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Introduction
Classification is the field devoted to the study of methods designed 

to categorize data into distinct classes. This categorization can be 
divided to distinct labeling of the data (supervised learning), division 
of the data into classes (unsupervised learning), selection of the most 
significant features of the data (feature selection), or a combination of 
more than one of these tasks.

Generally, In textile industry, textiles are inspected manually for 
defects, but some problems arise in this visual inspection, such as 
excessive time consumed, human subjective factors, stress on mind and 
body, and fatigue. These problems further influence production volume 
and inspection accuracy. Therefore, techniques that can replace manual 
inspection have emerged [1].

In recent years, neural networks have been used to inspect yarn, 
fabric and cloth defects and to identify their types [2]. Neural networks 
are among the best classifier used for fault detection due to their non-
parametric nature and ability to describe complex decision regions.

Usually, in ANN, the available data are divided into three groups. 
The first group is the training set. The second group is the validation 
set, which is useful when the network begins to over-fit the data so 
the error on the validation set typically begins to rise; during this time 
the training is stopped for a specified number of iterations (max fails) 
and the weights and biases at the minimum of the validation error are 
returned. The last group is the performance test set, which is useful to 
plot the test set error during the training process [3].

A key issue in many neural network applications is to determine 
which of the available input features should be used for modeling [4]. 
Mostly, researchers have used different ways for feature selection based 
on image processing methods in conjunction with neural network. 

An image acquisition setup that yields suitable images is crucial for a 
reliable and accurate judgment. 

This system is usually including the specimen, the camera or 
scanner and the illumination assembly [5]. When they use image 
technology in conjunction with neural networks, some problems 
may occur; For example recognizable rate of defect may be related to 
light source conditions [1]. Since a fine feature selection can simplify 
problem identification by ranking the feature and those features that 
do not affect the identification capability can be removed to increase 
operation efficiency and decrease the cost of evaluation systems without 
losing accuracy [6]. So some studies have applied Principal Component 
Analysis (PCA) as pre processing methods to reduce the dimension of 
feature vectors [4].

Data are further processed to extract specific features which are 
then transmitted to either supervised or unsupervised neural network 
for identification and classification. 

This feature extraction step is in accordance with textural structure, 
the difference in gray levels, the shape and size of the defects and etc. [2] 
and it is necessary to improve the performance of the neural network 
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Abstract
Any industry needs an efficient predictive plan in order to optimize the production quality and improve the economy 

of the plant by reducing the defective product and produce final product fits its end-use.

In the textile industry, mass variation is an important property of yarn and is generally described by the diagram 
and spectrogram. The main parameter used for characterizing yarn evenness is the Coefficient of Variation (C.V %). 
This parameter is based on the “cut and weight” method. Practice in the industry test length of 8 mm was used. This 
means that the C.V% corresponds to an electronic cut length of 8 millimeter. A diagram of the mass variation can 
also be produced to provide an overall profile of yarn irregularity.

For spun yarns, the evenness tester produces a spectrogram that covers a range of wavelengths from 2 cm to 
1280 m. It assesses periodic mass variations, which occur at least 25 times as being statistically significant. Periodic 
variations are typically caused by mechanical defects (e.g. drafting faults).

 This paper presented a new method based on multi-resolution analysis, for the classification of yarn mechanical 
defects diagnosis. It is constituted of two stages architecture: in the first stage a set of features are extracted from 
yarn signal by a wavelet analysis. The second stage is devoted to the classification of defect from the features by 
using Probabilistic Neural Network (PNN). Naïve Bayes algorithm and Bayes net algorithm is taken for classification 
and compared. The novelty of the proposed method resides in the ability not only with higher precision, but also with 
dimensionality reduction and higher speed than method of Fourier transform and mathematical statistics.
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classifier [7]. Consequently, a large amount of study is usually related 
to this step to extract useful information from images and feed them to 
neural network as input to recognize and categorize yarn, nonwoven, 
fabric, and garment defects.

In supervised systems, the neural network can establish its own data 
base after it has learned different defects with different properties. Most 
researchers have been used multi layer feed forward back propagation 
Neural network since it is a nonlinear regressional algorithm and can be 
used for learning and classifying distinct defects.

There are numerous publications on neural network applications 
addressing wide variety of textile defects including yarn, fabric and 
garment defects. Some of the studies reported on this application of 
neural networks are discussed hereunder.

In yarn spinning processing, it is well known that spinning process 
is a complex manufacturing system with the uncertainty and the 
imprecision, in which raw materials, processing methodologies, and 
equipments and so on all influence the yarn quality [8]. Yarn physical 
properties like strength, appearance, abrasion and bending are the most 
important parameters, affecting on the quality and performance of end 
products and also cost of the yarn to fabric process [9].

