
Research Article Open Access

Schenck et al., J Health Med Informat 2012, S2 
DOI: 10.4172/2157-7420.S2-002

J Health Med Informat                 ISSN:2157-7420 JHMI, an open access journalBioinformatics

Keywords: Text mining; Mutations; Cancer

Abbreviations: API: Application Programming Interface;
COSMIC: Catalogue of Somatic Mutations in Cancer; HUGO: Human 
Genome Organization; MeSH: Medical Subject Headings; NER: 
Named Entity Recognition; NCBI: National Center for Biotechnology 
Information; NCIBI: National Centre for Integrative Biomedical 
Informatics; OMIM: Online Mendelian Inheritance in Man; SNP: 
Single Nucleotide Polymorphism; SAX: Simple API for XML; XML: 
Extensible Markup Language

Introduction 
Genomic mutations may result in severe diseases, e.g. cancer, 

one of the most widespread diseases in which a significant genetic 
component has been widely recognized [1]. With such a property, the 
mutation state of cancer tissue can be used, e.g. to discriminate the 
most likely response to a drug treatment [2,3] (Figure 1, adapted from 
Sharma et al. [3]). Furthermore, relating human genomic variation to 
disease risk is one of the major challenges of personalized medicine 
[4]. Therefore, large-scale access to data on cancer tissues and types 
with their associated genomic mutations is required in order to develop 
novel treatments in areas with a strong medical need.

The vast biomedical literature repository of PubMed [5] is a 
resource granting such access. In November of 2011, 159,221 abstracts 
matching the query “(cancer OR carcinoma OR neoplasm) AND 
(mutation OR SNP OR polymorphism)” could be found. Thus, the 
information is available in large scale, but in an unstructured form. 
The largest structured publicly available resource is the Catalogue of 
Somatic Mutations in Cancer (COSMIC) [6]. It is mostly fed through 
the manual curation of selected articles, also available via PubMed 
and has experienced a vast growth within recent years. In November 
2011, it contains over 67,000 unique mutations from almost 13,000 
curated studies, covering mutation information for over 200 cell lines 
on known “hot spot” cancer driver genes (such as KRAS or PTEN), 
but also whole genome information from a limited number of studies. 
Thus, it has become the international de facto standard repository for 
mutation information.

As of now, only manually maintained databases exist, containing 
information on the concept “mutations of genes in cancer”. It becomes 
evident that the data deluge from publications (almost 10,000 new 

*Corresponding author: Philip Groth, Therapeutic Research Group Oncology, 
Bayer Healthcare Pharmaceuticals, 13353 Berlin, Germany, Tel: +49 30 468 
196073; Fax: +49 30 468 18069; E-mail: philip.groth@bayer.com

Received November 23, 2011; Accepted December 25, 2011; Published January 
03, 2012

Citation: Schenck M, Politz O, Groth P (2012) Extraction of Genetic Mutations 
Associated with Cancer from Public Literature. J Health Med Informat S2. 
doi:10.4172/2157-7420.S2-002

Copyright: © 2012 Schenck M, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
Genomic mutations may result in severe diseases, e.g. cancer, a disease with a significant genetic component. The 

mutation state of cancer tissues is e.g. being determined experimentally in order to find the most likely response to a 
drug treatment. Results of such experiments are typically published in scientific literature.

We have developed a workflow of several text-mining algorithms, in order to harvest this wealth of information 
relevant to developing novel therapeutic approaches in cancer. Our workflow has successfully scanned over 150,000 
abstracts related to cancer and genetic mutations. New information on mutated genes in cancer could be extracted with 
a precision and recall of 86.8% and 30.3%, respectively. By applying the workflow, novel associations of mutations in 
specific cancer tissues could be extracted for 264 genes.
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Figure 1: Figure was adapted from Sharma et al. [3]. Distribution of various 
reported activating oncogenic mutations in a survey of 139 non-small-cell lung 
cancer (NSCLC)-derived cell lines. Also shown for all the activating mutations 
(except KRAS) are inhibitors (supplemented by the author) that selectively 
target the activated oncoproteins, yielding the most effective growth inhibition 
and/or apoptosis of cancer cell lines. There are currently no inhibitors that 
target oncogenic KRAS [3], but it has been reported that Sorafenib is the best 
treatment option for those lung cancer patients with KRAS mutations [2].
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publications each year) cannot be fully compensated by manual 
efforts such as COSMIC (where the total number of curated papers 
of the past 5 years has just reached 12,000). Due to this discrepancy 
between the available free text and the already annotated publications, 
Human annotators are bound to lose overview over the vast number 
of publications containing the sought-after information. Thus, 
automated efforts are necessary to overcome this gap between available 
and (machine-) usable data. Hence, the creation of a method to 
automatically mine the available biomedical literature and populate 
a database with information on mutations, genes, cell lines and their 
relation to one another can bring a significant advantage to the field.

