic stress within a somatic cell 
[27] and the mechanisms involved have been reviewed [28,29]. Cellular 
processes regulating these events in the DNA are very complex and for 
which there are little understanding [1]. These processes are affected 
differently in different species and may depend upon, for example, the 
type or class of genotoxic agent and the reactivity of its metabolites, 
capacity of the cell to recognize and suppress the multiplication of cells 
with aberrant properties [29]. Effects expressed in somatic cells can be 
detrimental to the exposed individual, whereas, mutational events may 
affect subsequent generations [1]. Extrapolation of effects on somatic 
cells to germ cell level of organization is difficult due to the inherent 
difference in sensitivity of these type of cells to genotoxicants [30]. 
Furthermore, establishing a causal relationship between a genotoxic 
agent in the environment and a deleterious effect in subsequent 
generations of that organism is also highly unlikely because individuals 
carrying harmful mutations are eliminated from the population due to 
a strong selection against less fit and less well-adapted individuals [31].

Role of Fish in Ecogenotoxicology
Genotoxins are chemicals are responsible for DNA damage 

in variety of aquatic organisms and fishes in particular causing 
malignancies, reduced growth, and abnormal development, reduced 
survival of embryos, larvae, and adults, ultimately affecting the economy 
of fish production significantly. Genotoxicity not only reduces the 
‘’fitness’’ in wild fish populations, but also pose risk to human health 
via food chain [32]. 

Although, technical advancements have been made in some 
mammalian species and also in fruit flies, the desired progress has not 
been achieved towards evaluation of potential hazards and risks from 
genotoxic pollutants in fish species [32]. 

The selection of fish as a model in ecogenotoxicological studies 
could be made necessary since fish is a very sensitive biomarker 
indicator of water quality and can highlight the potential danger 
of new chemicals introduced in the aquatic environment and also 
respond to toxicants in a manner similar to higher vertebrates [33]. 
Fish serves as useful genetic model for the evaluation of pollution 
in aquatic environment [8,9]. Current awareness of the potential 
hazards of pollutants in the aquatic environment has stimulated much 
interest in the use of fish as indicators for monitoring carcinogens, 
teratogens, clastogens, and mutagens [34]. This is because aquatic 
environment serves as convenient repositories for man’s biological 
and technological wastes [35]. Fish play different roles in the tropic 
web such as undergoing bioaccumulation of environmental pollutants 
and biotransformation of xenobiotics through cytochrome p450-
dependent oxidative metabolism; besides they respond to mutagens at 
low concentrations [36]. Fish cells retain important traits of fish; for 
example, poikilothermic behaviour, unique xenobiotic metabolism, 
and low rate of repair mechanism; they have been shown to be more 
sensitive for the induction of genetic damage [32]. DNA repair has been 
shown to be slower in fishes than mammals [37,38]. Therefore, they 

can be used as sentinel organism for biomonitoring studies. Fish have 
severally been used in several eukaryotic genotoxicity and mutagenicity 
tests, which include its use in Comet assay [39], DNA repair synthesis 
[23], Chromosomal aberration test [40,41], Micronucleus assay [42-44], 
and Sister chromatid exchange test [45,46]. Therefore, efforts should 
be made to utilize assays for detecting genotoxicity caused by aquatic 
pollutants in fishes at DNA level. This will help in formulating long-
term strategies for fish conservation programme besides estimating 
safe Level of pollutants in water [32].

Role of Ecogenotoxicology in Environmental Monitor-
ing

Contrary to human toxicology studies which focus on the fate 
of the individual, ecogenotoxicology evaluates the consequences 
of genotoxicants for population sizes and structure. Investigations 
showing high prevalence of hepatic tumors in different fish species from 
contaminated areas initiated studies in the aquatic environment [10-
12]. Several examples of neoplasms in fish due to waste water effluents 
have been described [47,48]. Exposure to DNA-damaging agents may 
result in the formation of carcinogen-DNA adducts, which, as possible 
indicators for carcinogens, have been detected in mussels [49], and fish 
from contaminated sites [50-53]. Thus, detection of adducts provide 
a way of documenting exposure. This approach was used to examine 
DNA from beluga whales in St Lawrence estuary, Quebec, Canada, 
to determine whether exposure to benzo (a) pyrene (BaP), a potent 
environmental carcinogen and the suspected etiological agent for the 
high incidence of cancer in these animals had occurred [54].

