

FDA: Adapting Regulation for Public Health

Rajesh Iyer*

Department of Pharmaceutical Policy and Regulation National Institute of Pharmacy Research, India

Introduction

The FDA's Real-World Evidence (RWE) program significantly impacts drug development and regulatory decision-making. The FDA actively uses data gathered from routine clinical practice, such as electronic health records and patient registries, to support new drug applications and assess post-market safety. This approach helps deliver medicines to patients faster by leveraging real-world data alongside traditional clinical trials, offering a more complete picture of a drug's effectiveness and safety in diverse patient populations [1].

Regarding artificial intelligence and machine learning in medical devices, the FDA navigates complex terrain. Clinicians need to understand how these technologies are regulated, especially as Artificial Intelligence (AI)-driven devices become more common in healthcare. The FDA must balance fostering innovation with ensuring patient safety and device effectiveness, which involves clear guidelines for how these adaptive algorithms are developed, validated, and monitored once they are available [2].

Dietary supplements are a challenging area for the FDA, primarily because their regulation differs from drugs. Ongoing challenges exist in ensuring these products are safe and accurately labeled, given the current regulatory framework. The focus is on how the FDA can better oversee the vast and growing market for supplements, addressing issues like adulteration, misleading claims, and ensuring consumer protection [3].

The FDA's accelerated approval pathway for orphan drugs in the U.S. is designed to speed access to treatments for rare diseases. This pathway allows drugs to be approved based on surrogate endpoints, which are markers predicting clinical benefit. While beneficial for patients with limited options, it also prompts questions about confirming long-term benefits and safety once the drug is commercially available [4].

The FDA's proposals to ban menthol cigarettes and restrict flavored e-cigarettes represent a significant public health initiative. Understanding the potential ripple effects of such policies is crucial. The clear goal is to reduce tobacco initiation among youth and promote cessation. Assessing these impacts is key for future tobacco control strategies and evaluating the effectiveness of these regulatory interventions [5].

Navigating the FDA approval process for vaccines involves specific pathways and detailed considerations. Rigorous scientific and regulatory hurdles must be cleared, including extensive clinical trials and manufacturing quality. For public health professionals and vaccine developers, understanding these pathways is essential for grasping how the FDA ensures both efficacy and safety before a vaccine reaches the public [6].

Improving how the FDA monitors medical devices post-approval and market entry is a critical need. This calls for better postmarket surveillance, implementing more robust systems to track device performance and identify safety issues that might emerge after broad use. The focus is on ensuring ongoing safety, advocating for a more proactive approach to quickly identify and address problems, long after initial approval [7].

The FDA's process for approving biosimilars clarifies the current state and future directions for these critical biologic drugs. Biosimilars offer more affordable alternatives to expensive biologics, but their approval requires demonstrating high similarity and no clinically meaningful differences from the reference product. Understanding this complex process is important for expanding patient access to these treatments [8].

Gene therapies are an exciting, rapidly evolving field, with the FDA's regulatory approach constantly adapting. Specific challenges exist in overseeing these novel treatments, which often carry unique risks and complexities. The goal is ensuring these potentially revolutionary therapies are both safe and effective as they move from research into patient care, requiring a flexible yet rigorous regulatory framework [9].

The FDA's accelerated approval pathway plays a significant role in getting oncology drugs to patients with life-threatening cancers faster. This pathway functions specifically for cancer treatments. While it provides quicker access, the critical component is the requirement for confirmatory trials to verify clinical benefit. This balances urgency and certainty, aiming to make innovative cancer treatments available while still ensuring they truly help patients [10].

Description

The FDA is continually evolving its regulatory approaches to integrate new data sources and technologies into drug development and patient care. For example, the Real-World Evidence (RWE) program is transforming regulatory decision-making by actively utilizing data from routine clinical practice, such as electronic health records and patient registries [1]. This enables faster access to medicines by complementing traditional clinical trials, giving a fuller, more dynamic picture of drug efficacy and safety across diverse patient populations. This forward-looking strategy helps bridge the gap between controlled study environments and real-world outcomes.

When it comes to advanced technologies, the FDA faces complex challenges in regulating Artificial Intelligence (AI) and machine learning in medical devices. Clinicians need a clear understanding of these regulations as AI-driven devices become more prevalent in healthcare. The agency must meticulously balance fos-

tering innovation with safeguarding patient safety and device effectiveness, which means establishing clear, adaptable guidelines for the development, validation, and ongoing monitoring of these sophisticated algorithms once they are on the market [2]. A similar adaptive approach is vital in the regulation of gene therapies, an exciting and rapidly evolving field. Overseeing these novel treatments comes with unique risks and complexities, requiring a flexible yet rigorous framework to ensure these potentially revolutionary therapies are both safe and effective as they transition from research into widespread patient care [9].

Specific, robust regulatory pathways are crucial for different types of medical products. The FDA's process for approving vaccines, for instance, involves rigorous scientific and regulatory hurdles, including extensive clinical trials and stringent manufacturing quality assessments. This ensures both efficacy and safety before a vaccine ever reaches the public [6]. Likewise, the approval process for biosimilars is critical, clarifying the current state and future directions for these important biologic drugs. Biosimilars offer more affordable alternatives to expensive biologics, but their approval rigorously requires demonstrating high similarity and no clinically meaningful differences from their reference product, a vital step for expanding patient access to these treatments [8]. Beyond initial approval, improving how the FDA monitors medical devices after they are approved and on the market is a critical, ongoing need. This necessitates stronger postmarket surveillance systems to effectively track device performance and quickly identify and address any safety issues that might emerge after broad clinical use [7].