Several algorithms have already been developed to extract either 
gene or disease or mutation data from the biomedical literature. The 
aim of these lie in helping researchers to access information contained 
in scientific publications in a faster, easier and more complete way [7]. 
However, to further advance the task described above, there is a need 
to evaluate the most efficient of these algorithms and combine them 
into one workflow, not only considering extraction of each of these 
entities alone, but especially when they are mentioned in context to 
one another.

The goal of the present work is to incorporate different text mining 
methods towards an integrative workflow extracting and associating 
genes, mutations and diseases (or disease models, i.e. cancer cell 
lines) and to evaluate and benchmark their results. For evaluation, the 
programmatic results are compared to a manually annotated text corpus 

derived from COSMIC. Furthermore, results are improved by editing 
some of the available tools, optimizing precision and at the same time 
retaining a reasonable recall. The source code of the resulting workflow 
of tools and databases is available within the supplementary material 
of this publication and some examples of what has been achieved by 
applying this workflow is given within this study.

Materials and Methods
Overview

The result of the present work is a tool we call gemuline, usable for 
extracting genetic mutations in cancer models (i.e. cell lines) or cancer 
sub-types from text. Our workflow extracts either cancer model or 
cancer sub-type if mentioned in the text. It prefers the name of a cell 
line (i.e. cancer model) over the mention of a cancer sub-type since 
an identified mutation in a specific model is typically more useful for 
experimental settings.

For input, gemuline first needs to get a set of texts (i.e. scientific 
publications) to be analyzed. Then it extracts entities (i.e. mutations, 
genes and diseases) and their relation to one another. Finally, it 
writes the results to a database. Incorporated tagger and verification 
methods include amongst others GNAT [8], the NCIBI Name Tagger 
[9], Mutation Finder [10], Array Express [11], COSMIC [6] and 
Uniprot [12]. For evaluation, a manually annotated corpus was added 
to the database and compared to the workflow’s results. Results were 
improved by adding more regular expressions to Mutation Finder. The 
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Figure 2: Workflow of all processes of gemuline in an overview. (1) Updating the data warehouse. Extracting information from data sources (1.1) and writing the pro-
cessed, combined data into the data warehouse (1.2). (2) Text retrieval. Acquiring PubMed ids from an online query (2.1) and downloading the abstracts (2.2). Option-
ally, retrieving full text versions (2.3). (3) Information retrieval. First, loading the cell line and neoplasm extractor with aliases from the data warehouse (3.0). Running 
MutationFinder to get mutation candidates (3.1). Tagging genes with either the NCBI Name Tagger or GNAT (3.2). Originally it was planned to also integrate OSIRIS, 
but the tool is currently not publically available (see chapter 2.1.10). Matching mutations to genes with Uniprot (3.3). If (3.3) is not possible, gene sequences are checked 
for a possible mutation at the given position (3.35). Finally, extraction and matching to cell lines or MeSH terms (3.4) takes place.
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best-performing tools identified in the course of this study are Mutation 
Finder and GNAT, thus they are used in the final implementation of the 
workflow. For disease extraction, a new extractor based on dictionaries 
was implemented by the authors as no working disease-term extractor 
exists at the time. Figure 2 depicts the overall workflow in detail.

This chapter discusses at first the main components of the 
implemented workflow: the database, the interface, text retrieval and 
information retrieval. Then, the implementation is described in more 
detail.

