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Introduction
As the elderly population continues to increase, the welfare 

and health care systems are also expected to expand significantly to 
ensure continued improvement in the elderly population’s quality of 
life (QOL). Falls among the elderly have become a major concern; 
almost 30% of individuals aged 65 years and above fall each year 
[1-4], and most cases are unwitnessed. Falls lead to deterioration in 
health and physical activities; physiological distress; pain caused by 
injuries, impairment, or imbalanced gait; fear of repeated falling; 
and deterioration of QOL. Various physical assessment tools have 
been developed to reduce the risk of falling among t h e  elderly [5]. 
One established standard assessment used by therapists worldwide to 
measure basic mobility function and evaluate the risk of falling among 
the elderly is the timed up-and-go (TUG) test. However, in classifying 
the risk of falling using this method, age-related ability was identified 
to have limited clinical value. The literature recognizes a myriad of 
risk factors for falls, including demographic factors, historical factors, 
physical deficits, environment factors, and others [6,7]. Diverse factors 
associated with physical deficits contribute to falling. The likelihood 
of falling increases with the number of risk factors. Classification 
of the fall risk using several important measures selected from various 
gathered parameters is essential to enhance interest in this topic.

In current practice, many therapists use time parameters a s 
measured with a stopwatch to classify the risk of falling among the 
elderly. New sensor technology implemented by previous researchers 
enables extraction of acceleration and angular velocity signals for 
fall risk assessment. Sway and standing balance have been estimated 
using accelerometry and gyro-sensors. Several other gait performance 
measures, including the TUG test, have also been evaluated [8-21]. 
Various parameters have been measured and collected to classify the 
risk of falling among the elderly. These parameters include position 
and angle, angular velocity, linear acceleration step and stride, cadence, 
speed, energy, and frequency. The root mean square of the vertical linear 
acceleration has been used to measure gait smoothness, with larger 
values linked to an increased risk of falling. However, it is difficult to 
identify the parameters that most strongly influence the risk of falling. 

Generally, an increase in spatial and temporal variability is associated 
with an increased risk of falls [2]. In addition to the TUG test, several 
phases are available for measurement (e.g., sit-to-stand, walking turn), 
and knowledge of which phases and parameters are the most significant 
with respect to the risk of falls would be clinically beneficial. 

The risk of falls is currently predicted using derived models as 
opposed to correlating variables with the risk or occurrence of falls. 
The decision tree, neural network, linear discriminate function, cluster 
analysis, and support vector machine have all been candidates for fall 
risk prediction. The stability and variability of walking can be identified 
by a simple control theory such as the Lyapunov exponent [22]. A 
review by Howcroft et al. [8] suggested that intelligent computing 
methods such as neural networks and Bayesian classifiers might be 
more appropriate for fall risk classification than regression techniques 
[8]. However, no studies have identified the parameters that play the 
most important roles in the risk of falls.

Several parameters (usually highly correlated) can be computed 
from the signals recorded during the test. To avoid redundancy and 
identify the features that are most sensitive to locomotor performance, a 
dimensionality reduction was performed through principal component 
analysis (PCA).

In this study, we performed a quantitative analysis using the dataset 
obtained from wireless inertial sensors during the TUG test and 
classified the risk of falling among elderly subjects using multivariate 
analysis to identify the most effective parameter. Furthermore, the 
result will interpret and discuss with the clinical point of view. 
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Methods
Subjects

Thirty-eight elderly subjects (male, 20; female, 18) with an average 
age of 65.18 ± 8.90 years from Fujimoto Hayasuzu Hospital, Japan 
participated in the TUG test. The low-fall-risk (LFR) group comprised 
27 subjects, and the high-fall-risk (HFR) group comprised 11 subjects. 

Ethical approval was obtained from the Fujimoto Hayasuzu Hospital 
Ethics Committee. A previous study by Shumway-Cook et al. reported 
that the use of 13.5 s as a threshold achieved 87% sensitivity for multiple 
fallers and 87% specificity for nonfallers [20]. Accordingly, the subjects 
were categorized as LFR upon completing the test within 13.5 s, while 
subjects who could not complete the test within that time were classified 
as HFR.
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Figure 1: (a) TUG test set and (b) sensor attachment and direction of accelerometer and angular velocity.

