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Introduction
It is widely known that FasL induces apoptosis of cells that express 

Fas receptor. However the interaction between death receptor and its 
ligand does not always mean the initiation of programmed cell death 
and blocking of this ligand-receptor interaction can effect on activation 
of the recovery and neuroplasticity mechanisms (Figure 1).

Focal ischemic brain damage is accompanied by changes in the cell-
cell communication and depends on the following processes: deficiency 
of energy, ion imbalance, acidosis, excitotoxicity, lipid peroxidation, 
accumulation of arachidonic acid products, cytokine-mediated 
cytotoxicity, complement activation, disruption of blood-brain barrier 
permeability, glial cell activation, and leukocyte infiltration. All these 
processes depend on each other and, as a result, lead to cell death 
or metabolic changes. The main type of cell death in the area of the 
most significant decrease of brain tissue perfusion (< 10–15 ml/100 g/
min) is necrosis because other types of cell death require some energy 

*Corresponding authors: Dr. Lyubov R. Gorbacheva, Department of Physiology,
Pirogov Russian National Research Medical University, Ostrovitianov Street-1,
Moscow 117997, Russia, Tel: 74954343174; E-mail: gorbi67@mail.ru

Received November 02, 2016; Accepted December 02, 2016; Published December 
05, 2016

Citation: Sergeeva SP, Gorbacheva LR, Breslavich ID, Cherdak MA (2016) Fas Role 
in Ischemic Stroke; Not Only in Apoptosis. J Mol Genet Med 10: 236 doi:10.4172/1747-
0862.1000236

Copyright: © 2016 Sergeeva SP, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited

reserve [1]. Necrosis area is surrounded by a functionally silent due 
to blood supply decrease and energy deficit, but metabolically active 
tissue. During the initial stages of ischemia, this border region – known 
as the “ischemic penumbra” – may comprise up to a half of the total 
lesion volume. It was shown, that neurons in the ischemic penumbra 
might undergo apoptosis after several hours, days and even months 
after the onset of a stroke. At the same time, apoptosis involves not 
only a periinfarct zone, but also some other regions of the ipsi- and 
contralateral hemisphere. The extrinsic mechanisms of apoptosis, 
involved in ischemic stroke pathogenesis, include cell death receptors 
of TNF (tumor necrosis factor) superfamily and their ligands [2]. Role 
of Fas/FasL system in the stroke pathogenesis was discussed in recent 
literature. It was shown, that increase of Fas and FasL occurs in brain 
regions compromised by different neurological disorders and stroke 
as well [3]. Studies have shown the increase of brain Fas and FasL 
expression in animal stroke models [4] and patients with ischemic stroke 
[5]. Under cerebral ischemia conditions, pharmacological elimination 
of FasL effects or suppression of Fas/FasL system functioning on 
genetic level exert a neuroprotective action [6-8]. All these data suggest 
an important role of Fas/FasL system in the pathogenesis of stroke and 
its long-term effects.

Fas receptor structure

Fas receptor (Fas, APO-1, CD95) is encoded by Fas gene, located on 
10q24.1 chromosome. Gene expression occurs in almost all cell types 
of human body. Fas receptor consists of extracellular domains, formed 
by the N-terminal region, and cytoplasmic intracellular domains, 
formed by the C-terminal region refolding (Figure 2). There are 
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Figure 1: Activation of apoptotic, inflammation and regeneration signalling 
pathways by FasL-FasR interaction in the ischemic brain.
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of platelets after activation during tissue damage induces apoptosis in 
primary murine neuronal cells, human neuroblastoma cells, and mouse 
embryonic fibroblasts [18]. Recent studies showed that Fas death 
receptor pathway contributes to apoptosis in neurons [19,20]. FasL 
induces the apoptosis of cells, expressing Fas receptor. Recent studies 
showed that Fas induces apoptosis in neurons [19,21-25]. Several 
proteins, such as calreticulin, can bind to FasL and inhibit Fas/FasL-
mediated neuronal cell apoptosis during the early stage of ischemic 
stroke [26,27].