Kinsner and Lee [10] reported feature selection for textile yarn 
grading to select the properties of minimum standard deviation 
and maximum recognizable distance between clusters to achieve 
effectiveness and reduce grading process costs. Yarn features were 
ranked according to importance with the distance between clusters 
(EDC) which could be applied to either supervised or unsupervised 
systems. 

However, they used a back propagation neural network learning 
process, a mathematical method and a normal algebraic method to verify 
feature selection and explained the observed results. A thirty sets data 
were selected containing twenty data as training sets and the other ten 
data as testing sets. Each of these data were the properties of single yarn 
strength, 100 meter weight, yarn evenness, blackboard neps, single yarn 
breaking strength, and 100 meter weight tolerance [6]. A performance 
prediction of the spliced cotton yarns was estimated by Cheng and Lam 
[9] using a regression model and also a neural network model.

This paper presents a method that combines wavelet transform 
and probabilistic neural network for the classification of Cotton 
Yarn Faults (CYF). First the wavelet transform is applied to extract 
the important features of the CYF by thresholding and matching the 
wavelet coefficients. Many classification algorithms have been used for 
classifying the faults in yarn spinning machines. In order to say strongly 
that a particular algorithm is better compared to other algorithms a 
detailed comparative study needs to be done. Hence, this paper mainly 
deals with the performances of Naïve Bayes and Bayes net algorithms 
in various aspects.

The rest of the paper is organized as follows. Experimental setup 
and experimental procedure is described in the following section. 
Section 3 presents feature extraction from the time domain signal. 
Section 4 describes the training of the classifier and the classification 
accuracy is tested and subsequently Section 5 presents results of the 
experiment. Conclusions are presented in the final section.

Proposed Model
The proposed method as shown in figure 1 aims to extract the 

feature from the yarn mass variation signal by wavelet transform as the 
correct input for probabilities network.

The mass variations or weight per unit length variations of fiber 
arrangements are transformed by the measuring unit into a proportional 
electric signal. The measuring unit is composed of the capacitors with 
two parallel metal plates (Capacitor Electrodes). Because the dielectric 
coefficient of the fiber materials exceeds the dielectric coefficient of air, 
when the sample of yarn enters into the capacitor with a certain speed, 
the capacitance of the polar plate will increase, and the change of the 
capacitance is related to the actual volume of the yarns in the polar 
plates. The unevenness signal is amplified in the electronic circuit and 
saved to database. 

Discrete Wavelet Transform (DWT) of different versions of different 
wavelet families have been used to extract the features from unevenness 
signals. Because there are many factors affecting on the process of yarn 
production, the DWT of unevenness signals were computed. Eight 
levels are considered (from ‘d1’ to ‘d8’) to show a combination of signals 
and their decomposition details.

Spinning production is totally depending on drafting system that 
result from differing cylinder speeds along the production line. From 
the literature one can understand that many classification algorithms 
have been used for classifying the faults rotating members. Naïve 
Bayes and Bayes net algorithms were effectively used for tool condition 
monitoring as well. The feature vectors (CD1, CD2, …, CAm) were used 
as an input for training the classifiers. For each condition consider for 
the study 70% of the sample data points were used for training the 
classifier and the remaining 30% were used for testing purpose.

After the testing process, validation of the classifier was done and 
thus the efficiency of the classifiers for different families of wavelets 
were calculated and compared.

Wavelet transforms

Wavelet theory is functions that satisfy certain mathematical 
requirements, which deal with building a model for non-stationary 
signals, using a set of components that look like small waves, called 
wavelets. 

The wavelet transform is similar to the Fourier transform (or 
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Figure 1: Abstract graph for proposed method.



Citation: Mohamed AEA (2013) Fault Diagnosis of Spinning Industrial Systems by Using Wavelet Analysis and Soft Computer Classifier. Ind Eng 
Manage 1: 106. doi:10.4172/2169-0316.1000106

Page 3 of 6

Volume 2 • Issue 2 • 1000106
Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal 

much more to the windowed Fourier transform) with a completely 
different merit function. The main difference is this: Fourier transform 
decomposes the signal into sines and cosines, i.e. the functions localized 
in Fourier space; in contrary the wavelet transform uses functions that 
are localized in both the real and Fourier space. It has become a well 
known useful tool since its introduction, especially in signal and image 
processing [10,11].

There are many ways how to sort the types of the wavelet 
transforms. We can use orthogonal wavelets for discrete wavelet 
transform development and non-orthogonal wavelets for continuous 
wavelet transform development. In this paper, the focus was on Discrete 
Wavelet Transform (DWT). 

Discrete Wavelet Transforms (DWT)

The Discrete Wavelet Transform (DWT) is an implementation of 
the wavelet transform using a discrete set of the wavelet scales and 
translations obeying some defined rules.

The discrete wavelet transform provides a set of coefficients 
corresponding to points on a grid or two-dimensional lattice of discrete 
points in the time-scale domain.