The FDA also utilizes accelerated approval pathways to expedite access to treatments for specific patient groups, particularly those grappling with rare or life-threatening conditions. The accelerated approval pathway for orphan drugs speeds up access to treatments for rare diseases in the U.S., allowing initial approval based on surrogate endpoints, which are markers predicting clinical benefit [4]. While this is immensely beneficial for patients with limited treatment options, it concurrently raises important questions about confirming long-term benefits and safety post-market. Similarly, for oncology drugs, this pathway plays a significant role in making treatments available to cancer patients faster. However, it critically requires confirmatory trials to verify clinical benefit, thereby striking a necessary balance between the urgency of patient need and the certainty of treatment efficacy [10].

Another significant area of focus for the FDA involves broader public health interventions and consumer product oversight. Dietary supplements, for example, present ongoing challenges primarily due to their distinct regulatory framework compared to prescription drugs. The ongoing discussion often revolves around how the FDA can enhance its oversight of this vast and growing market, tackling persistent issues like product adulteration, misleading claims, and ensuring robust consumer protection [3]. In a major public health move, the FDA's proposals regarding banning menthol cigarettes and restricting flavored e-cigarettes aim squarely at reducing tobacco initiation among youth and promoting cessation across the population. Understanding the potential ripple effects and long-term impacts of these pivotal policies is crucial for shaping future tobacco control strategies and accurately assessing the overall effectiveness of such regulatory interventions [5].

Conclusion

The FDA navigates a broad and evolving regulatory landscape, employing diverse strategies to ensure public health and safety across pharmaceuticals, medical devices, and consumer products. The agency leverages Real-World Evidence (RWE) for drug development and post-market safety, integrating data from routine clinical practice to accelerate patient access. In the realm of advanced technology, the FDA is developing clear guidelines for Artificial Intelligence (AI) and machine

learning in medical devices, balancing innovation with patient safety, and similarly adapting its framework for the complex challenges of gene therapies.

Key regulatory pathways include the rigorous approval processes for vaccines and biosimilars, ensuring efficacy, safety, and expanded access to treatments. The FDA also utilizes accelerated approval pathways for orphan drugs and oncology treatments, which expedite access for critical conditions while requiring confirmatory trials to verify long-term benefits. Beyond initial approvals, there's a strong emphasis on improving postmarket surveillance for medical devices to proactively address emerging safety concerns. Additionally, the FDA addresses public health issues like the regulation of dietary supplements, tackling challenges such as adulteration and misleading claims, and proposes significant policies like banning menthol cigarettes and restricting flavored e-cigarettes to curb tobacco use, particularly among youth. These efforts highlight the FDA's dynamic role in safeguarding health through comprehensive oversight and adaptive regulatory frameworks.

Acknowledgement

None.

Conflict of Interest

None.

References

1. William B. Schultz, Michael W. Dake, Jonathan M. Sackner-Bernstein. "The US Food and Drug Administration's Real-World Evidence Program: An Overview." *Therapeutic Innovation & Regulatory Science* 57 (2023):1025-1033.
2. Amara I. Ekwonu, Rachel R. Hess, Andrew M. S. Lee. "FDA regulation of artificial intelligence and machine learning in medical devices: what clinicians need to know." *Journal of the American Medical Informatics Association* 31 (2024):157-161.
3. Pieter A. Cohen, Channing R. Paller, Jeffrey S. Blumberg. "FDA regulation of dietary supplements: Current challenges and future directions." *The American Journal of Clinical Nutrition* 115 (2022):960-968.
4. Daniel A. Pevar, Jonathan J. Darrow, Aaron S. Kesselheim. "Accelerated Approval of Orphan Drugs in the United States." *JAMA Internal Medicine* 181 (2021):978-984.
5. David T. Levy, Jihyoun Jeon, Rafael Meza. "Impact of the FDA's Menthol Cigarette Ban and Flavored E-Cigarette Restrictions." *Nicotine & Tobacco Research* 22 (2020):2164-2172.
6. Sarah K. Pföh, Evan M. Mayo-Smith, Jesse L. Goodman. "FDA Approval of Vaccines: Pathways and Considerations." *JAMA* 330 (2023):227-229.
7. Joshua M. Sharfstein, Sanket S. Dhruba, Rita F. Redberg. "Improving Postmarket Surveillance of Medical Devices: A Call for Action." *New England Journal of Medicine* 386 (2022):2057-2060.
8. Janet Woodcock, Robert M. Califf, Sarah Yim. "The US FDA Biosimilar Approval Process: Current Status and Future Directions." *Journal of Clinical Pharmacology* 61 (2021):S16-S26.
9. Peter Marks, Wilson Bryan, Steven M. Gottlieb. "FDA Regulation of Gene Therapies: A Focus on Evolving Challenges." *Molecular Therapy* 32 (2024):1-5.
10. Nicholas J. Johnson, Joseph S. Ross, Robert W. Yeh. "The FDA's Accelerated Approval Pathway for Oncology Drugs." *Journal of the National Cancer Institute* 112 (2020):970-975.

How to cite this article: Iyer, Rajesh. "FDA: Adapting Regulation for Public Health." *Pharmaceut Reg Affairs* 14 (2025):492.

***Address for Correspondence:** Rajesh, Iyer, Department of Pharmaceutical Policy and Regulation National Institute of Pharmacy Research, India, E-mail: rajeshiyer@hu.in

Copyright: © 2025 Iyer R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jul-2025, Manuscript No. pbt-25-173763; **Editor assigned:** 03-Jul-2025, PreQC No. P-173763; **Reviewed:** 17-Jul-2025, QC No. Q-173763; **Revised:** 22-Jul-2025, Manuscript No. R-173763; **Published:** 29-Jul-2025, DOI: 10.37421/2167-7689.2025.14.492
