Existence of Multiple Solutions for P-Laplacian Problems Involving Critical Exponents and Singular Cylindrical Potential

Mohammed El Mokhtar Ould El Mokhtar
Qassim University, Department of Mathematics, Qassim University, Buraidah, Kingdom of Saudi Arabia

Abstract
In this paper, we establish the existence of multiple solutions for p-Laplacian problems involving critical exponents and singular cylindrical potential, by using Ekeland’s variational principle and mountain pass theorem without Palais-Smale conditions.

Keywords: P-Laplacian; Critical exponents; Cylindrical potential; Dimensional

Introduction
The aim of this paper is to establish the existence and multiplicity of solutions to the following quasilinear elliptic problem

\[(P_{\lambda\mu}) \left\{ \begin{array}{l}
-L_{\lambda\mu}u - \mu|u|^{p-2}u = h(y)|u|^{q-2}u + \lambda g(x) \quad \text{in } \mathbb{R}^N, y \neq 0 \\
\end{array} \right. \]

Where \(L_{\lambda\mu}u = \text{div}(|\nabla u|^{p-2}\nabla u) \), \(1 < p < k, k \) and \(N \) are integers with \(N > p \), \(p \leq k \leq N \), \(\mathbb{R}^N = \mathbb{R}^N \times \mathbb{R}^d \), the point \(x \in \mathbb{R}^N \) can be written as \(x = (y,z) \in \mathbb{R}^N \times \mathbb{R}^d \). \(\lambda \) and \(\mu \) are positive parameters which we will specify later, \(g \) is a continuous function on \(\mathbb{R}^d \), and \(h \) is a bounded positive function on \(\mathbb{R}^N \).

Let \(\mathcal{H}_p = L^p(\mathbb{R}^N, |\nabla u|^p \, dx) \) be the space defined as the completion of \(C^0(\mathbb{R}^N, |\nabla u|^p \, dx) \) with respect to the norm \(\|u\|_{\mathcal{H}_p} = \left(\int_{\mathbb{R}^N} (|\nabla u|^p + \mu |u|^p) \, dx \right)^{1/p} \).

When \(\mu < \mu_{N,p} \), Hardy type inequality implies that the norm

\[\|u\|_{\mathcal{H}_p} = \left(\int_{\mathbb{R}^N} (|\nabla u|^p + \mu |u|^p) \, dx \right)^{1/p} \]

is well defined in \(\mathcal{H}_p \) and \(\mathcal{H}_p \) is equivalent to \(\mathcal{H}_k \); since the following inequalities hold:

\[(1 - (\max(\mu, 0)/\mu_{N,p}))^k \mathcal{H}_k \subseteq \mathcal{H}_p \subseteq (1 - (\min(\mu, 0)/\mu_{N,p}))^k \mathcal{H}_k, \]

for all \(\mu \in \mathcal{H}_p \).

We define the weighted Sobolev space \(\mathcal{D} := \mathcal{H}_k \cap L^p(\mathbb{R}^N, |\nabla u|^p \, dx) \) which is a Banach space with respect to the norm defined by \(\mathcal{N}(u) := \|u\|_{\mathcal{H}_k} + \|(1/q)u\|_q \).

Several existence results are available in the case \(p = 2 \) and \(k = N \); we quote for example [1-3], and the references therein. For more details, when \(h \equiv 1, \mu = 0 \) and \(q = 2 \), the regular problem \((P_{\lambda\mu}) \) has been considered, on the bounded domain \(\Omega \), by Tarantello [4]. She proved that for \(g \in \mathcal{H}_k(\Omega) \), not identically zero and satisfying a suitable condition, the problem considered admits two solutions. Also, they are two nontrivial non-negative solutions when \(g \neq 0 \).

Received July 04, 2015; Accepted July 13, 2015; Published July 20, 2015

Copyright: © 2015 El Mokhtar Mohammed EMOMO. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Smale conditions with positive energy.

Our main result is given as follows

Theorem 1: Suppose that \(p + k < N \), \(0 \leq s < p \), \(\mu < \tilde{\mu}_{l,p} \), hypothesis (H) holds, \(g \in H^s\cap C(\mathbb{R}^N) \) and \(g \not\equiv 0 \). Then there exists \(\lambda_0 > 0 \) such that the problem \((P_{l,p}) \) has at least two solutions for any \(\lambda \in (0, \lambda_0) \).

This paper is organized as follows. In Section 2, we give some preliminaries.

Section 3 is devoted to the proof of Theorem 1.

Preliminaries

We start by recalling the following definition and properties from the paper [6].

The first inequality that we need is the Hardy inequality

\[
\int_{\mathbb{R}^N} |\nabla u|^p \, dx \geq c_0 \left(\int_{\mathbb{R}^N} (|x|^{2s} u^p) \, dx \right)^{p/2},
\]

for all \(u \in D^p_0(\mathbb{R}^N) \).