 This grid is indexed by two integers, the first, denoted by m, 
corresponds to the discrete steps of the scale, while the second, denoted 
by n, corresponds to the discrete steps of translation (time displacement). 
The scale a becomes maa 0=  and translation becomes 0 0

mb nb a= , where 
a0 and b0 are the discrete steps of the scale and translation, respectively 
[12]. Then the wavelet can be represented by:

2
, 0 00( ) ( )

m
m

m n t a a t nb
−

−ψ = ψ −                    (1)

The discrete wavelet transform is given by:

2
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−= −∫
                  (2)

Where, ,m n Z∈ , and Z is the set of integer numbers.

The parameter m which is called level, determines the wavelet 
frequency, while the parameter n indicates its position. The inverse 
discrete wavelet transform is given by:
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Where, k is a constant that depends on the redundancy of the 
combination of the lattice with the used mother wavelet [12].

Along with the time-scale plane discretization, the independent 
variable (time) can also be discretized. The sequence of discrete points 
of the discretized signal can be represented by a Discrete Time Wavelet 
Series DTWS. The discrete time wavelet series is defined in relation to 
a discrete mother wavelet h(k). The discrete wavelet time series maps 
a discrete finite energy sequence to a discrete grid of coefficients. The 
discrete time wavelet series is given by [12].

2
0 00( , ) ( ) ( )

m
m

fW m n a f k h a k nb
−

−= −∑  ……… (4)

Multi-Resolution Analysis (MRA)

Multi-resolution Analysis - MRA, aims to develop a signal f (t) 
representation in terms of an orthogonal basis which is composed 
by the scale and wavelet functions. An efficient algorithm for this 
representation was developed in 1988 by Mallat [13] considering a 
scale factor a0=2 and a translation factor b0=1. This means that at 
each decomposition level m, scales are a power of 2 and translations 
are proportional to powers of 2. Scaling by powers of 2 can be easily 
implemented by decimation (sub-sampling) and over-sampling of a 

discrete signal by a factor of 2. Sub-sampling by a factor of 2, involves 
taking a signal sample from every two available ones, resulting in a 
signal with half the number of samples than the original one. Over-
sampling by a factor of 2, consists of inserting zeroes between each two 
samples resulting in a signal with twice the elements of the original one.

Analysis or decomposition

The structure of the multi-resolution analysis is shown in figure 2. 
The original signal passes through two filters, a low pass filter g (k), 
the function scale, and a high pass filter h (k), the mother wavelet. The 
impulse response of h (k) is related to the impulse response of g (k) by 
[13]:

)1()1()( 1 kgkh k −−= −                                       (5)

Filter h (k), is the mirror of filter g (k), and they are called quadrature 
mirror filters.

In the structure presented in figure 2, the input signal is convolved 
with the impulse response of h (k), and g (k), obtaining two output 
signals. The low pass filter output represents the low frequency content 
of the input signal or an approximation of it. The high pass filter output 
represents the high frequency content of the input signal or a detail of it. 
It should be noted in figure 2 that the output provided by the filters has 
together twice the number of samples of the original signal.

This drawback is overcome by the process of decimation performed 
on each signal, thereby obtaining the signal CD, the wavelet coefficients 
that are the new signal representation in the wavelet domain, and the 
signal CA, the approximation coefficients which are used to feed the 
next stage of the decomposition process in an iterative manner resulting 
in a multi-level decomposition.

The decomposition process in figure 3 can be iterated with 
successive approximations being decomposed, then the signal being 
divided into several resolution levels. This scheme is called “wavelet 
decomposition tree” or “pyramidal structure” [12,14].

Figure 3 shows the schematic representation of a signal being 
decomposed at multiple levels.
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Figure 2: Structure of the multi-resolution analysis.
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Since the multi-resolution analysis process is iterative, it can 
theoretically be continued indefinitely. In fact, the decomposition 
can proceed only up to 1 (one) detail, consisting of a single sample. 
The maximum number of decomposition levels for a signal having N 
samples is given by N2log .

Probabilistic Neural Network (PNN)

The structure of a Probabilistic Neural Network (PNN) is similar 
to a feed forward network. The main difference is that the activation 
function is no longer the sigmoid; it is replaced by a class of functions 
which includes, in particular, the exponential function. The main 
advantage of PNN is that it requires only one step for training and that 
the decision surfaces are close to the contours of the Bayes optimal 
decision when the number of training samples increases. Furthermore, 
the shape of the decision surface can be as complex as necessary, or as 
simple as desired [15].

The main drawback of PNN is that all samples used in the training 
process must be stored and used in the classification of new patterns. 
However, considering the use of high-density memories, problems 
with storage of training samples should not occur. In addition, the 
PNN processing speed in the classification of new patterns is quite 
satisfactory, and even several times faster than using back propagation 
algorithms as reported by [16].