FasL exists in two forms: A 37-kDa membrane-bound FasL (mFasL) 
and a 30-kDa soluble FasL (sFasL). sFasL is a cleaved and soluble form 
of FasL released from activated cells and is traditionally considered as a 
cytokine that can induce apoptosis in susceptible cells [26,28,29]. mFasL 
apoptotic signal is initiated by the binding of membrane FasL form to 
Fas receptor on the membrane of another cell. In these circumstances, 
DD domain of Fas receptor connects with cytoplasmic protein FADD 
(Fas-associated protein with death domain). FADD through the death 
effector domain (DED) is linked to caspase-8. The binding of Fas, FADD 
and caspase-8 results in the formation of death-inducing signaling 
complex (DISC). At this level, intracellular signaling pathway bifurcates 
depending on the cell type and environment. The first scenario involves 
interaction of Fas and FasL with DISC formation and subsequent 
receptor internalization with all bound factors [30,31]. Thereafter 
DISC complex promotes procaspase-8 degradation with the activation 
of caspase-8. Active caspase-8 can then directly cleave procaspase-3 
and activate caspase-3. Active caspase-3 is involved in the degradation 
of protein molecules, such as DNA reparation enzymes, cytoplasmic 
and nuclear structural proteins, spindle proteins, and endonucleases. 
In addition, caspase-3 promotes activation of procaspases -6 and -7, 
which are able to anticipate apoptosis [32]. Under the second scenario, 
DISC complex formation and subsequent procaspase-8 activation are 
constrained by regulatory molecules FAP1, c-FLIP and PED-PEA15. 
This leads to an insufficient concentration of caspase-8 for apoptosis 
initiation through the above-mentioned way. Also, caspase-8 mediates 
cleavage of Bid to truncated Bid (tBid fragment), which translocates 
to mitochondria and stimulates Bax incorporation into mitochondrial 
membrane. Bax removes Bcl-2 protection of mitochondria from 
cytochrome С leakage [33]. Thereafter, the cytosolic interaction of 
Apaf-1 (apoptosis protease-activating factor 1), procaspase-9 and 
cytochrome C forms a protein complex called the apoptosome followed 
by the caspase-9 release.

SMAC (second mitochondria-derived activator of caspases) is 
released from mitochondria together with cytochrome C. SMAC 
release blocks another proapoptotic factor XIAP (Xlinked inhibitor of 
apoptosis protein). Subsequently, caspase-9 activates caspase-3 by the 
cleavage of procaspase-3 [34]. Recent studies of cerebral ischemia 
in rodents reveal that inhibition or lack of the Bcl-2 family proteins 
can provoke ischemic excitotoxic, metabolic and oxidative neuronal 
injury [35,36]. Bcl-2 and Fas neuronal apoptosis-related function 
after cerebral ischemia and reperfusion is associated with expression 
STAT3 in ischemic zone, including ischemic penumbra and ischemic 
core zone [37].

In addition, DD domain was revealed in the structure of receptor 
interacting protein 1 (RIP1), so it could be considered as an inducer 
of Fas-mediated apoptosis with the involvement of procaspase-2 [38]. 
Initially formed 51‐kDa C‐terminal fragment containing the death 
domain (PIDD‐C) mediates the activation of NF‐κB via the recruitment 
of RIP1 and NEMO, subsequent formation of 37‐kDa fragment (PIDD‐
CC) causes caspase‐2 activation and, thus, cell death. In this way, auto‐

three intracellular cysteine-rich domains – CRD1, CRD2 and CRD3. 
Charge of CRD2 domain and upper portion of CRD3 sustains robust 
binding of Fas receptor with its ligand. CRD1 domain, also known 
as PLAD (pre-ligand assembly domain), is connected to another two 
CRD1 subunits that promote the homotrimeric structure of receptor. 
Additionally, receptor structure includes domain, anchoring it to the 
cell membrane, and death domain (DD) for apoptosis initiation [9]. 
Adjacent to Fas DD internalization motif enables actin- and clathrin-
mediated internalization of the receptor. Binding of “survival domain” 
(CD95) at the cytoplasmic end of protein to Fas-associated phosphatase 
1 (FAP1) inhibits cytotoxic properties of Fas receptor [10].

Fas ligand structure

Fas ligand (FasL, CD178) is encoded by gene fasl, located on 
1q23 chromosome. This trimeric protein penetrates cell membrane. 
Transmembrane region of FasL includes conservative domain 
homologous to TNF family (aa 81–102) and differs much from 
intracellular region (aa 1–81), which consists of sequence of 80 amino 
acids. Its N-end is significantly larger as compared to the ligands of TNF 
(35 aa), LT b (18 aa) and TRAIL (17 aa). Only FasL contains unique 
conservative proline-rich domain (PRD) (aa 45–71, 22 proline and 5 
leucine residues), which enables interaction with cytosolic protein, 
carrying domains SH3 or WW. Furthermore, only FasL exhibits casein 
kinase substrate motif and tyrosine kinase phosphorylation sites. 
Extracellular domain could be split off by membrane-type matrix 
metalloproteinase-3 and -7 with its subsequent secretion in the form of 
soluble trimer. Nevertheless, the soluble form is unstable and relatively 
biologically inactive, whereas membrane-bound form of FasL is a 
potent inducer of apoptosis. Expression level of FasL on cell surface 
correlates with the sensitivity of these cells to FasL-mediated external 
stimulatory signals [11].

