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Introduction
Energy minimization is of strong practical and theoretical 

importance to computer vision. Energy expresses our criteria for a good 
solution—low energies are good, high energies are bad—independent 
of any algorithm. Algorithms are however hugely important in practice. 
Even for low level vision problems we are confronted by energies that are 
computationally hard (often NP-hard) to minimize. As a consequence, 
a significant portion of computer vision researchis dedicated to 
identifying energies that are useful and yet reasonably tractable. The 
work in this paper is of precisely this nature. Computer vision is full of 
‘labeling’ problems cost as energy minimization. For example, the data 
to be labeled could be pixels, interest points, point correspondences, or 
mesh datasuch as from a range scanner. Depending on the application, 
the labels could be either semantic (object classes, types of tissue) or 
describe geometry/appearance (depth, orientation, shape, texture). 

Two objective functions known as entropy generation rate and 
material cost with five constraints have been taken to measure the 
performance of the heat sink. Number of fins, height of fins, spacing 
between two fins and oncoming air velocity are considered as the 
design variables. The dynamic heat dissipation performance of plate-
fin heat sink is investigated using finite element software ANSYS 12.1. 
The results show the better or competitive performance of the TLBO 
algorithm over the other optimization algorithms considered by the 
previous researchers for the same problem.

Labeling problems

A labeling problem is, roughly speaking, the task of assigning 
an explanatory ‘label’ to each element in a set of observations. Many 
classical clustering problems are also labeling problems because each 
data point is assigned a cluster label. To describe a labeling problem 
one needs a set of observations (the data) and a set of possible 
explanations. The labeling problem associates one discrete variable 
with each datum, and the goal is to find the best overall assignment to 
these variables (a ‘labeling’) according to some criteria. In computer 
vision, the observations can be things like pixels in an image, salient 
points within an image, depth measurements from arrange-scanner, or 
intensity measurements from CT/MRI. The labels are typically either 
semantic (car, pedestrian, street) or related to scene geometry (depth, 
orientation, shape, texture).
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α-expansion algorithm

The α-expansion algorithm has a significant impact in computer 
vision due to its generality, effectiveness, and speed. It is commonly 
used to minimize energies that involve unary, pair wise, and specialized 
higher-order terms. Their main algorithmic contribution is an extension 
of α-expansion that also optimizes “label costs” with well characterized 
optimality bounds. Label costs penalize a solution based on the set of 
labels that appear in it, for example by simply penalizing the number of 
labels in the solution. The α-expansion algorithm performs local search 
using a powerful class of ‘moves’. Given an initial labeling f̂  and some 
particular label α ∈ L, an α-expansion move gives each variable the 
following binary choice: either keep the current label f̂p , or switch
to label α. Let ˆ( )M fα denote the set of all moves (labelings) that can 
be generated this way, in other words ( )M fα = { } { }{ }ˆ:f fp fp α∈ ∪ .

All variables are simultaneously allowed to keep their current label 
or to switch, so there are an exponential number of possible moves. 
For each choice of α we must efficiently find the best possible move. 
In practice, this sub-problem is solved by casting it as a graph cut 
and using combinatorial algorithms to compute the optimal binary 
configuration. Because a graph cut finds the best move from an 
exponential number of possibilities, the α-expansion algorithm is a 
very large-scale neighborhood search (VLSN) technique and is very 
competitive in practice.

With respect to some current labelling f̂ , the full set of possible
expansion moves is ( )ˆ ˆ( )M f LM fα= ∪∈ . The α-expansion algorithm
simply performs local search over the full search neighborhood M ˆ( )f . 
Perhaps surprisingly, local search with expansion moves will terminate 

with a labeling f̂ that is within a constant factor from the globally
optimal labelling f∗.

Abstract
Label cost optimization proposes a new improvement in label cost function, improving existing moves of α-expansion 

algorithm and introducing some new moves for this algorithm. In order to study the performance comparison, different 
metrics of energy minimization has been considered. An appropriate comparison has been drawn among proposed 
technique i.e. fast approximation algorithm and previous well known techniques. The objective is to effectively optimize 
energies so that satisfactory image segmentation can be obtained (represented with different labels respective to 
different objects). New combinatorial optimization algorithm have been proposed which shows promising experimental 
results with the new moves, which we believe could be used in any context where α -expansions are currently employed.
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In HOA, wind parcels move in a spiral course outward from a low-
pressure zone called the eye emulating hurricanes in the real world. 
During this process, wind parcels search for a lower pressure zone 
(new eye), which is considered as the optimal solution. The HOA is 
tested with several benchmark functions frequently used in the area of 
optimization. The obtained results exhibit the high performance of the 
proposed method.