Definition 1: An entire solution \(u \) to \((P_{l,p}) \) is a ground state solution if it achieves the best constant

\[
S_{l,p} = S_{l,p}(k,N) = \lim_{n \to \infty} \frac{\int_{\mathbb{R}^N} (|\nabla u|^p - \mu |u|^{p}) \, dx}{\int_{\mathbb{R}^N} |u|^p \, dx}.
\]

Lemma 1: Assume [6] that \(p + k < N, 0 \leq s < p \) and \(\mu < \tilde{\mu}_{l,p} \).

Then, the infimum \(S_{l,p} \) is achieved on \(H_0((\mathbb{R}^N \setminus \{0\}) \times \mathbb{R}^N) \).

Lemma 2: Let \((u_n) \subset D \) be a Palais-Smale sequence \((PS) \) of \(I_{l,p} \), i.e.,

\[
I_{l,p}(u_n) \to c \quad \text{and} \quad I'_{l,p}(u_n) \to 0 \quad \text{in} \quad D (dualo\text{f} D) \quad \text{as} \quad n \to \infty
\]

for some \(c \in \mathbb{R} \).

Then, \(u_n \to u \) in \(D \) and \(I'_{l,p}(u) = 0 \).

Proof: From (4.3);

We have

\[
(1/p) \left| \int_{\mathbb{R}^N} (|\nabla u|^p - (1/q) \int_{\mathbb{R}^N} b(x) |\nabla u|^q \, dx - \lambda \int_{\mathbb{R}^N} g(x) u^p \, dx \right| \to c + o_n(1)\]

and

\[
\left| \int_{\mathbb{R}^N} (\lambda |u|^p - \lambda (q - 1)/q \int_{\mathbb{R}^N} g(x) u^p \, dx \right| \to o_n(1),
\]

for \(n \) large, where \(o_n(1) \) denotes \(o_n(1) \to 0 \) as \(n \to \infty \). Then,

\[
c + o_n(1) = I_{l,p}(u_n) - (1/p) \int_{\mathbb{R}^N} b(x) |\nabla u|^q \, dx \geq \left((q - 1)/q \right) \left| \int_{\mathbb{R}^N} g(x) u^p \, dx \right|.
\]

\((u_n) \) is bounded in \(D \). Up to a subsequence if necessary, we obtain that

\[
u_n \to u \quad \text{in} \quad D
\]

\[
u_n \to u \quad \text{in} \quad L_0(\mathbb{R}^N; |\nu|^q)
\]

\[
u_n \to u \quad \text{a.e. in} \quad \mathbb{R}^N.
\]

Consequently, we get

\[
I'_{l,p}(u) = 0.
\]

Lemma 3: Let \((u_n) \subset D \) be a Palais-Smale sequence \((PS) \) of \(I_{l,p} \) for some \(c \in \mathbb{R} \).

Then, \(u_n \to u \) in \(D \) and either \(u_n \to u \) in \(D \) or \(c \geq I_{l,p}(u) + ((q - p)/pq)(\|h_{l,p}S_{l,p}\|^{(q-/p)})\)

for all \(p \neq (p', 0) \).

Proof: We know that \((u_n) \) is bounded in \(D \). Up to a subsequence if necessary, we have that

\[
u_n \to u \quad \text{in} \quad D
\]

\[
u_n \to u \quad \text{a.e. in} \quad \mathbb{R}^N.
\]

Denote \(v_n = u_n - u \), then \(v_n \to 0 \). As in Brezis and Lieb [2]; we have

\[
\|v_n\| = \|v_n\| - \|u\| \quad \text{and}
\]

\[
\lim_{n \to \infty} \int_{\mathbb{R}^N} b(y) \left| |v_n|^q - |u|^q \right| \, dy = \int_{\mathbb{R}^N} b(y) |v|^q \, dy.
\]

On the other hand, by using the assumption \((H) \), we obtain

\[
\lim_{n \to \infty} \int_{\mathbb{R}^N} b(y) \left| |v_n|^q - |u|^q \right| \, dy = h_0 \lim_{n \to \infty} \int_{\mathbb{R}^N} b(y) |v|^q \, dy\]

Thus, we get

\[
I_{l,p}(u_n) = I_{l,p}(u) + ((1/p) \left| \int_{\mathbb{R}^N} (|\nabla u|^q - (1/q) \int_{\mathbb{R}^N} b(x) |\nabla u|^q \, dx \right| \, dx\right)
\]

\[
\left((q - 1)/q \right) \left| \int_{\mathbb{R}^N} g(x) u^p \, dx \right| + o_n(1)
\]

Then we can assume that

\[
\lim_{n \to \infty} \|v_n\| = h_0 \lim_{n \to \infty} \|v_n\| = l_0 \geq 0.
\]

Assume \(l_0 > 0 \), we have by definition of \(S_{l,p} \)

\[
l \geq S_{l,p}(\|h_{l,p}\|^{(q/p)})
\]

and so that

\[
l \geq (h_{l,p}S_{l,p})^{(q/p)}.
\]

Thus we get

\[
c = I_{l,p}(u) + ((q - p)/pq)l
\]

\[
\geq I_{l,p}(u) + ((q - p)/pq) (h_{l,p}S_{l,p})^{(q/p)}.
\]

Proof of Theorem 1

The proof of Theorem 1 is given in two parts.