Database

A database is the foundation of the tool (Figure 3). It contains 
information on genes, diseases and gene expressions in cell lines. The 
tool extracts gene information from COSMIC and Uniprot. COSMIC 
provides most of the information, i.e. primary gene symbol, Entrez 
Gene ID [13] and synonyms for a gene. However, the Ensembl ID [14] 
is not listed in COSMIC. It is therefore fetched from Uniprot for every 
gene. COSMIC furthermore supplies a comprehensive set of cell line 
names. A disease term list supplementing the cell line names is extracted 
from Medical Subject Headings (MeSH) [15]. Since the external MeSH 
database cannot be queried, a file in Extensible Markup Language 
(XML) downloaded from the MeSH website was used to import these 
data. MeSH covers far more terms than needed for this study. Thus, 
the content of the XML was filtered to the terms under the “neoplasm” 
(i.e. cancer) branch. Gene expression values in cell lines can be found 
in the Array Express database. XML files were fetched from Array 
Express, one file per gene. In the XML files, each gene’s expressions in 
various cell lines are stated. The tool extracts the expression values and 
stores them in the database as well. An expression is always linked to 
its gene and its cell line respectively. The tool can update the database 
at any time. However, database access cannot be guaranteed during 
the update. Updating drops all current entries for diseases, genes and 
expressions and fetches them from the underlying data sources anew.

Interface

gemuline includes a web interface available to access the database. 
Figure 4 shows a screenshot of the web interface with results for a 
query. The web interface was built using PHP and javascript (including 
jQuery and jQueryUI). It allows searching for certain mutations, 
genes, diseases or a combination of those. The results can be manually 
validated to be true or false. Results manually set to false will only be 
shown as results of a query if the user explicitly wants to see them. The 
web interface links to all known sources like PubMed, Entrez Gene or 
Array Express.

Text retrieval

The tool receives documents on the basis of PubMed IDs as input. 
These can either be chosen randomly from all available PubMed IDs 
listed in COSMIC or read from a file listing them as chosen. A file 
listing all relevant PubMed IDs can e.g. be obtained with any PubMed 
search from the website http://www.ncbi.nlm.nih.gov/pubmed.

gemuline uses the PubMed IDs to retrieve XML files using 
the provided eFetch utility [16]. Figure 5 shows an overview over 
text retrieval. The abstracts are being extracted from the XML files 
subsequently. The entire abstract of a publication is part of the XML. 
The user can choose to also fetch available full text articles from 
PubMed central [16]. The tool will automatically convert PubMed 
IDs to PubMed central IDs using an online interface made available 
through the NCBI and download the full text PDF files. Conversion 
from PDF to plain text then is the next step. For conversion, Apache 
PDFBox (http://pdfbox.apache.org) is integrated into the workflow.

Information retrieval

Running MutationFinder on the plain text abstracts yields a list of 
all possible point mutations including their position in the text. To find 
genes within the text, either GNAT or the NCIBI Name Tagger can be 
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Figure 3: Simplified ER-Diagram of the database feeding gemuline.
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Figure 5: Text retrieval workflow in gemuline. Typically, PubMed IDs result from 
a PubMed query. Optionally, the tool can receive any type of abstract. The tool 
retrieves XML files from PubMed and extracts the abstract from the XML files. 
Optionally, the tool can download full text versions of publications.

chosen. Both result in a mapping of Entrez Gene IDs to positions in 
the text.

The association of genes extracted by GNAT or the NCIBI Name 
Tagger to mutations extracted by Mutation Finder is done next. A 
relation among an individual gene and an individual mutation is 
considered valid, if the Uniprot database has an entry of the given 
mutation associated with the gene. For validation, gemuline queries 
Uniprot for the specific gene, retrieves a list of registered mutations and 
checks for the mutation extracted from the abstract. If the mutation 
is recorded within Uniprot, the association is marked valid. In case 
Uniprot has no relationship in its database, the gene’s sequence in 
FASTA format is investigated. gemuline compares the wild type and 
the position of the extracted entity to the gene’s wild type at that 
location. A mutation can be validly connected to a gene if wild type 
of extracted entity and genomic sequence concur. Should multiple 
possible associations result from this procedure, the valid gene with the 
shortest distance to the mutation is chosen.