Early in 1987 [1], the detection of excessive strand breakage in the 
DNA of several aquatic species was implemented as a biomonitor for 
environmental genotoxicity as part of the Biological and Monitoring 
and Abatement Program for the US Department of Energy (USDOE) 
Reservation in Oak Ridge, Tennessee. This approach was effectively 
used in studies with two species of turtles, the snapping turtle (Chelydra 
serpentine) and Pond slider (Trachemis scripta) [55], using the Alkaline 
DNA unwinding assay [56]. Similarly, analysis of strand breaks in 
Sun fish [1], using the DNA alkaline unwinding assay [56], has been 
employed as a biological marker for environmental genotoxicity as 
part of the Biological Monitoring and Abatement Program at East 
Fork Popler Creek [56]. This creek is the receiving stream for industrial 
effluent from the USDOE reservation in Oak Ridge, Tennessee, USA. 
Water and sediments downstream contain metal, organic chemicals 
and radionuclides discharged over many years of operations [56]. The 
erythrocyte micronucleus test has been used with different fish species 
[34] and other marine shellfish to monitor aquatic pollutants displaying 
mutagenic features in developed countries [42-44]. Current awareness 
of the potential hazards of pollutants in the aquatic environment has 
stimulated much interest in the use of fish as indicators for monitoring 
carcinogens, teratogens, clastogens and mutagens [34]. This is because 
aquatic environment serves as convenient repositories for man’s 
biological and technological wastes [35]. Aquatic animals have often 
been used as assay to evaluate surface water [57,58]. Substances 
displaying mutagenic, teratogenic and carcinogenic potentials are 
easily evaluated because of high sensitivity of these organisms to 
these pollutants at low concentrations [59,60]. Obiakor et al. [61,62], 
have demonstrated the use of Synodontis clarias and Tilapia nilotica 
from freshwater of the Anambra River, Nigeria, in ecogenotoxicology 
studies using the micronucleus test and validating them as index of 
cytogenetic damage, monitoring of aquatic genotoxicants and other 
sublethal concentrations of chemical pollutants. 
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more representative species such as fish, daphnia, and algae used in 
ecological risk assessment procedures are appropriate as these models, 
particularly fish, have been used severally in ecological risk assessment 
studies [72,73], demonstrating the ecogenotoxicological significance of 
these models.

Applications of Ecogenotoxicological Methods in 
Monitoring and Risk Assessment

For monitoring purpose, higher organisms (eukaryotes) are 
exposed to environmental compartment “in situ’’ or in laboratory 
test ‘’in vivo’’ [7]. Some of the methods applied to environmental 
samples are based on corresponding OECD and EC guidelines used 
for chemical risk assessment, but others have not yet been standardized 
[7]. The bacterial Ames test, Umu-C assay [74], and SOS chromo assay 
[75,76], have been applied predominantly to waste water samples. 
Tests with eukaryotes cells or organisms are relevant for ecological 
risk assessment-plants, amphibians, fish, permanent cell lines such as 
Chinese hamster lung cells (V79) [15,77-79], Chinese hamster ovary 
cells (CHO) [80-82], and Chinese hamster lung cells (CHL) [83], 
marine and freshwater mussels-have been used as test organisms [7]. 
An overview of some genotoxicity test methods and their application 
to monitoring and assessment is given below.

Comet assay

The comet assay has been developed from the method of Rydbert 
and Johansen, who were the first to perform a quantitation of DNA 
damage in single cells. Later on, Ostling and Johanson, improved 
the assay by developing an electrophoretic microgel technique under 
neutral conditions and stained the DNA with acridine orange. The 
more versatile alkaline method of the comet assay was developed by 
Singh et al. [84], which was developed to measure low levels of strand 
breaks with high sensitivity. In general, cells are mixed with low-melting 
agarose placed on microscope slides and lysed by an alkaline buffer with 
ionic detergents. The liberated DNA is resolved in an electrophoresis 
chamber, stained and evaluated by florescence microscopy. Cells with 
increased DNA damage display increased migration from the nuclear 
region towards the anode [84]. The resulting comet like structure is 
quantified by measuring the length of the tail and/ or tail moment (the 
intensity of the migrated DNA multiplied by the respective tail length 
with respect to the DNA). A review of th eaplicability of the comet 
assay in environmental monitoring has been provided by Mitchelmore 
and Chipman [22] and has been applied to a broad range of aquatic 
organisms, including fish [85-88].