The Bayes strategy for pattern classification: One of the 
traditionally accepted strategies or decision rules used in pattern 
classification is that they minimize the “expected risk” such strategies 
are called Bayes strategies, and can be applied to problems containing 
any number of categories [17].

To illustrate the Bayes decision rule formalism, it is considered the 
situation of two categories in which the state of known nature θ, can be 

Aθ or Bθ . It is desired to decide whether Aθθ =  or Bθθ =  based on a 
measurements set represented by n dimension vector x. Then the Bayes 
decision rule is given by:

( ) ( ) ( )
( ) ( ) ( )

A A A A B B B

B A A A B B B

d x If h l f x h l f x
d x If h l f x h l f x

= θ >
= θ <

                  (7)

Where fA(x) and fB(x) are the probability density functions for 
categories 

Aθ and 
Bθ respectively, lA is the uncertainty function 

associated with the decision 
Bxd θ=)(  when 

Aθθ = ; 
Bl  is the 

uncertainty function associated with the decision 
Axd θ=)(  when

Bθθ = , Ah  is the a priori probability of category 
Aθ  patterns 

occurrence, and hB=1-hA is the a priori probability that
Bθθ = . Then, the 

boundary between the regions in which the Bayes decision Axd θ=)(
and Bxd θ=)( is given by:

( ) ( )A Bf x Kf x=                                                     (8)

Where:

AA

BB

lh
lhK =                                        (9)

It should be noted that, in general, the decision surfaces of two 
categories defined by equation 8 can be arbitrarily complex, since there 
are no restrictions on the densities except for those conditions to which 
all probability density functions must satisfy, namely that they must be 
always positive, and integer and their integrals over all space be equal 
to unity.

The ability to estimate the probability density functions, based on 
training patterns, is fundamental to the use of equation 8. Frequently, 
a priori probability can be known or estimated, and the loss functions 

require subjective evaluation. However, if the probability densities 
of the categories patterns to be separate are unknown, and all that is 
known is a set of training patterns, then, these patterns provide the only 
clue to the estimation of that unknown probability density. A particular 
estimator that can be used is [15]:

21
2

( ) ( )1 1( ) exp
2

(2 )

Tm ai ai
A n in

x x x x
f x

m =

 − −
 = −∑  σ π σ

                                  (10)

Where i is the pattern number, m is the total number of training 
patterns, xai is the ith training pattern of category Aθ , and Bθ is the 
smoothing factor. It should be noted that fA (x) is simply the sum of 
small Gaussian distributions centered at each training sample.

Structure of the probabilistic neural network: The probabilistic 
neural network is basically a Bayesian classifier implemented in 
parallel. The PNN, as described by Specht [16], is based on estimation 
of probability density functions for the various classes established by 
the training patterns. A schematic diagram for a PNN is shown in figure 
4. The input layer X is responsible for connecting the input pattern to 
the radial basis layer. X= [X1, X2, X3,…..XM] is a matrix containing the 
vectors to be classified.

In the radial basis layer, the training vectors are stored in a weights 
matrixW1. When a new pattern is presented to the input, the block 
distance calculates the Euclidean distance between each input pattern 
vector for each of the stored weight vectors. The vector in the output 
block distance is multiplied, point by point, by the polarization factor b. 
The result of this multiplication n1 is applied to a radial basis function 
providing as output a1, obtained from:

2

1
inea −=                                     (11)

This way, a vector in the input pattern close to a training vector is 
represented by a value close to 1 in the output vector 1a . The competitive 
layer of the weight matrix w2 contains the target vectors representing 
each class corresponding to each vector in the training pattern. Each 
vector w2 has a 1 only in the row associated with a particular class 
and 0 in other positions. The Multiplication w2a1 adds the a1 elements 
corresponding to each class, providing the output n2. Finally block C 
provides 1 at output a2 corresponding to the biggest element of n2 and 
0 for the other values. Thus, the neural network classifies each vector of 
the input pattern in a specific class, because that class has the highest 
probability of being correct. The main advantage of PNN is its easy and 
straightforward project, and not depending on training.

Feature Extraction
Wavelet-feature extraction

Feature extraction is a pre-processing operation that transforms 
a pattern from its original form to a new form suitable for further 
processing. The signals acquired in time domain can be used to 
perform fault diagnosis. Discrete wavelet transform (DWT) has been 
widely used and provides the physical characteristics of time-frequency 
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Figure 4: Schematic diagram of a Probabilistic Neural Network.
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domain data. Wavelet analysis of vibration signals yields different 
descriptive parameters. A big set of parameters were selected as the 
basis for the study. These features were extracted from vibration signals. 

In this paper, DWT of different versions of different wavelet families 
have been considered. The list of families considered for this study is 
given below:

1. Daubechies wavelet (db1, db2, db3, db4, db5, db6, db7, db8, 
db9, db10).

2. Coiflet (coif1, coif2, coif3, coif4, coif5)

3. Bi-orthogonal wavelet (bior1.1, bior1.3, bior1.5, bior2.2, 
bior2.4, bior2.6, bior2.8, bior3.5, bior3.7, bior3.9, bior4.4, 
bior5.5, bior6.8).