After associating genes and mutations, the next step is to assign 
the associated pair to disease models in form of cell lines or to disease 
terms. For this purpose, we have developed a dictionary-based disease 
extractor. Its dictionary was assembled from MeSH disease terms and 
all cell line names within COSMIC. It contains 6,009 disease terms and 
cell line names, and an additional 15,164 aliases. Retrieval of terms 
from text was done after removal of non-alphanumeric characters, 
utilizing case-ignorant matching with the following regular expression:

(^|[\\s\\(\\[\\’\”/,\\-])(ALIAS)([.,\\s)\\]\\’\”:;\\-?!/]|$)

First, the tool searches for cell lines. Only if no cell line name can 
be extracted, it searches for MeSH neoplasm terms. Furthermore, a 
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file with stop words (http://armandbrahaj.blog.al/2009/04/14/list-of-
english-stop-words) prohibits the false recognition of diseases, which 
are equal to common English words. If the algorithm extracts only one 
cell line or disease name from the text, associating the mutation-gene-
pair to that one disease is reasonable. However, in case the algorithm 
finds multiple diseases, it is important to distinguish between right and 
wrong associations. Altered gene expression in cell lines is a strong 
indicator for the existence of a mutation [17-19]. It is therefore most 
likely that the gene and its mutation are associated to the cell line 
with the most explicit change in gene expression. Therefore, gemuline 
compares the gene expression values in cell lines to the genes and cell 
lines extracted from text; thus finding the match with the most explicit 
expression. Did gemuline not extract any cell lines, but only disease 
terms, the tool chooses the term with the shortest distance to the gene.

The resulting triplets of associated gene, mutation and disease are 
scored based on how they were matched. The overall score is the sum 
of the individual scores, thus resulting in a score between one and four, 
where one is the worst rating and four is the best. The score depends 
on mutation-gene association and on gene-disease association. For 
mutation-gene association, the score improves if Uniprot already 
includes a reference to the extracted mutation. For gene-disease 
association, a cell line scores higher than a MeSH disease term, because 
it is less likely to be extracted falsely. Furthermore, the score improves, 
if the gene has a prominent expression in the cell line. The score is the 
sum of the mutation-gene rating and the gene-disease rating. Table 1 
summarizes scores according to the type of match.

Implementation rationale 

Gemuline was implemented in Java. Java was chosen because most 
of the existing tools that can be incorporated also have a Java version 
available (Mutation Finder, GNAT, Moara). The architecture of the 
tool was divided logically. The main package contains only the main 
class to handle the workflow and input arguments. In object Mapping 
are classes representing database objects. Xml Parsing contains Simple 
API for XML (SAX) parsers and handlers for the various types of XML 
files. Finally, utils consists of all classes executing parts of the tool. For 
example, cell line extraction or retrieving a gene’s sequence in FASTA 
format.

The tool must be able to run on different machines with different 
databases and most importantly with different usernames. For 
the purpose of easily changing these values, gemuline supplies a 
configuration file from which necessary information is read on 
start-up. The configuration file contains amongst others different 
database connection strings (e.g. jdbc:oracle:thin:@example.
com:1521:exampledatabase), usernames and passwords as well as 
directory locations and proxy configuration. Furthermore, it stores the 
base URLs for web accesses to PDF full texts.

Implementation 

The package object Mapping has a class for each entity and a class 

GemulineDatabase, which allows for saving and reading of all entities 
to and from gemuline’s database. utils holds a general database interface 
(IDatabase) and its implementation together with different parts of 
gemuline, i.e. CellLineExtractor and GnatLoader. Finally, the package 
xml Parsing has classes to read different kinds of XML files, e.g. from 
MeSH, Medline and Array Express. Additionally, the following libraries 
are imported: bc3 (GNAT), jakarta-oro (Perl5 regular expression usage 
for disease / cell line extraction), mutationFinder (to extract mutations 
from text), ojdbc (Oracle database driver), pdfbox (to extract text from 
pdf files).