Parameters Sit-bend Bend-stand Sit-stand Walk 1 Turn 1 Walk 2 Turn 2 stand-bend bend-sit stand-sit Total Sum
Time 1 1 1 1 1 1 1 1 1 1 1 11

RMS

Acceleration
AP 1 1 1 1 1 1 6
ML 1 1 1 1 1 1 6
V 1 1 1 1 1 1 6

Angular Velocity
Roll 1 1 1 1 1 1 6
Pitch 1 1 1 1 1 1 6
Yaw 1 1 1 1 1 1 6

Amplitude
Angular Velocity

Pitch 1 1 1 3
Yaw 1 1 2

Angle Pitch 1 1 2
Number of steps 1 1 1 1 1 5
Number of strides 1 1 1 1 1 5
Mean step time 1 1 1 1 4
Mean stride time 1 1 1 1 4

Candence 1 1 1 1 4
Speed 1 1 2

Total 78

Table 1: Parameters in each phase.
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Experimental set-up

This experiment was based on the TUG test, which was introduced 
by Podsiadlo and Richardson in 1991. Figure 1(a) shows the main 
principle of the TUG test.

For the sake of simplicity, the subjects wore only one inertial sensor 
dorsally on the waist while performing the test. The sensor was tightly 
attached to the waist to minimize motion artifacts. For this purpose, 
the sensor was slotted in a belt that was attached to the waist, as shown 
in Figure 1(b). Throughout the experiment, a therapist was present for 
safety reasons. The experiment was conducted as follows:

1.	 The subject sat on an armless chair with a back (approximate 
seat height of 46 cm).

2.	 The subject rose from the chair.

3.	 The subject began to walk toward a marked post 3 m away.

4.	 The subject turned after reaching the marked post.

5.	 The subject wa l ke d  anot her  3  m to  re tur n  to the seat.

6.	 The subject turned to face forward before sitting.

Signal analysis

a) Parameters selected during the TUG test

The parameters obtained from the wearable inertial sensor during 
the TUG test are shown in Table 1. Each phase was divided by 12 and 
comprised time, accelerometer, and angular velocity parameters, as well 
as spatial and temporal parameters, such as step and stride [23]. 

The first analysis involved comparison of each feature between the 

two groups via a t-test. The threshold was 13.5 s based on a previous 
study [20]. Significant parameters were then chosen, but in accordance 
with our aim, the time data were eliminated. 

At the beginning of the study, we divided all subjects into HFR and 
LFR groups using the total time parameters. Due to their important 
influence, we removed all time parameters to determine whether other 
parameters could be used to correctly classify the elderly subjects into 
their respective groups.

b) PCA

The most important objective of PCA is to represent multivariate 
data as low-dimensional data. By combining the data that account for 
the most variation among the original multivariate data, the data are 
summarized with minimal loss of information. By projecting all 
observations onto this low-dimensional subspace and plotting the 
results, it is possible to visualize the structure of the dataset. From the 
new low-dimensional constructed principal component, the variables 
that contribute most to the patterns among the observations could 
be determined. Therefore, PCA may also frequently indicate which 
parameters of which variables account for the patterns among 
the observations. The variables that influence the pattern and the 
correlations among the variables in a dataset are important; some of 
these low-performance variables might therefore be removed from 
consideration to simplify the overall analyses.

c) Preprocessing of the data

In this study, 78 parameters were collected from the signals shown 
in Tables 1 and 2. In total, 44 parameters were found to have significant 
value in differentiating the HFR and LFR groups. Of 44 significant 
parameters, 35 were selected (9 time parameters had been removed 

Parameter Parameter Parameter
P1 Time-sit-bend P27 RMS.acc.V-sit-bend P53 RMS.angvel.Y-walk1
P2 Time-bend-stand P28 RMS.acc.V-bend-stand P54 RMS.angvel.Y-walk2
P3 Time-sit-stand P29 RMS.acc.V-stand-bend P55 # of Step-walk 1
P4 Time-walk 1 P30 RMS.acc.V-bend-sit P56 # of Step-walk 2
P5 Time-turn 1 P31 RMS.angvel.R-sit-bend P57 # of Step-turn 1
P6 Time-walk 2 P32 RMS.angvel.R-bend-stand P58 # of Step-turn 2
P7 Time-turn 2 P33 RMS.angvel.R-stand-bend P59 # of Step-total 
P8 Time-stand-bend P34 RMS.angvel.R-bend-sit P60 # of Stride-walk 1
P9 Time-bend-sit P35 RMS.angvel.P-sit-bend P61 # of Stride-walk 2