4. Reversed Bi-orthogonal wavelet (rbio1.1, rbio1.3, rbio1.5, 
rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, 
rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8)

5. Symlets (sym2, sym3, sym4, sym5, sym6, sym7, sym8).

6. Meyer wavelet.

The DWT of unevenness signals were computed for different 
conditions of the yarn. They show a combination of signals and their 
decomposition details at different levels designated ‘d1’ to ‘d5’. Actually, 
for the analysis here, six levels are considered (from ‘d1’ to ‘d6’).

Feature definition

The proper processing of the signal shows that there are considerable 
changes in the average energy level for different conditions of the 
yarn. Feature extraction constitutes computation of specific measures, 
which characterize the signal. The Discrete Wavelet Transform (DWT) 
provides an effective method for generating features.

The collection of all such features forms the feature vector. A feature 
vector is given by:

{ }1 2 12, ,...,dwt dwt dwt dwtv v v v=

A component in the feature vector is related to the individual 
resolutions by the following equation:

2
,

1

1 , 1,2,.....,12
in

dwt
i i j

ji
v w i

n =
= =∑

Where, 12 11 0
12 11 12 , 2 ,...., 2n n n= = = . 

dwt
iv is the ith feature element in a DWT feature vector. ni is the 

number of samples in an w2i,j individual sub-band, is the jth detail 
coefficient (high frequency component) of the ith sub-band. The 
wavelets considered in the present investigation are Haar (db1), 
Daubechies, Symlets, Coiflets, Biorthogonal, Reverse Biorthogonal and 
Meyer (dmey). Each of them is considered in the DWT form.

Classification
Naive Bayesian Classifier

The naive Bayesian classifier works as follows:

1. Let T be a training set of samples, each with their class labels. 
There are k classes C1, C2, C3….CK. Each sample is represented by an 
n-dimensional vector, X=X1,X2,….. XM, depicting measured values of 
the n attributes, A1, A2,….An respectively.

2. Given a sample X, the classifier will predict that X belongs to the 

class having the highest a posteriori probability, conditioned on X. That 
X is predicted to belong to the class Ci if and only if:

.,1)|()|( ijmjforXCPXCP ji ≠≤≤〉

 Thus we find the class that maximizes )|( XCP i . The class Ci for 
which )|( XCP i  is maximized is called the maximum posteriori 
hypothesis. By Bayes theorem:

)(
)()|(

)|(
XP

CPCXP
XCP ii

i =

3. As P(X) is the same for all classes, only P(X/ Ci) P (Ci) need be 
maximized. If the class a priori probability, P(Ci) is not known, then it 
is commonly assumed that the classes are equally likely, that is, P(C1)= 
P(C2)=…=P(Ck) and we would therefore maximize. P(X/Ci) Otherwise 
we maximize P(X/Ci) P (Ci). Note that the class a priori probability may 
be estimated by TTCfreqCP ii /),()( = .

4. A given data sets with many attributes; it would be computationally 
expensive to compute P(X/Ci). In order to reduce computation in 
evaluating P(X/Ci)P(Ci) the naive assumption of class conditional 
independence is made. This presumes that the values of the attributes 
are conditionally independent of one another, given the class label of 
the sample. Mathematically this means that:

∏
=

≈
n

k
iki CxPCXP

1

)|()|(

 The probabilities )|(),...,|(),|( 21 inii CxPCxPCxP can easily 
be estimated from the training set. Recall that here xk refers to the value 
of attribute Ak for sample X.

(a) If Ak is categorical, then P (xk/Ci) is the number of samples of 
class Ci in T having the value xk for attribute Ak, divided by freq (Ci, T), 
the number of sample of class Ci in T.

(b) If Ak is continuous-valued, then we typically assume that 
the values have a Gaussian distribution with a mean μ and standard 
deviation σ defined by

( )2

2
1( , , ) exp ,

2 2

x
g x

−µ
µ σ = −

πσ σ
 So that:

).,,()|( iikik CCxgCxP σµ=  

We need to compute iCµ  and iCσ , which are the mean and standard 
deviation of values of attribute Ak for training samples of class Ci. 

5. In order to predict the class label of X, P(X/Ci)P(Ci) is evaluated 
for each class Ci. The classifier predicts that the class label of X is Ci if 
and only if it is the class that maximizes )()|( ii CPCXP .

Bayesian network

A Bayesian Network (BN) [18] is a probabilistic graphical model 
where each variable is a node. The edges of the graph represent 
dependencies between linked nodes. A formal definition of Bayesian 
network [19] is a couple {G, P} where:

{G} is a directed acyclic graph, whose nodes are random variables 
X={X1, X2, X3,…….Xn}and whose missing edges represent conditional 
independences between the variables,

{P} is a set of conditional probability distributions (one for each 
variable): 1 1{ ( | ( )),..., ( | ( ))}n nP p x pa x p x pa x=

Where pa(xi) is the set of parents of the node Xi.