Usage 

To run the tool, the system must provide the following requirements:

a) JAR file of gemuline,

b) Internet access for the NCBI Name Tagger or access to the
GNAT database,

c) Access to the tool’s own database,

d) Access to the COSMIC, Uniprot and ArrayExpress databases,

e) All of the following required JAR libraries must be in a lib/
directory or elsewhere accessible via classpath:

1. Mutation Finder

2. GNAT

3. OJDBC

4. PDFBox (if desired)

Then, the tool can be run from the command line using

java –jar Gemuline.jar [args]

Omitting the arguments or using -h or --help prints the help,
listing all available arguments (see the Supplementary File, Readme 
and source code for further details).

Corpus preparation for precision and recall evaluation

For evaluation, a manually generated annotated corpus was used. 
To build this corpus, 150 abstracts were randomly selected from 
COSMIC, in order to have a set of literature with high occurrence 
of mutations, diseases and genes derived from the Gold Standard. 
They were then filtered using Mutation Finder leaving 111 abstracts 
in which at least one mutation was identified. All of these abstracts 
were independently curated by two domain experts. This corpus was 
then analyzed by two runs of our workflow, utilizing one of the two 
incorporated gene recognition tools (i.e. GNAT and the NCIBI Name 
Tagger) each time.

Results
Experimental evaluation

In order to determine precision and recall of each of the tools 
within our workflow, evaluation runs were conducted on the prepared 
corpus. Results were compared to the manual annotations. Utilizing 
GNAT, our workflow achieved a precision of 86.8% and recall of 30.3% 
(F1-Score: 0.449). It yielded a precision and recall of 70.3% and 23.9% 
(F1-Score: 0.356) with the NCIBI Name Tagger. Almost all of the 
false positives (i.e. 90%) derive from abstracts explicitly stating that a 
mutation, a gene and a disease are not related. For example: “We did 
not observe any correlation between the Ser1245Cys polymorphism of 

Match Score

Mutation, Gene
Gene’s sequence 0

Uniprot Reference 1

Gene, Disease

MeSH term 1

Cell Line name 2

Cell Line name and gene expression 3

Table 1: Scoring of results.
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the hOGG1 gene and gastric cancer, including subjects with impaired 
DNA repair and/or high levels of endogenous oxidative DNA lesions” 
[20].

Benchmarking COSMIC

In order to benchmark our workflow to the Gold Standard 
COSMIC, we applied gemuline to extract mutations, genes, cell lines 
(or disease names) and their relationships from roughly 127,000 
PubMed abstracts not listed in COSMIC version 49 using the following 
PubMed query:

(Cancer OR carcinoma OR tumor OR tumour OR carcinoid OR 
adenocarcino-ma OR neoplasm) AND (cell OR cells OR cellline OR 
celllines OR “cell line” OR “cell lines” OR cell-line OR cell-lines) AND 
(mutations OR mutation OR SNP OR SNPs)

The workflow extracted 1,978 distinct combinations of abstract, 
mutation, gene and disease not listed in COSMIC. Results were found 
in 1,420 texts listing 264 distinct genes associated with 202 distinct 
disease terms and 594 distinct mutations. Thus, a total of 1,258 unique 
combinations of gene, mutation and disease were found, as opposed 
to COSMIC listing 143,716 of such distinct combinations. We found 
that for 61% of the genes to which a mutation was associated by using 
gemuline, fewer mutations are associated in COSMIC. Among others, 
we found several mutations annotated to BRCA1 that were not listed 
in COSMIC.

Discussion and Conclusion
The main goal of our study was the automated extraction of genes, 

mutations, diseases and their relation among one another within one 
workflow. Furthermore, a normalization task was necessary to map the 
results to established databases containing genes, mutations or diseases. 
To the best of our knowledge, gemuline delivers associated genes, 
mutations and diseases from literature with the highest precision and 
competitive recall to date. Freely available tools were integrated into a 
new workflow extracting these relations with a precision of 87% and a 
recall of 30%. Compared to the results from previous works, the overall 
precision of the workflow ranges in the intermediate field.