Fas ligand-induced apoptosis

Fas ligand (FasL) is a well-known death system that can induce 
apoptotic cell death in a variety of cells expressing Fas receptor by 
the activation of downstream caspases via intrinsic (mitochondrial) 
or extrinsic (death receptor) pathways [12]. While Fas receptor is 
expressed in a wide variety of cells, FasL expression is tightly restricted 
to activated T cells [13], natural killer cells [14,15], photoreceptors [16] 
and liver cells [17]. Furthermore, the expression of FasL on the surface 

Figure 2: The Fas receptor schematic structure.
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proteolysis of PIDD might participate in the orchestration of the DNA 
damage‐induced life and death signaling pathways [39].

Furthermore, the interaction of Fas and FasL could activate c-Jun 
N-terminal kinase (JNK). In such a case, activated JNK antagonizes 
NFκB-dependent expression of anti-apoptotic proteins [40]. 
Furthermore, JNK promotes a proteasomal degradation of c-FLIP 
protein, blocks caspase-8 production [41-43].

Fas ligand in inflammatory response

Inflammation is an important component of nervous tissue 
damage progression under the conditions of cerebral ischemia [44-48]. 
The development and maintenance of neurogenic inflammation are 
associated with astrocyte and microglia activation, leukocyte attraction 
andincrease of inflammatory mediators concentration, including IL-1b, 
TNF-a, monocyte-derived chemokines MIP-1a and MCP-1, etc. [49-
52]. Furthermore, the degree of inflammatory reaction correlates with 
brain damage severity and long-term outcome of ischemic stroke [53-
58]. FasL is able to activate pathways of signal transduction, inducing 
inflammatory response [59-61]. Studies results suggest that FasL-
mediated induction of proinflammatory cytokines and chemokines (e.g. 
IL-6, MCP-1 and IL-8) expression occurs in different cell types [62-67]. 
Activated microglia and astrocytes are the main source of cytokines in 
CNS [68]. Ischemic neurons release sFasL, which contributes to M1-
microglial polarization. The underlying mechanisms may involve the 
activation of JAK2/STAT3 and NF-κB signaling pathways [69].

Inactivation of FasL in FasL-mutant (gld) mice by point mutation 
results in the decrease of cerebral and systemic inflammatory response, 
protecting brain from a damage in the model of ischemic stroke or in the 
test with the lipopolysaccharide administration-induced inflammatory 
response. At the same time, this mutation has no influence on the 
intensity of apoptotic neuronal response. Inflammatory effect of FasL 
is mediated by the activation of CNS resident immunocompetent 
cells with the subsequent involvement of circulating leukocytes. The 
maximal infiltration of ischemized area with neutrophils and T-cells 
occurs in 24 hours after cerebrovascular accident [70,71]. In the animal 
model of ischemic stroke, Fas ligand was able to modulate T-cell 
response and degree of neutrophil infiltration. It has been shown, 
that the mutation of FasL in gld mice abolishes activation of the 
above mentioned glial elements and cytokine release with subsequent 
attraction of peripheral blood leukocytes related to ischemic stroke. 
Additional changes included a shift in immune response from type Th1 
to Th2 [56,72,73]. Th1-cells predominantly secrete proinflammatory 
cytokines, e.g. IL-1b, TNF-a, and IFN-c. Th1-cells are considered to 
play a negative role in the stroke development, whereas Th2-cells are 
able to secrete anti-inflammatory cytokines, such as IL-4 and IL-10, 
that impact on the neuroprotective effect [56]. It is demonstrated that 
the interaction between inflammation and neurogenesis takes place 
after the stroke [74-77]. Furthermore, acute inflammation initiates a 
regenerative response in the adult brain [78]. But the effect of the post-
ischemic neuroinflammatory immune response on neurogenesis is not 
well understood [79]. The understanding of poststroke inflammation 
mechanisms could reveal new targets for treatment and rehabilitation.