The set P defines the joint probability distribution as:
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Y2, Y3,…….Yp (dimension Y1, Y2, Y3,…….Yp) is x∏
=

p

i
iy

1

.

The second case of CPT is for a continuous variable with discrete 
parents. Assuming that B is a Gaussian variable, and that A is a discrete 
parent of B with a modality, the CPT of B can be represented as in the 
table 2 where ),(~)|(

111 aaNaBP σµ  indicates that B conditioned to 
A=ai follows a multivariate normal density function with parameters 

1aµ  and 1aσ . If we have more than one discrete parent, the CPT of 
B will be composed of ∏

=

p

i
iy

1
Gaussian distribution where yi represents 

the respective number of modalities of the parent nodes pyyy ,...,, 21 .

The third case is when a continuous node B has a continuous 
parent A. In this case, we obtain a linear regression and we can 
write, for a fixed value a of A, that B follows a Gaussian distribution 

);(~)|( BB aNaABP σβµ ×+=  where β  is the regression coefficient. 
Evidently, the three different cases of CPT enumerated can be combined 
for different cases where a continuous variable has several discrete 
parents and several continuous (Gaussian) parents.

The classical use of a Bayesian network (or Conditional Gaussian 
Network) is to enter evidence in the network (evidence is the 
observation of the values of a set of variables). Thus, the information 
given by the evidence is propagated on the network in order to update 
the knowledge and obtain a posteriori probability on the non-observed 
variables. This propagation mechanism is called inference. As its name 
suggests, in a Bayesian network, the inference is based on the Bayes 
rule. Many inference algorithms (exact or approximate) have been 
developed, but one of the more exploited is the junction tree algorithm 
[22].

Application and Results
Database

To investigate the effectiveness of exact wavelet analysis in 
industrial machine fault diagnosis, a series of unevenness yarn signals 
collected from a real machine were analyzed for detecting possible 
faults occurring during the operation of the machine.

 In the experiments, the type of fault is extremely frequent not only 
in the products prior to spinning but also in yarns, because defective 
card clothing, out of center running rollers in draw boxes, defective 
aprons, etc. can all produce periodic mass variations. It is unfortunately 
not possible in most cases that one can recognize and analyze this type 
of fault from the diagram.

In this study, 250 samples (25 bobbin x10 reading/bobbin) have 
been used for cotton yarn spinning Ne=30 carded at different times. 
The geometric parameters of the yarn irregularity are listed in chart 1.

Experiential work

The features were extracted from yarn diagram signals by DWT. 
Figure 5 shows the comparison of a signal under normal conditions 
and some yarn fault.

DWT of different versions of different wavelet families have been 
considered. The DWT of yarn signals were computed for different 
conditions of the yarn. Table 3 shows the decomposition details at 
different levels designated ‘d1’ to ‘d8’.

From the calculated wavelet features the classification was carried 
out using Naïve Bayes and Bayes net classifiers and the results were 
compared. To design the classifiers (Naïve Bayes and Bayes net) for 
better classification, it has to satisfy two contradicting objectives.

During the training process, the algorithm gets trained in such a 

1
( ) ( | ( ))

n
i i

i
P x P x pa x

=
= ∏  

Theoretically, variables X1, X2, X3,…….Xn can be discrete or 
continuous. But, in practice, for exact computation, only the discrete 
and the Gaussian case can be treated. Such a network is often called 
Conditional Gaussian Network (CGN).

In this context, to ensure availability of exact computation methods, 
discrete variables are not allowed to have continuous parents [20,21].

Practically, the conditional probability distribution is described for 
each node by his Conditional Probability Table (CPT). In a CGN, three 
cases of CPT can be found. The first one is for a discrete variable with 
discrete parents. By example, we take the case of two discrete variables 
A and B of respective dimensions a and b (with a1, a2, a3,…….aa the 
different modalities of A, and b1, b2,b3,…….bn the different modalities 
of B). If A is the parent of B, then the CPT of B is represented in table 1.

We can see that the utility of the CPT is to condense the 
information about the relations of B with his parents. We can denote 
that the dimension of this CPT is ba× . In general the dimension of 
the CPT of a discrete node (dimension x) with p parents (discrete) Y1, 

A
B

b1 b2 … bb

a1
a2
. 
. 
. 

aa

P(b1|a1)
P(b1|a2)

. 

. 

. 
P(b1|aa)

P(b1|a1)
P(b1|a2)

. 

. 

. 
P(b1|aa)

... 

... 
. 
. 
. 

…

P(bb|a1)
P(bb|a2)

. 

. 

. 
P(bb|aa)

Table 1: CPT of a discrete node with discrete parents.