Existence of a local minimizer

We prove that there exists \(\lambda_0 > 0 \) such that for any \(\lambda \in (0, \lambda_0) \), \(I_{l,p} \) can achieve a local minimizer. First, we establish the following result.

Proposition 1: Suppose that \(p + k < N, 0 \leq s < p, \mu < \tilde{\mu}_{l,p} \), hypothesis \((H) \) holds, \(g \in H_0^s \cap C(\mathbb{R}^N) \) and \(g \not\equiv 0 \). Then there exists \(\lambda_0 \) such that for all \(\lambda \in (0, \lambda_0) \) we have

\[
I_{l,p}(u) \geq \delta > 0 \quad \text{for} \quad \|u\| = \delta
\]

Proof: By the Holder inequality and the definition of \(\|u\| = \delta \), we get

\[
\text{for all} \quad u \in D \setminus \{0\} \quad \text{and} \quad \delta > 0
\]
It follows that has a subsequence, still denoted by in and such that.

On the other hand, such that small enough such that (5.7) holds.

Then, we obtain a critical point such that (5.8) for all ε > 0.

Using the Ekeland’s variational principle, for the complete metric space with respect to the norm of , we can prove that there exists a (PC)$_i$ sequence such that $u_i \to u_i$ for some u_i with $N(u_i) \leq \rho$. Now, we claim that $u_i \to u_i$. If not, by Lemma??; we have

where $\phi \in C^\infty_0(\mathbb{R}^N)$ such that $\int_{\mathbb{R}^N} g(x) \phi dx > 0$. It follows that for $\epsilon > 0$ small,

and is a contradiction.

Then we obtain a critical point u_i of $I_{\lambda,\rho}$ for all $\lambda \in (0, \lambda_i)$. On the other hand we have

which is a contradiction.

Thus u_i is a nontrivial solution of our problem with negative energy.

Existence of mountain pass type solution

We use the mountain pass theorem without Palais-Smale conditions to prove the existence of a nontrivial solution with positive energy. For this, we need the following Lemma.

Lemma 4: Let $\lambda' > 0$ such that

Then, there exist $\Lambda \in (0, \lambda')$ and $\varphi \in D$ for $\epsilon > 0$ such that

Proof: Let

where $\phi \in C^\infty_0(\mathbb{R}^N)$ such that $\int_{\mathbb{R}^N} g(x) \phi dx > 0$. Then, we claim that there is an ϵ_0 such that

In fact, $g(x) \geq 0$ or $g(x) \leq 0$ for all $x \in \mathbb{R}^N$, and (5.7) holds obviously. If there exists $x_0 \in \mathbb{R}^N$ such that $g(x_0) > 0$, by the continuity of $g(x)$ there is an $\eta > 0$ such that $g(x) > 0$ for all $x \in B_\eta(x_0)$. Then, by the definition of $\omega_\epsilon(x-x_0)$, it is easy to see that there exists an ϵ_0 small enough such that

Now, we consider the following functions

and

By the continuity of $f(t)$, there exists $T > 0$ such that $f(t) \in \mathbb{D}$ and $\epsilon < \delta \leq 0$. For all $t \in (0, \epsilon)$. On the other hand, we have

Then we obtain

Set

We deduce that

Since $\lim_{\lambda \to \lambda_0} (T\varphi_r) = -\varphi_r$, we can choose $T > 0$ large enough such that $I_{\lambda,\rho}(T\varphi_r) < 0$. From Proposition 1, we have $I_{\lambda,\rho}(\varphi_r) \geq \delta > 0$ for all $\lambda \in (0, \lambda_i)$. By mountain pass theorem without the Palais-Smale condition, there exists a $(PC)_i$ sequence (u_n) in D which is characterized by

with

Then, (u_n) has a subsequence, still denoted by (u_n) such that $u_n \to u$ in D.

By Lemma 3, if u_i doesn't converge to u_i, we get
\[c_2 \geq I_{\lambda,\mu}(u_2) + \left((q - p) / pq \right) \left(b_0^{1/p^q} S_{\lambda,\mu} \right)^{q/p} \geq c_{\lambda,\mu}^{*}, \]

what contradicts the fact that, by Lemma 4, we have
\[\sup_{r \in D} I_{\lambda,\mu}(t \varphi_r) < c_{\lambda,\mu}^{*}, \]

for all \(\lambda \in (0, \Lambda) \). Then \(u_\epsilon \rightarrow u_2 \) in \(D \).

Thus, we obtain a critical point \(u_2 \) of \(I_{\lambda,\mu} \) for all \(\lambda \in (0, \lambda_*) \) with
\[\Lambda_* = \min \{ \lambda_*, \Lambda \} \]
satisfying \(I_{\lambda,\mu}(u_2) > 0 \).

References