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Acute Respiratory Distress Syndrome (ARDS) affects approximately 
200,000 people annually in the United States with a substantial mortality 
rate at ~40% [1]. The epidemiology of ARDS is defined by ethnicity, sex, 
age and modifiable risk factors such as smoking history and alcohol use.  
Specifically, the mortality rate among persons of African Descent (AD) 
with ARDS is significantly higher than persons of European Descent 
(ED) with ARDS, after controlling for socioeconomic status and access 
to healthcare, indicating a potential genetic influence on outcome 
[2,3]. However, after adjusting for severity of illness this association 
disappears in some studies [3,4], and AD individuals might be protected 
against the development of ARDS in trauma cases [4]. There has been 
extensive research exploring the underlying mechanisms of these health 
disparities in ARDS, but the specific processes remain unclear. 

Previous studies using the candidate gene approach have implicated 
genes involving endothelial and epithelial permeability in ARDS. One 
comprehensively studied candidate gene is MYLK (encoding myosin 
light chain kinase or MLCK), an isoform (nmMLCK: non-smooth 
muscle MLCK) involved in vascular endothelial cell gap formation and 
vascular leakage, as well as implicated in the inflammatory responses 
including apoptosis and leukocyte diapedesis [5,6].  The results from 
both in vivo [7-10], ex vivo [11,12] and in vitro [13,14] studies provide 
solid evidence for the role of nmMLCK in the pathogenicity and 
susceptibility of ARDS. In order to investigate whether the genetic 
variants in MYLK might contribute to the health disparities associated 
with ARDS, several case-control studies have been performed to 
compare AD and ED populations. In particular, population-specific 
SNPs (single nucleotide polymorphisms) in MYLK exist between 
AD and ED individuals with ARDS, as well as severe asthma [15], 
suggesting a potential genetic contribution to lung health disparities 
[16,17].  The precise function of these genetic variants is unknown, 
however the knowledge of these variations allow for further research 
into the mechanisms of ARDS and relevant disease processes. For 
example, specific SNPs located in the promoter region of MYLK are 
associated with MYLK expression [18], thus potentially contributing 
to the health disparities through the differential allele frequency of the 
functional allele in a particular population. However, gene expression 
is such a complex trait or phenotype that is controlled by various 
genetic and non-genetic factors. More recently, epigenetic mechanisms 
including DNA methylation and histone modifications have begun to 
be investigated for their roles in regulating quantitative gene expression.  
A comprehensive investigation of these epigenetic mechanisms for 
their relationships with MYLK expression and their variation between 
human populations may provide novel insights into the underlying 
genetic basis of the health disparities in ARDS. 

One highly viable epigenetic mechanism is DNA methylation, 
which is covalent modification typically at CpG dinucleotides across 
the human genomes. It has been found that silenced genes often have 
promoter regions with greater numbers of methylated cytosines than 
actively transcribed genes, suggesting that DNA methylation is a 
factor in transcriptional repression [19,20]. DNA methylation is also 
found in gene bodies, which may represent additional gene regulatory 
locations, possibly through regulating chromatin structure and 

accessibility of transcription machinery [21-23]. DNA methylation 
is a stable, mitotically inheritable trait that is maintained by DNA 
methyltransferase (DNMT1) and new methylation occurs mainly via 
DNA methylation enzymes DNMT3A, DNMT3B and DNMT3L [24]. 
Utilizing high throughput microarray technologies, recent studies have 
demonstrated significant natural variation in DNA methylation between 
human populations. For example, a previous study using the Illumina 
Infinium HumanMethylation 27K array (covering ~27,000 promoter 
CpGs) reported a substantial proportion (~30%) of population-specific 
CpGs between individuals of African and European ancestry [25]. 

More recently, the availability of the Illumina 450K array (covering 
more than 450,000 CpGs) has allowed a much more comprehensive 
scan of the human genome (covering promoter regions, gene bodies, 
Untranslated regions [UTRs], and intergenic regions) for population 
variation in DNA methylation using the HapMap CEU (Caucasian 
residents from Utah, USA) and YRI (Yoruba people from Ibadan, 
Nigeria) samples [23]. Similar to Fraser et al, a substantial proportion 
of CpG sites (13%) showed population-specific DNA methylation levels 
at a False Discovery Rate (FDR) of 1% using the 450K array data [23]. 
Particularly, significant cytosine modification variation in MYLK was 
identified between the CEU and YRI samples using the 450K array data. 
Out of the 52 total CpGs profiled on the 450K array for MYLK, eight 
CpGs were found to differentially methylated between individuals of 
African and European ancestry at FDR<1%. Furthermore, local (e.g., 
within 100kb) SNPs were identified to be associated with all eight 
population-specific CpGs, suggesting that the underlying genetic 
variation may contribute to the cytosine modification variation 
in MYLK. For example, the allele C of an intronic SNP in MYLK 
(rs6438808) was associated with a gene-body CpG (Illumina probe 
ID: cg12235788) in MYLK. Understanding the potential contribution 
of these population-specific CpGs in ARDS patients may advance 
the interpretation of factors that contribute to the health disparities 
observed in ARDS.

In summary, MYLK, a candidate gene involving endothelial and 
epithelial permeability is a critical participant in the pathogenesis of 
ARDS. The genetic variation in MYLK may account for the observed 
health disparities in ARDS between human populations. Technical 
advances have allowed exploring further gene regulatory mechanisms, 
such as DNA methylation variation in MYLK among patients from 
different populations, thus enhancing our knowledge of the underlying 
mechanism for ethnical disparities in ARDS. 
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