A B

a1
),(~)|(

111 aaNaBP σµ

a2 ),(~)|(
222 aaNaBP σµ

.

.

.

.

.

.

aa
),(~)|(

aa aaa NaBP σµ

Table 2: CPT of a Gaussian node with discrete parents.

Sample No. Sample diagram Fault type Fault describe 

1 

 

Normal No faults 

2 

 

Front roller 
eccentricity. 

 

3 

 

Drafting Wave fault. 

 
 

. 

. 

. 
 

. 

. 

. 

. 

. 

. 

. 

. 

. 

250 

 

Front roller oval. 
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Chart 1: Geometric parameters of the yarn irregularity.
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In the similar fashion, the efficiencies of different versions of all the 
mentioned wavelet families were computed and plotted as histogram 
charts as shown in figure 7.

Sample 
No. DWT Family CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9 CD10 CD11 CD12 CD13 CD14 CD15 CA16

1

D
au

be
ch

ie
s 

w
av

el
et db1 99.997 0.0001783 0.00022197 0.00022399 0.00019189 0.00026164 0.00018585 0.0002606 0.0002546 0.00020664 0.00019651 0.00018787 0.00017379 0.00017567 0.00022152 0.00017723

db2 99.997 0.00026045 0.00016465 0.00022747 0.00018453 0.00028336 0.00022444 0.00018293 0.0003126 0.0001836 0.00016666 0.00020986 0.00019422 0.00023475 0.00020495 0.00017124

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

db8 99.997 0.00022263 0.00018638 0.00020046 0.00020037 0.00019609 0.00019762 0.00031869 0.00025198 0.00022696 0.00018771 0.00021457 0.00015961 0.00024812 0.00016508 0.00016055

S
ym

le
ts

sym2 99.997 0.00026045 0.00016465 0.00022747 0.00018453 0.00028336 0.00022444 0.00018293 0.0003126 0.0001836 0.00016666 0.00020986 0.00019422 0.00023475 0.00020495 0.00017124

sym3 99.997 0.00020799 0.00020346 0.00022202 0.00018642 0.00025273 0.00019362 0.00019837 0.000284 0.0001843 0.00016106 0.00018058 0.00020675 0.00021117 0.00020348 0.00022653
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.

sym8 99.997 0.00018214 0.00019376 0.00019823 0.00022481 0.00020146 0.00019353 0.00026014 0.00023019 0.00020619 0.00015782 0.00027418 0.00020571 0.00019459 0.00017708 0.0001699

C
oi
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t

coif1 99.997 0.00021123 0.00021147 0.00018553 0.00019129 0.00021946 0.00016608 0.0002942 0.00029378 0.0002052 0.00018334 0.00014875 0.00016665 0.00023394 0.00019063 0.00021046

coif2 99.997 0.00018383 0.00019875 0.00021838 0.00018553 0.00023329 0.00018571 0.00027301 0.00025832 0.00018341 0.00015788 0.00034107 0.00016806 0.00020297 0.00017774 0.00016242
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coif5 99.997 0.00026069 0.0001934 0.00015844 0.00016932 0.00022627 0.00021382 0.00025017 0.00027601 0.00018925 0.0001515 0.00031717 0.00020138 0.00019988 0.00017114 0.00016127

B
i-o

rth
og
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al

boir1.1 99.997 0.0001783 0.00022197 0.00022399 0.00019189 0.00026164 0.00018585 0.0002606 0.0002546 0.00020664 0.00019651 0.00018787 0.00017379 0.00017567 0.00022152 0.00017723

boir1.3 99.997 0.00018179 0.00019912 0.00026472 0.00023137 0.00018622 0.00022144 0.00028852 0.0002788 0.00020255 0.00017273 0.00024966 0.0001799 0.0002345 0.00017455 0.00015931
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boir6.8 99.997 0.00028865 0.00023732 0.00016249 0.00031448 0.0002484 0.00017123 0.00020884 0.00026679 0.00018253 0.00029194 0.00022546 0.0001687 0.00015074 0.00015132 0.00013046
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.
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.

.

.

.

250 boir6.8 99.991 0.00098693 0.0013716 0.00011586 0.0026709 0.0010462 0.00025606 5.07E-05 0.0007915 0.00050491 0.00062304 0.00010003 0.00011233 8.03E-05 4.45E-05 1.01E-05

Table 3: Decomposition details of yarn signal.

way that it performs well for the future data samples as shown in figure 
6. As a first step the classification accuracy is found using Naïve Bayes 
and Bayes net classifiers for different versions of the wavelet family. 
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Figure 5: Wavelet (db) family for 30/1 carded cotton yarn mass variation signals.
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From figures 8-11, best version of different families was picked 
up from each of the charts and compared among those best versions 
of different wavelet families and found the overall best wavelet family 
and the best version of that family for that particular classifier. There 
were two challenges to be encountered to select the best one. First is 
to select the best classifier between the Naïve Bayes and Bayes net. 
Second is to select the best wavelet and its corresponding version. By 
visual inspection, one can understand that Bayes net classifier performs 
relatively better than the Naïve Bayes classifier. Hence, the first challenge 
can be easily overcome. In that particular classifier, the best wavelet was 