Related methods

MutationFinder finds and normalizes point mutation mentions in 
free text [10]. Regular expressions provide the ability to find certain 
matching patterns in the text. Mutation Finder utilizes these regular 
expressions for recognizing the specific notations of point mutations. 
It builds upon a baseline system, which is a partial reimplementation 
of MuteXt [21]. Mutation Finder achieves a precision of 97.5% and a 
recall of 80.7% regarding the extraction of normalized mutations. It 
extracts mutations only, not genes, diseases or disease models.

Yip et al. tried another approach to extract mutation mentions 
using regular expressions [22]. They generated the regular expressions 
manually by reviewing several hundred abstracts. Their approach yields 
a precision of 89.3% and a recall of 84%. Since precision is lower using 
this method, we selected Mutation Finder to be part of our workflow 
in this study.

GNAT [8] searches text for mentions of genes and normalizes each 
gene to an Entrez Gene ID. GNAT consists of a multi-step procedure of 
refining an initial set of predictions until a final conclusion is reached. Its 
main steps are named entity recognition (NER), validation, correlation 
and disambiguation. On a test set with human genes, GNAT achieved 
a precision of 90.1% and a recall of 81.1%. It extracts genes only, but 

neither mutations nor diseases or disease models.

The National Centre for Integrative Biomedical Informatics 
(NCIBI) provides an online name tagger, which tags genes in PubMed 
abstracts [9]. It is not stated how the algorithm actually works, but it 
provides online access to pre-processed PubMed and PubMed central 
articles tagged with genes. Thus, it offers very quick access to gene 
mentions in text. It only extracts genes but neither mutations nor 
diseases or disease models. Its exact precision and recall values are 
unknown, but benchmarks performed in the course of this work have 
shown that it performs worse than GNAT which is why GNAT was 
chosen here.

In their study, Chun et al. first use a dictionary technique to find 
entities (genes and diseases) and then filter results by machine learning 
[23]. For extraction, they select sentences with at least one gene and one 
disease in it. Then, they associate the entities. They compile dictionaries 
from public biomedical databases, also extracting the primary symbols 
and unique IDs for all entities. They achieve a precision of 89.0% for 
genes, 90.0% for diseases and a recall of 90.9% for genes, 96.6% for 
diseases. Without filtering, their relation extraction has a precision of 
51.8%. With filtering, it has a precision of 78.5%, but the recall drops 
to 87.1% of the unfiltered recall. For filtering, they use a maximum 
entropy model.

A very recent study by Doughty et al. presents an approach 
utilizing the “EMU method” (Method for extracting mutations 
from the biomedical literature) [4]. The EMU algorithm extracts 
mutation information as well as gene-related data. EMU mutation 
extraction utilizes regular expressions to find mutations, where the 
input is plain text and the output is a list of mutation terms. The 
algorithm uses two sets of regular expressions; one to identify possible 
mutations and another one to deselect wrong hits. The false patterns 
include, among others, 6,541 cell line names. For identifying gene 
information, a dictionary containing all gene names from the Human 
Genome Organization (HUGO) and from the National Center for 
Biotechnology Information (NCBI) except those identical to codon 
names is generated. To associate genes and mutations they compare 
the mutation wild type and its position to the gene’s protein sequence 
in RefSeq [24]. This step, named “SEQ Filter”, flags falsely identified 
gene-mutation relations and removes them from the results. So far, the 
method is restricted to prostate and breast cancer, but it is claimed that 
additional diseases could easily be incorporated. From 1,721 abstracts 
relating to prostate cancer and 5,967 relating to breast cancer, 179 
manually verified mutations that are not currently annotated in the 
Online Mendelian Inheritance in Man (OMIM) or SwissProt databases 
were identified. Thus, the method yields an average precision of 60% on 
a SEQ-filtered corpus.

Table 2 gives an overview over many of the considered methods, 
their precision and recall values and the types of entities and relations 
they extract.

Precision and recall

Most of the tools reviewed in the course of this work do not 
associate entities, but only recognize them. Precision and recall of 
gemuline consider both, recognition and association and are counted 
towards precision and recall only when both steps are successful. The 
EMU method is most similar to gemuline in terms of functionality. In 
direct comparison, however, gemuline’s precision of 87% is superior. 
Doughty et al. give no statement regarding recall. Of two gene taggers 
that were tested, GNAT achieved better scores, but the NCIBI Name 
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Tagger was much faster. GNAT took several days to process roughly 
127,000 abstracts in an unparallelized manner. The NCIBI Name 
Tagger’s speed was only limited by internet access and connection 
speed, as PubMed abstracts are pre-annotated.