Regenerative role of Fas in the nervous system

Poststroke recovery depends on many clinical and biological factors 
[80,81]. There are several types of functional recovery after the ischemic 
stroke. The recovery of functions to the initial level is possible only in 
the absence of neuronal death, when the lesion predominantly consists 
of cells, inactivated by swelling, hypoxia and diaschisis. Another 
variant of recovery includes a functional reorganization with the 

involvement of new, earlier inactive structures. The most unfavorable 
outcome is readaptation with the arrangement to the existing defect 
[82]. Recovery at any level during the post-stroke period is mediated by 
neuroplasticity. Neuroplasticity presumes an ability of nervous tissue 
to change its structural and functional organization amid external and 
internal factors, while maintaining the adaptation and functional state 
of organism [83-88]. The anatomical basis of the plasticity is a cortical 
reorganization with the increase of functional effectiveness of preserved 
structures and an active involvement of alternative descending tracts. 
At the cellular level, these processes include synaptic remodeling, 
neosynaptogenesis, extrasynaptic neurotransmission, changes in 
dendritic structure, and axonal sprouting [89]. Metabolic changes 
affect neurons, glial elements and neuronal-glial interactions [90]. Data 
on the favorable effect of synaptic transmission via Fas receptors on 
neurogenesis induction [91,92] and neuritogenesis [93] suggest the 
neuroplastic potential of Fas. For example, in the neuronal culture 
Fas activation by monoclonal antibodies resulted in the enhancement 
of neuronal branching through the development of new axons. 
Experiments have shown that Fas initiates this process via binding 
with DD domain. In addition, Fas regulates neuronal branching by the 
phosphorylation of certain cytoskeletal components, e.g. microtubule-
associated protein tau (MAPT), whose binding with microtubules 
depends on phosphorylation. This interaction contributes towards 
microtubules stability. The addition of FasL to neuronal culture was 
associated with higher levels of dephosphorylated Tau (Ser 199/202) 
[94]. In vitro experiments on cell lines and primary mouse embryonic 
cortical neuronal cultures have shown that Fas directly regulates the 
morphological structure of neurons without apoptosis activation. New 
cytoplasmic membrane proximal domain (MPD), which is essential for 
Fas-induced process, growth was described in the structure of all TNFR 
superfamily members. The Fas MPD recruits ezrin, a molecule that links 
transmembrane proteins to the cytoskeleton and activates the small 
GTPase Rac1. Deletion of the MPD, but not the DD domain, abolished 
Rac1 activation and the process of neurogenesis. Furthermore, an 
ezrin-derived inhibitory peptide prevented Fas-induced neurite growth 
in primary neurons [95].

Studies have shown the presence of anti-apoptotic signaling 
pathway, induced by the Fas-FasL system. In the absence of receptor 
internalization, the formation of DISC complex is very slow, so 
activating signal spreads on MAPK (mitogen activated protein kinase) 
and NFκB pathways. The activation of these effector pathways promotes 
cell survival. Nonetheless, Fas stimulation increases MAPK and NFκB 
activation even in case of receptor internalization [33]. The MAPK 
family consists of three main members: ERK1/2 (extracellular signal–
regulated kinase), JNK (c-Jun N-terminal kinases, phosphorylating c-Jun 
transcription factor), and p38 protein. By responding to extracellular 
stimulus, MAPK kinases initiate a broad spectrum of cellular processes, 
including cellular metabolic level, motility, mitosis, differentiation, 
inflammation, death, and survival. ERK1/2 activation is predominantly 
associated with neuronal proliferation, differentiation and sprouting 
[96]. In ischemic stroke model, the amount of phosphorylated ERK was 
increased in different brain regions, with higher levels of this kinase 
expression in penumbra, but not in the ischemic core. Observations 
in the models of global ischemia demonstrated the most prominent 
expression of ERK in resistant to hypoxia brain regions [97]. Binding of 
Fas with its ligand in spinal ganglion cells leads to the DD-independent 
activation of ERK that finally results in axon elongation without any 
apoptotic effects [66]. Specific protein Faim2 (Fas apoptotic inhibitory 
molecule 2) has been shown to be an evolutionary conserved, neuron-
specific inhibitor of Fas/CD95-mediated apoptosis. In the oxygen-
glucose deprivation model, the lack of Faim2 caused an increase in 
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the caspase-associated death of primary neurons [98,99]. It is reported 
that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis 
of photoreceptors. The expression of Faim2 is regulated by the ERK 
signaling pathway. The modulation of ERK signaling that increases 
Faim2 expression may be a potential therapeutic option to prevent 
photoreceptor death [100].