Different energy minimization algorithms

Iterated conditional modes (ICM): Iterated conditional modes [1] 
use a deterministic “greedy” strategy to find a local minimum. It starts 
with an estimate of the labeling, and then for each pixel it chooses the 
label giving the largest decrease of the energy function [2]. This process 
is repeated until convergence, which is guaranteed to occur, and in 
practice is very rapid. Unfortunately, the results are extremely sensitive 
to the initial estimate, especiallyin high-dimensional spaces with non-
convex energies (such as arise in vision) due to the huge number of 
local minima. ICM is assign each pixel the label with the lowest data 
cost. This resulted in significantly better performance.

Graph cuts: The two most popular graph cuts algorithms [3], 
called the swap move algorithm and the expansion move algorithm, 
were introduced [4]. These algorithms rapidly compute a strong 
local minimum, in the sense that no “permitted move” will produce 
a labeling with lower energy. For a pair of labels α, β, a swap move 
takes some subset of the pixels currently given the label α and assigns 
them the label β, and vice-versa. The swap movealgorithm finds a local 
minimum such that there is no swap move, for any pair oflabels α, β 
that will produce a lower energy labeling. Analogously, we define an 
expansion move for a label α to increase the set of pixels that are given 
this label. The expansion move algorithm finds a local minimum such 
that no expansion move, for any label α, yields a labeling with lower 
energy. The criteria for a local minimum with respect to expansion 
moves (swap moves) are so strong that there are many fewer minima in 
high dimensional spaces compared to standard moves. In the original 
work of [4] the swap move algorithm was shown to be applicable to any 
energy where Vpq is a semi-metric and the expansion move algorithm 
to any energy where Vpq is a metric. The results of [5] imply that the 
expansion move algorithm can be used if for all labels α,β,andγ, Vpq(α, 
α) + Vpq(β, γ) ≤ Vpq(α, γ) + Vpq(β,α). The swap move algorithm 
can be used if for all labels α,βVpq(α, α) + Vpq(β, β) ≤ Vpq(α, β) + 
Vpq(β,α). (This constraint comes from the notion of regular, i.e. 
submodular, binary energy functions, which are closely related to 
graph cuts.) If the energy does not obey these constraints, graph cut 
algorithms can still be applied by “truncating” the violating terms [6]. 
In this case, however, we are no longer guaranteed to find the optimal 
labeling with respect to swap (or expansion) moves. In practice, the 
performance of this version seems to work well when only relatively 
few terms need to be truncated.

Max-product loopy belief propagation (LBP): To evaluate the 
performance of LBP, we implemented the max-product LBP version, 
which is designed to find the lowest energy solution. The other 
main variant of LBP, the sum-product algorithm, does not directly 
search for a minimum energy solution, but instead computes the 
marginal probability distribution of each node in the graph. The belief 
propagation algorithm was originally designed for graphs without 
cycles, in which case it produces the exact result for our energy. 
However, there is nothing in the formulation of BP that prevents 
it from being tried on graphs with loops. In general, LPB is not 
guaranteed to converge, and may go into an infinite loop switching 

between two labeling. Felzenszwalb and Huttenlocher [7] present a 
number of ways to speed up the basic algorithm. In particular, LBP 
implementation uses the distance transform method described in [7], 
which significantly reduces the running time of the algorithm.

Tree-reweighted message passing (TRW): Tree-reweighted 
message passing is a message-passing algorithm similar, on the surface, 
to LBP. An interesting feature of the TRW algorithm is that it computes 
a lower bound on the energy. The original TRW algorithm does not 
necessarily converge, and does not, in fact, guarantee that the lower 
bound always increases with time. In a research paper an improved 
version of TRW was used, which is called sequential TRW, or TRW-S. 
In this version, the lower bound estimate is guaranteed not to decrease, 
which results in certain convergence properties. In TRW-S we first 
select an arbitrary pixel ordering function S (p). The messages are 
updated in order of increasing S (p) and at the next iteration in the 
reverse order. Trees are constrained to be chains that are monotonic 
with respect to S (p). 