A low recall (i.e. occurrence of false negatives) is solely owed to the 
failed attempt of extracting all of the three required entities mutation, 
gene and disease, even if all three entities should have been found in the 
text. Depending on the algorithm, for example regular expressions did 
either not contain the right pattern, or dictionaries did not contain the 
term in question. In other algorithms (i.e. GNAT), the heuristic failed 
at some point to assign an Entrez Gene ID to a gene mention in the text.

GNAT and the Mutation Finder both have a recall of 81%. While 
Mutation Finder found a mutation in every abstract, GNAT found a 
gene in all but 6 of them. Thus, disease and cell line extraction failed in 
at least 71 abstracts resulting in a recall of 35.69% at best. As described 
above and summarized in Table 3, such dictionary-based approaches 
score much lower, since the dictionaries do not contain all synonyms 
typically used in the texts. This is most likely an artifact due to the use 
of domain-specific language in many biomedical publications. This 
has been noted in previous text-mining studies [31]. Specifically, the 
notations are not always consistent with MeSH. For example, the 
abstract from PubMed ID 9827921 explicitly states “acute lymphoblastic 
leukaemia (ALL)”. However, the dictionary covers only the term “acute 
lymphoblastic leukemia” because it is the official MeSH term without 
having the above term denoted as a synonym. Another example is in 
the abstract from PubMed ID 18544621. The term “adrenocortical 
tumors” is not in the dictionary, only “adrenocortical cancers”.

gemuline found cell lines in 21 of 30 abstracts containing a 
confirmed cell line mention. For example, gemuline did not find the 
cell line named “NIH3T3“ in the abstract from PubMed ID 19802009, 
because that cell line was not listed in the COSMIC version 49 used to 
generate the dictionary.

Outlook

To date, gemuline only extracts point mutations. An improvement 
could be the inclusion of algorithms that do not only extract point 
mutations, but also linguistically more complex genomic alterations. 
We expect an increase in recall, if the tool extracted other types of 
mutations as well considering the many publications that include 
other types of mutations apart from point mutations (e.g. fusions, 
chromosomal rearrangements, etc.). In order to do so, other tools 
besides Mutation Finder need to be incorporated or Mutation Finder’s 

list of regular expressions must be expanded to fit these notations. 
However, this would most likely lead to a decrease in precision as it 
will become more complicated to determine possible occurrences of 
more mutation types in natural language. Thus, mutation extraction 
with high recall and high precision remains a challenge.

In a next step, the addition of more journals with full text access 
should be considered, especially when they have a focus on cancer. To 
achieve this, different URLs for different journals and their respective 
login credentials need to be incorporated within the tool. For many 
journals, PubMed XML provides journal title and access link to the 
article via its PubMed ID. However, other journals are not accessible 
as easily. Nature, for example, does not provide means to access a 
full text article through this method. To download such articles, the 
PubMed website source code needs to be parsed for the appropriate 
link. Usually, the availability of the full text PDF is not certain before 
the query, leading to a computational overhead.

In a similar way, the analysis of supplementary material could 
increase recall significantly. However, currently it is not obvious how 
to gain automated access to supplementary material. A feasible but 
tedious approach could be the manual acquisition and automated 
extraction of entities and relations from such files.

The extraction of results from articles stating that a relation is not 
given could be prevented, if the tool scanned for appearances of, for 
example, “not” within the sentence containing the derived entities, also 
increasing performance.