DNA alkaline unwinding assay

The level of DNA strand breaks with respect to the total DNA can 
be determined by following a time-dependent alkaline unwinding 
assay. Unwinding of DNA takes place at single stranded breaks, 
hence the amount of double stranded DNA remaining after a given 
period of alkaline exposure will be inversely proportional to the 
number of strand breaks; this ratio is expressed in form of F values, 
which measures the relative double strandedness of a particular DNA 
[56]. In situ investigations for the detection of genotoxic potential in 
selected surface water with the DNA alkaline unwinding assay have 
been reported using fish cells, early life stages of fish, crustaceae, and 
mussels [55,89]. Everaarts and Sarkar [90], studied DNA damage in 
sea stars (Asterias rubens) in order to assess the state of pollution of 
the North Sea.

Ideally, genetic ecotoxicology will begin to address such outcomes 
of exposure to environmental genotoxicants as disease, decreased 
reproductive success, and altered genotypic diversity [1], using 
endpoints such as frequencies of gametes loss due to cell death, 
embryo mortality caused by lethal mutations, abnormal development, 
cancer, and mutation frequencies affecting the gene pool of exposed 
populations [13]. But, up till now only endpoints like gamete loss or 
teratogenic effects as well as cancer incidences can be measured [7]. 
Effects for exposed populations might be estimated in case where 
these populations are ecologically characterized, but knowledge about 
consequences of genotoxic exposure on the gene pool of exposed 
species is still scarce [63], however, the principles underlying research 
of effects of genotoxicants on genetic diversity are not new as there 
are newer approaches to describe genetic effects of contaminants on 
the population level [24,64], which focus on the genetic diversity, 
examining the current status and history of population by molecular 
genetics technique [1]. But these effects are not necessarily caused by 
mutagenicity; they depend also on chronic effects and population size 
[65]. 

In a heterozygous population, there are likely to be certain 
genotypes that are more sensitive to genotoxic exposure than others. 
This is so if the population is heterozygous at loci that are both critical 
to fitness and susceptible to toxicant-induced structural alterations [1]. 
Genotoxic exposure can act as a selective force by eliminating sensitive 
genotypes, or reducing the number of offspring that they contribute to 
the next generation. The result can be a reduction in the total genetic 
variation within the population or a shift in genotypic frequencies [1]. 

Role of Ecogenotoxicology in Environmental Risk 
Assessment

Genetic hazard assessment investigates changes in genetic material 
of organisms, either human or other natural origin [7]. A review 
of ecogenotoxicology in environmental risk assessment has been 
presented by Roex et al. [24]. Regulatory authorities worldwide require 
data on the genotoxic potentials of new drugs and chemicals [66], 
through genotoxicity testing for hazard identification with respect to 
DNA damage [67], and biological information indicative of toxicity, 
which can be interpreted and/ or extended to the assessment of 
health risk to humans [68] and the environment [24]. Today, in the 
pharmaceutical industry, it is not possible to register a new drug without 
providing information on its mutagenicity [69]. In ecogenotoxicology, 
possible effects of mutagenic/genotoxic substances on populations 
and ecosystems are investigated. Mutagenicity testing of genotoxic 
substances has been performed with all types of organisms [7].

In risk assessment of chemicals, a first screening for mutagenicity 
takes place in a battery of three in vitro (in situ) genotoxicity test, after 
which an in vitro carcinogenicity test is carried out based on a position 
result in the in vitro test [70], the result of which is extrapolated to 
carcinogenic risk for humans by calculating a lifetime exposure level 
corresponding to a unit risk of 10-6, which is accomplished by linear 
extrapolation from lowest effective dose to 0 [24]. Ecological risk 
assessment concerns a wider range of species instead of a single one 
like in human genotoxicology, and has to deal with the protection of 
populations instead of individuals [30,71].

Test animals that are used in carcinogenicity studies for risk 
assessment are mostly mice, rats, or hamster for which extrapolation 
to human situations makes them suitable models [24]. However, 
for extrapolation to ecosystem, carcinogenicity test batteries with 
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DNA repair synthesis (UDS-assay)

The unscheduled DNA synthesis assays measures the incorporation 
of radioactively labelled nucleosides (usually tritium-labelled 
thymidine) in cells that are not undergoing scheduled DNA synthesis. 
The DNA repair synthesis UDS test has been applied using primary 
hepatocytes from fish to assess genotoxicity in surface water [23].

Chromosome aberration test

Chromosome mutation is a macrodamage of chromosome [7]. 
Chromosome aberration includes structural aberrations such as 
fragments, intercalations, and numeral aberrations resulting from 
either direct DNA breakage or inhibition of DNA synthesis [91]. 
Cytogenic effects can be studied either in whole animals (in vivo) or 
in cells grown in culture (in vitro) [91]. Generally, the cell culture 
is exposed to the test substance and then afterwards treated with a 
metaphase-arresting Colcimide [7] or Colchicine [91]. Following 
suitable staining the metaphase cells are analysed microscopically for 
the presence of aberration.  