 NFκB (Nuclear Factor Kappa-light-chain enhancer of activated B 
cells) is a transcription factor, formed by two subunits of the Rel family, 
represented by seven members: p65 (Rel A), p50 (NFκB1), C-Rel, 
Rel B, p100, p105, and p52. The activation of NFκB factor demands 
phosphorylation of inhibitory protein, associated with NFκB complex. 
This leads to the dissociation of complex with subsequent NFκB 
dimerization, translocation of the dimers to the nucleus and binding 
them to DNA elements, accompanied by the activation of target genes 
transcription. The above mentioned family of transcription factors is 
responsible for the regulation of genes, involved in inflammatory and 
other immune reactions, cellular proliferation and apoptosis. NFκB is 
involved in responses to stimuli such as different types of stress, effects 
of cytokines, growth factors, bacterial and viral antigens [101]. NFκB 
activation in brain tissue occurs normally, but is also associated with 
adaptation processes under extreme conditions. In such cases, this 
transcription factor is involved in the processes of neuronal survival, 
synaptic plasticity and memory [102,103]. Recent evidence has shown, 
that 72 hours after the excitotoxic kainic acid administration, the level of 
the p-FADD dependent transcription factor NF-κB in the hippocampus 
was also increased (+61%) [104]. It was demonstrated, that FADD is a 
multifunctional protein, and its phosphorylated form (p-Ser191/194) 
mediates antiapoptotic actions in vitro and neuroadaptations in vivo 
[105]. Therefore, the ratio of p-FADD to FADD in brain tissue has been 
proposed as the index of neuroplasticity [106].

In addition, it has been demonstrated, that lower dosages of 
soluble FasL (sFasL) enhanced proliferation and migration of the 
brain endothelial bEnd.3 cells. Effects of sFasL included increase in 
the endothelial secretion of vascular endothelial growth factor (VEGF) 
and up-regulation of expression of FADD, FLIP, TRAF, and NF-kB. 
Additionally, SiRNA inhibition of endothelial Fas expression completely 
abolished the proliferative effect of FasL, increase in VEGF secretion, 
and up-regulation of FADD–FLIP–TRAF–NF-kB pathway. Therefore, 
it could be concluded that the proliferation and migration of the brain 
endothelial cells could be directly regulated by Fas/FasL complex [107].

TCF4 (T-cell factor 4) was found to be an important transcription 
factor of the Wnt signaling system. The regulation of target genes 
depends on cytoplasmic accumulation of β-catenin (the upstream 
protein of TCF4) and its subsequent translocation to the nucleus 
with concomitant activation of the β-catenin/Tcell factor/lymphoid 
enhancer factor (TCF/LEF) transcriptional machinery. Studies have 
shown that TCF4 is involved in a cell proliferation and apoptosis [108]. 
In vivo and in vitro tests show that cell death and/or cell activation are 
triggered by complexes, formed by TCF4 binding elements (TBEs) of 
FasL and the TCF4 and β-catenin transcription factors. FasL is expected 
to be the target gene of the β-catenin/T-cell factor pathway as far as 
the co-transfection of LEF-1 and β-catenin transcription factors results 
in the significant increase of FasL promoter activities [109]. Traumatic 
brain injury (TBI) model in adult rats shows, that TCF4 might promote 
neuronal apoptosis and microglial proliferation after TBI [110].

Conclusion
The activation of Fas receptor-Fas ligand system could result in a 

broad spectrum of biological effects, including apoptosis, inflammation, 

proliferation and differentiation. Fas has no intrinsic enzymatic activity, 
but is associated with adaptor proteins, which initiate a wide range of 
signal pathways, such as MAPK, NFкB, JNK, ERK, phosphorylation of 
cytoskeletal proteins, and caspase-dependent apoptosis. In the nervous 
system of human and animal adults, the level of Fas expression is very 
low. Nonetheless, Fas receptor expression increases significantly in 
response to damage, associated with oxidative stress, trauma, ischemic 
stroke, excitotoxicity, pharmacological toxicity, neurodegenerative 
processes, etc. FasL is capable of activating signal transduction 
pathway, involved in the induction of inflammatory response. However, 
during ischemic stroke Fas is responsible not only for cell death and 
inflammation, but also for the realization of recovery processes as well, 
where neuronal plasticity plays a crucial role. This fact is of a great 
clinical importance for the future development, testing and clinical 
assessment of neuroprotective drugs.
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