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Introduction
The purpose of this paper is to establish the existence of positive 

solutions to a class of periodic boundary value problems for systems of 
second order nonlinear differential equations 
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where 30 < ( = 1,2)
2i i
T
πρ ≤  are constants and in which case the 

associated Greens function may changes sign.
In recent years, because of wide interests in physics and engineering, 

the periodic boundary value problems have been investigated by many 
authors. For example, the periodic boundary value problems 

'

' '

( ) = ( , ), (0, ),
(0) = ( ), (0) = ( ),

u a t u f t u t T
u u T u u T

′ + ∈





  (3.2)

 where f is a continuous or 1L Caratheodory−  type function have been 
extensively studied; see, for example, Atici and Guseinov [1], Nkashama 
and Santannilla et al. [2] Rachunkoväa and Tvrdäy [3,4] Kiguradze and 
Stanck [5],Torres [6], Jiang et al. [7,8,14], ORegan et al. [9], Wang [10], 
Graef et al. [11], Zhang et al. [12], and the references contained therein. 
In these papers, the major assumption is that their associated Greens 
functions are of one sign.

Recently, in [13], the hypothesis is weakened as the Green function 
G(t, s) associated with problem (3.2)  is non-negative. In [15], the 
author improve the result of (3.2)  and prove the existence results of 
at least two positive solutions under conditions weaker than sub- and 
super-linearity.

More recently, In [16,17], the authors consider the boundary value 
problem (3.2)  and establish the existence of positive solutions in the 
case where the associated Greens function may changes sign.

Inspired by the work of the above mentioned papers, we investigate 
the periodic boundary value problems (3.1)  in this paper, and the 
associated Greens function may changes sign. The aim is to prove the 
existence of positive solutions to the problem by using the fixed point 
index theory of cone mapping. Our ideas mainly come from references 
[7-10].

Preliminary Results
In this section, we present some notation and lemmas 

that will be used in the paper. We shall consider the Banach 
space = [0, ] [0, ]E C T C T×  equipped with the standard norm  

0 0( , ) = = | ( ) | | ( ) |max maxt T t Tu v u v u t v t≤ ≤ ≤ ≤+ +     

,  ( , )u v E∈ .

To prove our result, we need the following fixed point index 
theorem of cone mapping.

Lemma 4.1 (see [18]) Let E   be a Banach space and K E⊂   be a 
closed convex cone in  E . Let  :A K K→  be a completely continuous 
operator and let ( , , )ri A K K   denote the fixed point index of operator 
A .

(i) If Au uµ ≠   for every ru K∈∂  and  0 < 1µ ≤ , then  ( , , ) = 1ri A K k .
(ii) If > 0inf u Kr

Au∈∂   and Au uµ ≠   for every ru K∈∂  and  
1µ ≥ , then  ( , , ) = 0ri A K k .
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Let ( , )( = 1,2)iG t s i   denote the Green’s function of homogeneous 
periodic boundary value problem: 
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where  30 < ( = 1,2)
2i i
T
πρ ≤  and ( )e t   is a continuous function on 

[0, ]T  . It is well known that the solutions of  (4.1)  can be expressed in 
the following forms 
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By direct computation, we get 
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and 
                    ( , ) < 0iG t s 	  
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where  iG+  and  iG−  are the positive and negative parts of  iG .
We denote 
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 and 
	  1 2 1 2= min{ , }, = max{ , }.σ σ σ γ γ γ 	                                 (4.9)

Define the cone K   in  E  by 

0
= {( , ) : ( ) 0, ( ) 0, ( ( ) ( )) ( , ) }.

T
K u v E u t v t u s v s ds u vσ∈ ≥ ≥ + ≥∫  
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It is well known that the system (1.1)   is equivalent to the equation 

1 1 2 20 0
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T T
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Define two operators : [0, ]iA E C T→   as 

0
( , )( ) = ( , ) ( , ( ), ( )) , = 1,2,
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 and define an operator :A E E→   as 
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It is clear that the existence of a positive solution to problem (1.1) is 
equivalent to the existence of a fixed point of  A  in  K . 

We also make the following assumptions:

( 1)H  ( = 1,2) :[0, ] [0, ) [0, ) [0, )if i T × +∞ × +∞ → +∞ is continuous;
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+∞ , here  

= { }, = { }maxmin i ii im m M M .

Lemma 4.3 Assume that  ( 1)H , ( 2)H  and  ( 3)H  holds, then  
:A E E→  is completely continuous and  ( )A K K⊂ .
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Existence Results
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 Integrating the first equation in (5.2)   from  0  to T   and using the 
periodicity of 0 ( )u t   and  (5.1) , we get 
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From (5.6)   and  (5.7) , we get 

   In the section we discuss the existence of at least one solution to 
the system (1.1). To be convenience, we introduce the notations: 

Next, we show that ( , ) ( , )A u v u vµ ≠   for any ( , ) ru v ∈∂Ω  and 
1µ ≥ . In fact, if there exist 0 0( , ) ru v ∈∂Ω , and 0 1µ ≥  such that  

0 0 0 0 0( , ) = ( , )A u v u vµ , i.e., 0 1 0 0 0( , ) =A u v uµ  and  0 2 0 0 0( , ) =A u v vµ , 
then 0 0( , )u v   satisfies 
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Therefore,  A  has a fixed poind in  \ rRΩ Ω , which is the positive 
solution of BVP  (1.1) . The proof is completed. 

An Example
As an example, we consider the existence 
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