This Introduction covers the terminology and techniques used 
for the cost labeling approach. Thesis work will be focused around 
improvement in label cost function, improving existing moves of 
α-expansion algorithm and introducing some new moves for this 
algorithm. Some, new technique will be used in α-expansion algorithm 
to optimize label cost function and utilize it for better results.

Related Work
Anton Osokin [8] in his paper Author describe the α-expansion 

algorithm has had a significant impact in computer vision due to its 
generality, effectiveness, and speed. It is commonly used to minimize 
energies that involve unary, pair wise, and specialized higher-
order terms. Their main algorithmic contribution is an extension of 
α-expansion that also optimizes “label costs” with well characterized 
optimality bounds. Label costs penalize a solution based on the set of 
labels that appear in it, for example by simply penalizing the number 
of labels in the solution. As energy has a natural interpretation as 
minimizing description length (MDL) and sheds light on classical 
algorithms like K-means and expectation-maximization (EM). Label 
costs are useful for multi-model fitting and he demonstrate several 
such applications: homography detection, motion segmentation, image 
segmentation and compression.

Lena Gorelick et al. [9] in this paper author describes computers 
vision is full of problems elegantly expressed in terms of energy 
minimization. They characterize a class of energies with hierarchical 
costs and propose a novel hierarchical fusion algorithm. Hierarchical 
costs are natural for modeling an array of difficult problems. They 
explain in example, that in semantic segmentation one could rule out 
unlikely object combinations using hierarchical context. In geometric 
model estimation, one could penalize the number of unique model 
families in a solution, not just the number of models—a kind of 
hierarchical MDL criterion. Hierarchical fusionuses the well-known 
α-expansion algorithm as a subroutine, and offers a much better 
approximation bound in important cases.

Yuri Boykov et al. [4] in this paper author address the problem 
of minimizing a large class of energy functions that occur in early 
vision. The major restriction is that the energy function’s smoothness 
term must only involve pairs of pixels. He proposes two algorithms 
that use graph cuts to compute a local minimum even when very large 
moves are allowed. Thefirst move he consider is an α-β swap: for a 
pairoflabels α β; this move exchanges the labels between an arbitrary 
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set of pixels labeled and another arbitrary set labeled β. The first 
algorithm generates a labeling such that there is no swapmove that 
decreases the energy. The second move he consideredis a α-expansion: 
for a label α, this move assigns an arbitrary set of pixels the label α. The 
second algorithm, which requires the smoothness term to be a metric, 
generates a labeling such that there is no expansion move that decreases 
the energy. Moreover, this solution is within a known factor of the 
global minimum. He experimentally demonstrates the effectiveness of 
his approach on image restoration, stereo and motion.

Problem Definition
Image can be segmented by assigning different labels (represented 

by different colors) to different objects. Label costs penalize a solution 
based on the set of labels that appear in it, for example by simply 
penalizing the number of labels in the solution. There should be 
sufficient number of labels; too many labels do not represent good 
segmentation as multiple labels may represent subpart of single object. 
On the other hand, in case of too less number of labels, a single label 
may represent multiple objects. Label cost can be associated with 
energy terms (combination of various energies associated with images 
e.g. Smoothing Energy, Bending Energy, Elastic energy etc.). Most 
labeling problems in computer vision and machine learning are ill-
posed and in need of regularization, but the most useful regularization 
algorithms often make the problem NP-hard. The objective is to 
effectively optimize energies so that satisfactory image segmentation 
can be obtained (represented with different labels respective to different 
objects). In order to meet the objective, first task will be to define some 
label cost function in terms of energies. Unsupervised segmentation 
will be performed to assign labels by clustering simultaneously over 
pixels and color space using Gaussian Mixtures (for color images) and 
nonparametric histograms (for gray-scale images). 

Then based upon fast approximation based combinatorial 
optimization algorithm is implemented to minimize label cost function 
and redefine labels. α-expansion algorithm is already available for this 
purpose. This work focused around improvement in label cost function, 
and incorporating elastic energy for this algorithm. 