P10 Time-stand-sit P36 RMS.angvel.P-bend-stand P62 # of Stride-turn 1
P11 Time-total P37 RMS.angvel.P-stand-bend P63 # of Stride-turn 2
P12 AMP.angvel-sit-stand P38 RMS.angvel.P-bend-sit P64 # of Stride-total 
P13 AMP.angvel-bend-stand P39 RMS.angvel.Y-sit-bend P65 Mean step time-Walk 1
P14 AMP.angvel-stand-sit P40 RMS.angvel.Y-bend-stand P66 Mean step time-Turn 1
P15 AMP.angvel Y-Turn 1 P41 RMS.angvel.Y-stand-bend P67 Mean step time-Walk 2
P16 AMP.angvel-Y Turn 2 P42 RMS.angvel.Y-bend-sit P68 Mean step time-Turn 2
P17 AMP.angle Y-sit stand P43 RMS.acc.AP-walk1 P69 Mean stride time-Walk 1
P18 AMP.angle Y-stand sit P44 RMS.acc.AP-walk2 P70 Mean stride time-Turn 1
P19 RMS.acc.AP-sit-bend P45 RMS.acc.ML-walk1 P71 Mean stride time-Walk 2
P20 RMS.acc.AP-bend-stand P46 RMS.acc.ML-walk2 P72 Mean stride time-Turn 2
P21 RMS.acc.AP-stand-bend P47 RMS.acc.V-walk1 P73 Cadence-walk 1
P22 RMS.acc.AP-bend-sit P48 RMS.acc.V-walk2 P74 Cadence -walk 2
P23 RMS.acc.ML-sit-bend P49 RMS.angvel.R-walk1 P75 Cadence -turn 1
P24 RMS.acc.ML-bend-stand P50 RMS.angvel.R-walk2 P76 Cadence -turn 2
P25 RMS.acc.ML-stand-bend P51 RMS.angvel.P-walk1 P77 speed walk 1
P26 RMS.acc.ML-bend-sit P52 RMS.angvel.P-walk2 P78 speed walk2

Where AMP is amplitude, RMS is root mean square. “angvel“ is angular velocity signal. Y, P and R are yaw, pitch and raw directions, respectively.. 
“acc” is acceleration signal.  ML, AP  and V are medio-lateral, antero-posterior, vertical directions, respectively

Table 2: Selected parameters Yellow cells indicate parameters statistically significant between the HFR and LFR groups.
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from the dataset). These 35 significant parameters underwent PCA, 
and the parameters that influenced the data most strongly were ranked.

Results
Based on PCA of the 35 principal components, the most important 

parameter in PC1 was P16 (amplitude of angular velocity signal during 
the turn 2 phase in the yaw direction). Meanwhile, the most important 
parameter in PC2 was P75 (cadence parameter in the turn 1 phase). 
The first component contributed 49.46% of the variance to the whole 
dataset. PC1 is insufficient to model the systematic variation of a dataset; 
thus, the second component was considered. PC2 contributed 20.16% 
of the variance. The bar graph of each component’s variance in Figure 
2 shows how the first two components influenced the data. PC1 and 
PC2 were adequate for classification, allowing for discovery of ~70% 
of the variance in the dataset. In general, it was assumed that these two 
components explained a sufficient amount of the variance, providing a 
meaningful visual representation of the subjects and parameters.

Figure 3(a) and (b) use bar graphs to rank the important parameters 
PC1 and PC2, respectively. For PC1, the most important positive 
parameters were P16, P75, P15, P14, P73, P74, P51, P38, P37, P52, P54, 
P53, P33, P49, and P50, while the most important negative parameters 
were P59, P64, P55, P56, and P60. For PC2, the most important positive 
parameter was P75, while the most important negative parameters were 
P74, P73, P38, P16, P15, P41, P37, P52, P54, P51, and P53.