The possibility of manually annotating gemuline’s results by 
scientists can be used to enhance the extraction process further. 
It could be analyzed, for example, if patterns within frequent false 

Tool Mutation Gene Disease Precision Recall Ref
MutationFinder + - - 97.5% 80.7% [10]
BANNER + + + 85.09% 79.06% [25]
ABNER + + + Depends Depends [26]
ProMiner - + - 82.53% 82.93% [27]
GNAT - + - 90.1% 81.1% [8]
Moara - + - GNAT GNAT [28]
NameTagger - + - Unknown Unknown [9]
OSIRISv1.2 + + - 99% 82% [29]
Extraction of Gene-Disease 
relations - + + 78.5% Unknown [23]

SNPshot + + + 96.0% 88.7% [30]
EMU + + (+) 60% Unknown [4]

The table shows the name of each tool or algorithm, which of the three types of named entities can be extracted, their respective precision and recall values (if mentioned 
by the authors) and the reference to the original publication.

Table 2: Overview over text-mining algorithms reviewed for this study.

Reason for 
false positive Percentage of FP Reason for false 

negative
Percentage 
of FN

Negation 90%

Term not described 
in dictionary/regular 
expression (i.e. 
MutationFinder)

95%

ambiguous 
terminology 8%

Term not recognized 
by heuristic (i.e. 
GNAT)

5%

Lack of 
association 
between terms

2%

Table 3: Reasons and distribution of false positive and false negative extractions.
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positives emerge. In such cases and the algorithm could be adapted to 
such patterns, resulting in a higher precision.

Regarding the entire workflow, it seems clear that the highest impact 
on improved precision and recall could be achieved by enhancing the 
disease extractor. Adding additional terms and enriching the list of 
synonyms for each term will greatly improve the extractor’s recall which 
is currently the lowest within the workflow. Another approach to the 
problem could be pre-annotating the biomedical texts with terms from 
more general ontologies in order to diminish the impact of domain-
specific vocabulary. However, this step would require tedious, manual 
work from experts in the field and a very good ontology covering all 
disease terms and popular synonyms.

Still, gemuline offers a good basis to improve productivity within 
the drug discovery process. Already, it enables scientific researchers to 
go beyond COSMIC and investigate new potential oncogenes and their 
mutations in cancer. The tumor suppressor genes BRCA1 and BRCA2 
are associated with high risks of breast, ovarian and contralateral breast 
cancer [PMID: 22144499]. The lifetime risk of breast cancer in women 
with a BRCA1 or BRCA2 mutation is approximately 75%. For BRCA1, 
there is little evidence that the risk varies for different mutations 
[PMID: 22127115]. BRCA1 is a checkpoint and DNA damage repair 
gene that secures genome integrity [32]. A mutation in this gene may 
lead to genomic instability, resulting in the accumulation of mutations 
and eventual cancer development [32]. However, not all mutations of 
BRCA1 play such an important role in developing cancer.

As an example, an application of gemuline has extracted the BRCA1 
mutation A1708E which is yet unreported in COSMIC but associated 
with breast cancer. Lovelock et al. have shown a severe functional 
abrogation of BRCA1 proteins carrying the A1708E mutation [33]. 
They further demonstrate that the histopathology of A1708E-associated 
tumors have a typical BRCA1-like phenotype. This example shows the 
importance of finding additional mutations not yet in COSMIC from 
literature and their possible relevance for cancer research. In Figure 
6 we summarize for a random selection of nine genes and BRCA1, 

how application of our workflow increases the amount of mutation 
annotations for genes. For example, BRCA1 is annotated with at least 
twice as many mutations after application of our workflow.

Certainly, for genes of high interest like the Androgen Receptor 
in Prostate Cancer or BRCA1 in Breast Cancer, there are specialized 
mutation databases (see e.g. the Breast Cancer Information Core 
database http://research.nhgri.nih.gov/bic/) annotating many more 
mutations than COSMIC and gemuline. However, we extract mutations 
from the scientific literature without focus on any gene or sub-type of 
cancer. We gain a reasonable benchmark with this approach only when 
comparing our results to the largest public repository on mutations 
across indications (i.e. COSMIC). This is a use case, showing that 
the results of gemuline can improve the data availability for oncology 
research. It can easily be adapted to a more focused approach, e.g. when 
a limited number of genes or only a sub-type of cancer is of interest. We 
expect higher precision and recall in such a case.

We have shown in thus study using most of the relevant literature 
from PubMed that gemuline is detecting new mutations unreported in 
COSMIC with reasonable quality, ultimately enabling new discoveries.
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