Methodology
Fast approximation based combinatorial optimization 
algorithm

Label costs: Start by considering a basic (unregularized) energy
( ) ( )E f pDp fp=∑ , where optimal fp  can be determined trivially by 

minimizing over independent ‘data costs’. We can introduce label costs 
into E(f) to penalize each unique label that appears in f:

1 1( ) ( ) . ( )p pE f D f h fδ= +∑ ∑
Where p∈P     l∈L    

Minimum graph cut algorithm is performing a graph cut based 
upon following objective functionf i.e. label, smooth, data and elastic 
cost.                                                             

2
( ) ( ) ( ) /p p pq p qE f D f V f f dv ds dsα= + +∑ ∑ ∫

        p∈P         l∈L             p,q∈N                   0                                                          

It defines how different steps discussed above will be used here to 
achieve the objectives.

Step 1: Define some label cost function in terms of energies. 

Step 2: Unsupervised segmentation will be performed to assign 
labels by clustering simultaneously over pixels and color space using 
Gaussian Mixtures (for Color images) and nonparametric histograms 
(for gray-scale images).

Step 3: Minimum graph cut algorithm is applied to separate two 
separate layers of the image. Separated layers are added into queue.

Step 4: Repeat until queue is empty.

Step 4a: pop an element from queue. 

Step 4b: perform minimum graph cut algorithm.

Step 4c: If selected layer is successfully further separated into sub 
layer by a minimum graph cut algorithm then add sub-layer to queue 
elseadd selected layer to the solution list.

Step 5: Assign different Labels/colors to objects present in every 
single element of solution list [layers].

Experimental Results
The experimental setup is essentially the same for each application: 

generate proposals via random sampling, compute initial data costs 
Dp, and run the iterative algorithm from the Tables 1 and 2 below 
compare running times (in seconds, 1.4 GHz Pentium IV) of the 
selected algorithms for a number of segmentation examples. Note 
that these times include min-cut/max-flow computation and Fast 
approximation based combinatorial optimization algorithm (Figures 
1-3). In each column we show running times of Fast approximation 
based combinatorial optimization algorithm and max-flow/min-cut 
algorithms corresponding to exactly the same set of seeds. The running 
times were obtained for the “5” and “25” neighborhood systems (N5 
and N25). Switching from N5 to N25 increases complexity of graphs 
but does not affect the quality of segmentation results much. 

Methods                  2D examples
Bell photo(255x313) Lung CT (409x314) Liver MR (511x511)

N4           N8 N4           N8 N4           N8
DINIC 2.73       3.99 2.91       3.45 6.33     22.86
H_PRF 1.27       1.86 1.00       1.22 1.94       2.59
Q_PRF 1.34       0.83 1.17       0.77 1.72       3.45
Combitorial 
Approach

0.11       0.19 0.32       0.38 0.30       0.55

Table 1: Comparison between running time.

Approximate         Methods
Energy minimization 

case
Algorithm Applications

V metric
α-expansion  and 

extensions, LP 
rounding, r-HST 

metrics 

Approximation bounds, 
segmentation, model fitting 

V semi-metric αβ-swap, r-HST 
metrics 

Approximation bound 

V truncated convex Range moves Approximation bound

│L│=2
QPBO ,QPBO 

bipartite multi-cut 
Approximation bound  α 

log(#non-submodular terms); 
QPBO gives partial labelings

Arbitrary energy
Mess, passing,  

decomposition, local 
search 

NP-hard to approximate by 
constant factor

Table 2: Comparisons of Various approximation algorithms results.
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Conclusions
Different metrics of energy minimization are considered for 

performance comparison. An appropriate comparison has been drawn 
among proposed technique and previous well known techniques. The 
objective is to effectively optimize energies so that satisfactory image 
segmentation can be obtained (represented with different labels 
respective to different objects). New combinatorial optimization 
algorithm have been proposed which shows promising experimental 
results with the new moves, which we believe could be used in any 
context where α-expansions are currently employed.
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Figure 1: Showing segmentation.

Figure 2: Color segmentation of labels.

Figure 3: Histogram of all color bands.
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