By projecting all observation onto the lower-dimensional subspace 
and plotting the results, it was possible to visualize the pattern of the 38 
subjects using all 35 parameters, as illustrated in Figure 4. Using the first 
principal component, the subjects were distributed into two groups. 
The HFR subjects were plotted on the left side of the graph, and the 
LFR subjects were scattered throughout the right side of the graph. The 
subjects were classified into their respective groups relatively accurately 
by PC1. For PC1, the negative values influenced the classification of 
subjects in the HFR group, while the positive values influenced the 

classification of subjects in the LFR group. As seen in the figure, the 
HFR and LFR subjects could be classified into their respective groups 
with almost 100% accuracy. Therefore, the parameters listed for PC1 
were used to classify the subjects.

Discussion
For fall-risk assessment, an instrumented TUG test that uses 

portable inertial sensors (iTUG test) has been proposed to improve the 
TUG test in several ways; namely, by allowing for automatic detection 
and separation of each performance, facilitating a detailed analysis of 
each and enabling a higher sensitivity than the TUG test [21,24-26]. 
Sensitive and reliable measures for fall-risk assessment have been 
provided by measurement of wearable inertial sensors [27]. These 
measures might be of primary interest for clinical applications [25,26]. 
Gait measures can be divided into three subcategories: temporal gait, 
range of motion, and spatial gait. 

Temporal gait measures are calculated based on the time of gait 
events, which are often measured with a stopwatch. Wearable motion 
sensors calculate the cadence, stance, etc. The range of motion of the 
trunk segment is estimated by integrating the signals from the angular 
velocity sensor. Furthermore, spatial gait measures, including stride 
length and velocity, are estimated using a biomechanical model [27]. 
In our study, these measures were easily obtained from the wearable 
inertial sensor. 

The TUG test is classified into 6 phases: sit-to-bend, bend-to-stand, 
walking, turning, walking, turning, stand-to-bend, and bend-to-sit 
and two combined phases of sit-to-stand and stand-to-sit. The selected 
parameters related to movement are shown in Table 1. The parameters 
we skipped were not strongly involved in movement. Turning speed is 
important, but it is difficult to estimate the turning distance; thus, the 
speed could not be obtained. Nevertheless, we selected 78 parameters 
and then 44 significant parameters; 35 parameters were u l t i m at e l y 
selected (9 time parameters were removed). These 35 significant 
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Figure 3: (a): Ranking of important parameters in PC1 using significant parameters (excluding time parameters)
(b) Ranking of important parameters in PC2 using significant measures (excluding time parameters).
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parameters were calculated by PCA and were found the influence for 
the fall risk. 

The principle parameter score was the turning amplitude of the 
angular velocity signal during the turn phase in the yaw direction. The 
turn-to-sit movement is a combination of the turning and stand-to-
sit transition, and is the most important and difficult task for elderly 
individuals whose physical activity has declined. PCA clearly showed 
the distribution of the HFR and LFR subjects. The peak angular velocity 
of the trunk during the turn-to-sit transition was important [24-28].  

The TUG test includes performance of several movements and 
provides objective measures related to the four major components of 
the test: gait, turning, sit-to-stand, and turn-to-sit. The gait measures 
include the cadence, gait cycle, stride, and stance. Our analysis 
indicated high scores for cadence (P73 and P74), amplitude of the angle 
(P15 and P16), and speed (P77 and P78). Subjects in the HFR group 
showed slower speeds and smaller cadences. Furthermore, the root 
mean squares of the angular velocity in the roll (P14 and P15), pitch 
(P51 and P52), and yaw (P53 and P54) directions had higher ranks. 

With respect to turning, the tuning duration, number of steps, peak 
tuning velocity, and step time are important measures [27]. Our results 
followed above clinical measures some extend and clearly showed the 
significance of the amplitude of the angular velocity. 

During the stand-to-sit and sit-to-stand movements, the root mean 
squares of the angular velocities in the roll, pitch, and yaw directions 
played important roles. A previous study showed that frail elderly 
subjects exhibited significantly decreased smoothness in the sit–stand 
transition pattern [8,21,23,29-33]. 

In conclusion, we aimed to identify the most important parameters 

during the TUG test using PCA. The principle component was angular 
velocity in the yaw direction, and the second principle component 
was the cadence of turning. Furthermore, in each phase; i.e., sit-to-
stand, walking, turning, and turn-to-sit, we determined the principle 
component scores, which are significant measures of the risk of falling. 
We attempted a simple PCA analysis and the results were in agreement 
with previous quantitative research. Thus we found that PCA could 
easily estimate a simple measure for fall risk in TUG.
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time parameters).
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