Although, cytogenic studies were initiated on agnathan (Myxine 
gluttinosa), fish cytogenetics got real momentum with the work of as 
cited by Nagpure et al. [91]. Since then, the test has been carried or 
evaluated in several fish species [41,40,92,93].

Micronucleus assay

The micronuclei are chromosome fragments or whole 
chromosomes that were not incorporated in the daughter cell nuclei 
and appear in the cytoplasm [94]. The micronucleus test is a simple 
and sensitive assay for “in vivo’’ evaluation of genotoxic properties of 
various agents. Chromosomes in fish cells are usually of small size and 
occur in large numbers; therefore, it can be easily applied to fish or 
other aquatic organisms sine small and large number of chromosome 
do not affect the micronucleus assay [33].

Environmental biomonitoring with micronucleus assays usually 
has been performed “in vivo’’ by exposure of relevant aquatic organisms 
for several days followed by microscopic analysis of erythrocytes, gill 
cells. But permanent fish cell lines (RTG-2) have also been used “in 
vitro’’ [95,96]. ‘‘In vivo’’ studies with fish have severally been used and 
reported for genotoxicity with the micronucleus [34,97,98].

Sister chromatid exchange (SCE) test

The sister chromatid exchange test detects reciprocal exchanges 
of DNA segments between two sister chromatids of a duplicating 
chromosome [99]. Although little is known about the molecular basis, 
the SCE frequency is elevated under the influence of mutagenic agents 
and therefore serves as a model for genotoxicity [7]. For genotoxicity 
assessment in environmental samples SCE assays have been performed 
with mussels [100,101], fish cells [45,46,102].

Recent developments

In the field of genotoxicological evaluation of environmental 
samples, recent advancement has been achieved [7]. Amanuma 
established a transgenic zebrafish for the detection of mutagens; it 
carries plasmids that contain the rpSL gene of Escherichia coli as a 
mutational target gene [72]. Winn et al. [103] prepared a transgenic 
fish that carries multiple copies of a bacteriophage lambda vector that 
harbours the cII gene as a mutational target, a technique originally 
developed for lambda transgenic rodents. The p53 tumor suppressor 
gene, which is known to be implicated in cancer development, has 

been investigated as a possible biomarker for genotoxin in fish cells 
[11,104,105]. The amplification of DNA by polymerase chain reaction 
technique enabled the detection of mutations at specific sites and the 
development of electrochemical DNA based biosensors [106,107].

Limitations in ecogenotoxicology

Increased mutations rates due to environmental pollution 
might negatively affect populations [7]. This is still controversially 
debated in the scientific community [13,30], but evidence is growing 
that environmental mutagens can reduce reproductive success of 
populations [7]. Even though an increasing number of studies involving 
ecogenotoxicity are available [20,63,108,109], the identification of clear 
cause-effect relations is increasingly complicated, the higher the level 
of biological organization. For instance, For example, Shugart and 
Theodorakis [110,111], examined a series of retention ponds heavily 
contaminated with radionuclides, but which support a resident 
population of mosquitofish (Gambusia affinis) for the past 20 years. 
They reported that there was an inverse correlation between DNA 
strand breakage and fecundity of fish from the contaminated ponds 
[1]. This has implications for higher-order ecological effects, as well as 
for contaminant-induced selection of resistant phenotypes. Current 
investigations have provided evidence that genetic diversity is increased 
in the population of fish occupying the radionuclide-contaminated 
sites relative to reference sites [1]. These findings are supported both by 
allozyme analysis – through determination of average heterozygosity 
and percent polymorphisms, and by the RAPD (randomly amplified 
polymorphic DNA) technique-by determining average similarities of 
banding patterns between individuals within populations. In addition it 
has been found that certain banding patterns are more prevalent in the 
contaminated sites than in the reference sites. Individuals which display 
these banding patterns at one of the contaminated sites have a higher 
fecundity and lower degree of strand breakage than do individuals with 
the less common banding patterns. This type of pattern is also observed 
with allozyme analysis-heterozygotes, especially at the nucleoside 
phosphorylase locus, are more common in the contaminated sites. 
Within the contaminated sites, heterozygotes have a higher fecundity 
and lower degree of strand breakage than do homozygotes. Long term 
laboratory exposures where environmental variables can be more 
rigidly controlled are underway in an effort to establish relationships 
between genotype, DNA strand breakage, and fecundity.