 
 
 

 

 

 

 

 

Wavelet Packet Object Structure 
================================= 
Size of initial data       : [1025     1] 
Order                      : 2 
Depth                      : 4 
Terminal nodes             : [15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30] 
-------------------------------------------------- 
Wavelet Name               : db3 
Low Decomposition filter   : [0.03523   -0.08544     -0.135     0.4599     0.8069     0.3327] 
High Decomposition filter  : [-0.3327     0.8069    -0.4599     -0.135    0.08544    0.03523] 
Low Reconstruction filter  : [ 0.3327     0.8069     0.4599     -0.135   -0.08544    0.03523] 
High Reconstruction filter : [0.03523    0.08544     -0.135    -0.4599     0.8069    -0.3327] 
-------------------------------------------------- 
Entropy Name               : shannon 
Entropy Parameter          : 0 

 
 

Figure 6: Training processing for 30/1 carded yarn mass variation signal.
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Figure 7: Histogram of wavelet (db) family for 30/1 carded cotton yarn mass variation signals.
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to be found. While comparing the performances of different wavelet 
families, dwt_db8 (99.87%), dwt_sym5 (100%), dwt_bior5.5 (99.84%), 
and dwt_coif (100%) were selected from figures 12-13 respectively  as 
the best versions of different wavelet families. The confusion comes in 
picking up the best when two versions of the wavelet family give the 
same classification accuracies. 

All the best versions of different wavelet families were compared 
and overall best wavelet and the wavelet family were found and plotted 
as a histogram chart as shown in figure 12.

From figure 13, one can clearly say that the best wavelets from 
the chart are dwt_sym3 and dwt_coif2 and the classification accuracy 
achieved is 100%. However, this performance of the different versions 
of the wavelet is for the specific conditions of the yarn mass variation 
as discussed. The result of the best versions of the wavelets can be 
illustrated in a better way using the confusion matrix as shown in figure 
13.

From the confusion matrix (Figure 13), one can understand that 
250 samples were considered for each condition of the yarn mass 
variation. All the diagonal elements of the confusion matrix represent 
the number of correctly classified data points and the non-diagonal 
elements represent the incorrectly classified data points. In this fashion, 

Wavelet DB family Histogram VS. Naive Bayes and Bayes net classifier
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Figure 9: Wavelet (Sym) family Vs. Naïve Bayes and Bayes net classifiers.
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Figure 10: Wavelet (bior) family Vs. Naïve Bayes and Bayes net classifiers.
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 WOF FrF MrF BrF DWF Classified as 
WOF 250 0 0 0 0 | WOF = With Out Faults 
FrF 0 250 0 0 0 | FrF = Front roller Fault 
MrF 0 0 250 0 0 | MrF = Medial roller Fault 
BrF 0 0 0 250 0 | BrF = Back roller Fault 

DWF 0 0 0 0 250 | DWF = Drafting Wave Fault 
 

Figure 13: Confusion matrix for best wavelet families. 
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the classification accuracies were found and compared for various types 
of wavelets of different families. In this case, all the better condition 
data points have been correctly classified and the same was the case 
with drafting Front roller Fault (FrF) data points and fault with both 
Medial roller Fault (MrF) and Back Roller Fault (BrF). As there were no 
misclassification and hence efficiency was calculated to be 100%. The 
results obtained were specific to this particular data set. Classification 
accuracy of 100% does not assure similar performance for all feature 
datasets. In general the classification accuracy was very high. Hence the 
dwt_sym3 and dwt_coif2 versions of the wavelets are very much suited 
for fault diagnosis of yarn mass variation.

Conclusion
In this paper, an automatic yarn fault classification technique based 

on Multi-Resolution Analysis (MRA) and probabilistic neural networks 
has been developed. Five classical states viz., Without Fault (WOF), 
drafting Front roller Fault (FrF), drafting Medial roller Fault (MrF), 
drafting Back roller Fault (BrF), and Drafting Wave Fault (DWF), were 
simulated on yarn mass variation. Set of features was extracted using 
different wavelet analysis of data provided by a tested sample. 

The probabilistic neural network PNN can be used to classify the 
yarn unevenness signals in a very incipient stage with a success rate of 
up to 90%. Naïve Bayes and Bayes net algorithms are used to classify 
and the results were compared in the form of histogram charts.

One can clearly say that, the feature extraction using wavelets as 
well as Bayes net algorithm for classification were found to be good 
candidates for practical applications of fault diagnosis of yarn mass 
variation. However, these results are calculated and presented only for 
the representative data points considered for the faulty conditions.
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