Ideally, genetic ecotoxicology will begin to address such outcomes 
of exposure to environmental genotoxicants as disease, decreased 
reproductive success, and altered genotypic diversity [1], using 
endpoints such as frequencies of gametes loss due to cell death, 
embryo mortality caused by lethal mutations, abnormal development, 
cancer, and mutation frequencies affecting the gene pool of exposed 
populations [13]. But, up till now only endpoints like gamete loss or 
teratogenic effects as well as cancer incidences can be measured [7]. 
Effects for exposed populations might be estimated in case where 
these populations are ecologically characterized, but knowledge about 
consequences of genotoxic exposure on the gene pool of exposed 
species is still scarce [7,63].

Majority of the currently used genotoxicity testing assays for 
regulatory toxicity testing were developed in the 1970’s [66]. In most 
of the cases, the site and mechanism by which genotoxicity is produced 
by the compound under the study is not known [66]. It may happen 
that the target site of toxic action may not be the same target site of 
toxic action of a new chemical entity (NCE) [66]. Also, in subchronic 
and chronic toxicity testing, several pertinent parameters or endpoints 
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can be detected to determine the toxicity, but the same is rarely true for 
genotoxicity tests [68]. Moreover, for certain categories of chemicals 
[66], which need critical experimental evaluation, there are no details 
with regards to the choice of specific test system and test protocols 
[112]. Most guidelines are devoid of recommendations for compounds, 
which are genotoxic, but seem to act by non-DNA target [113]. There 
are also no specific recommendations on the threshold of different 
genotoxic and tumorogenic compounds and their organ-specific 
effects when they are intended  to use therapeutically [114]. A single 
test system cannot be designed for universal detection of the relevant 
genotoxic substances; testing requirements depend on the nature and 
category of chemical substances [66]. In addition, there is no validated 
test system for detecting induced genome mutation (aneuploidy) in 
germ cells [115].

Conclusion
It is now clear that environmental genotoxicology holds the key to 

early detection and monitoring of pollution in aquatic environments, 
particularly when fish species are the test organisms. Fish serves 
as useful genetic model for the evaluation of pollution in aquatic 
ecosystems [8,9]. Fish species from contaminated areas initiated 
studies in the aquatic environment [10-12] and evidence is growing 
that environmental mutagens can reduce the reproductive success of 
populations [13]. Different genotoxicity tests and their applications 
to environmental monitoring and assessment have been variously 
reported in fish [14-23]. Fish cells retain important traits of fish; for 
example, poikilothermic behaviour, unique xenobiotic metabolism, 
and low rate of repair mechanism [32]. DNA repair has been shown to 
be slower in fishes than mammals [37,38]. Therefore, they can be used 
as sentinel organism for biomonitoring studies. Fish have severally 
been used in several eukaryotic genotoxicity and mutagenicity tests, 
which include its use in Comet assay [39], DNA repair synthesis [23], 
Chromosomal aberration test [40,41], Micronucleus assay [42-44], 
and Sister chromatid exchange test [45,46]. Therefore, efforts should 
be made to utilize assays for detecting genotoxicity caused by aquatic 
pollutants in fishes at DNA level. This will help in formulating long-
term strategies for fish conservation programme besides estimating 
safe Level of pollutants in water [32]. Recent advancement has been 
made in the field of ecogenotoxicology [11,72,103-105], which use has 
also been recommended for in genotoxicity testing of new chemical 
entity (NCE) and pharmaceuticals by the International Conference on 
Harmonization (ICH) [66]. However, several drawbacks have hindered 
the effective use of genotoxicity tests in ecogenotoxicology [7,13,30,66]. 
Global efforts should be intensified and harmonized to solve some of 
these problems such as validating test systems to detect aneuploidy by 
anticentromere antibody [116], identification of apoptosis [117], use 
of fluorescent in situ hybridization (FISH) to visualize translocation 
of chromosomes [118,119], unscheduled DNA synthesis (UDS) [120], 
and cell transformation assay [121] in fish. All the foregoing genotoxic 
screening methods, except apoptosis and unscheduled DNA synthesis 
(UDS), which have been used in fish [23,122], have only been reported 
in man. Appropriate screening tests should also be validated for 
investigating consequences of genotoxins, not only on populations, 
but also on gene pool. These tests will increase both the sensitivity and 
specificity of existing test protocols [66].
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