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Introduction
The aim of this paper is to establish the existence and multiplicity of 

solutions to the following quasilinear elliptic problem
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is the critical Sobolev-Hardy exponent, λ  and µ  are positive 
parameters which we will specify later, g is a continuous function on 


N and h is a bounded positive function on .

k
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When , ,µ µ< k p Hardy type inequality implies that the norm 
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is will defined in µ  and .  is equivalent to ;.∇
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We define the weighted Sobolev space : ( , )µ
−= ∩ 

sp NL y dx 
which is a Banach space with respect to the norm defined by 

1/( ) : ( ) .
µ

−= + ∫


N
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 Several existence results are available in the case p = 2 and k = 
N; we quote for example [1-3]; and the references therein. For more
details, when 1,≡h 0µ =  and ,2∗=q the regular problem ( )1,0  has
been considered, on the bounded domain ,Ω  by Tarantello [4]. She
proved that for ( )( )1

0∈ Ω ′g H  not identically zero and satisfying a
suitable condition, the problem considered admits two solutions. Also, 
they are two nontrivial non-negative solutions when g is nonnegative. 
The problem ( ),λ µ  has been studied by Bouchekif and Matallah
in [2], by using Ekeland.s variational principle and mountain pass 
theorem, they established the existence of two nontrivial solutions 
when ( )0 0, ,,µ µ λ ∗< ≤ ∈ ΛN  where ∗Λ  is a positive constant and under 
sufficient conditions on functions g and h.

For the case p=2  and k<N,  there are much less studies in the 

literature at our knowledge. We cite for example [4-6], and the 
references therein. As noticed in [6] considered the minimization 
problem 

( ) ( ), , ,=S p S N p k s

{ }inf , (( \{0} 1)∞ − −
= ∇ ∈ × =∫ ∫



 N N

p k k
c

s qNu u c an y u dxd


and in [6], solutions which are radially symmetric in the x-variable 
receive impor-tance with regard to certain elliptic equations on the 
n = N-k +1  dimensional hyperbolic space .n  In particular, Musina
in [6] has considered the problem ( )0,µ  with 1.≡h   She established
the existence of ground state solution when 0 µ µ< < k  and 2 < ≤k N  
and the support of the ground state solution is a half-space when k = 
1 and 4≥N  

In case p>2 and 1< k < N , equations with cylindrical potentials 
were also studied by many people [1,4,7-10]. For instance, in [11], 
Xuan studied the multiple weak solutions for p-Laplace equation with 
singularity and cylindrical symmetry in bounded domains. However, 
they only considered the equation with sole critical Hardy-Sobolev 
term.

Since our approach is variational, we de.ne the functional ,λ µI  on 
  by 

( ) ( ) ( ) ( ) ( ), : 1 / 1 / .λ µ λ−− −∫ ∫
 

N N

p s qI u p u q h y y u dx g x udx

Throughout this work, we consider the following assumptions

( ) g (dual o   ), fµ µ
′∈G  

( ) ( ) ( ) ( )0 0y 0 y
lim lim 0,  , .
→ →∞

= = > ≥ ∈kH h y h y h h y h y

In our work, we prove the existence of at least two distinct critical 
points of , .λ µI

One by the Ekeland variational principle in [10] with negative 
energy, and the other by mountain pass theorem in [7] without Palais-
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Abstract
In this paper, we establish the existence of multiple solutions for p-Laplacian problems involving critical exponents 

and singular cylindrical potential, by using Ekeland’s variational principle and mountain pass theorem without Palais-
Smale conditions.
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Smale conditions with positive energy.

Our main result is given as follows

Theorem 1: Suppose that ,, 0 , ,µ µ< < ≤ < < k pp k N s p  hypothesis 
(H) holds, ( )µ

′∈ ∩ 

Ng C  and 0.≠g  Then there exists 0∗Λ >  such 
that the problem ( ),λ µ   has at least two solutions for any ( )0, .λ ∗∈ Λ

This paper is organized as follows. In Section 2, we give some 
preliminaries.

Section 3 is devoted to the proof of Theorem 1.

Preliminaries
We start by recalling the following definition and properties from 

the paper [6].

The first inequality that we need is the Hardy inequality 

, 1% ,  for all ( ),µ −∇ ≥ ∈∫ ∫ 

N N

p p p p
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Nu dx y u dx u
 

                 (4.1)

the constant ( )( ), : /µ = −
p

k p k p p  is sharp but not achieved [2]. 

Definition 1: An entire solution v to ( ),λ µ  is a ground state 
solution if it achieves the best constant 
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Lemma 1: Assume [6]  that ,0< < ≤ <p k N s p  and , .µ µ< k p  

Then, the in fimum ,µ pS  is achieved on { }(( \{0}\ 0  ).µ
−× 

k N k

Lemma 2: Let ( ) ⊂nu   be a Palais-Smale sequence 

( )  in short  c
PS  of , ,λ µI i.e., 

( ) ( ) '
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Proof: From (4.3); 

We have
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Assume 0,>l  we have by definition of ,µ qS  
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Proof of Theorem 1
The proof of Theorem 1 is given in two parts. 

Existence of a local minimizer

 We prove that there exists 0λ∗ >  such that for any ( ) ,0, , λ µλ λ∗∈ I  
can achieve a local minimizer. First, we establish the following result.

Proposition 1: Suppose that ,,0 , ,µ µ< < ≤ < < k pp k N s p  
hypothesis (H) holds, ( )µ

′∈ ∩ 

Ng C  and 0.≠g  Then there exists 
,λ∗   and δ  such that for all ( )0,λ λ∗∈  we have 

( ), 0 for   λ µ δ≥ > =I u u                    (5.1)

Proof: By the Holder inequality and the definition of  we get 
for all { }\ 0u∈  and 0ε >  
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( ) ( ) ( ) ( ), : 1 / 1 / ( ) , λ µ λ−= − −∫ ∫
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Taking 1 /ε < p  and ,
µ

= u  then there exist 0>  small 
enough and a positive constant λ∗  such that 

( ), 0 for  and (0, ).λ µ µ
δ λ λ∗≥ > = ∈I u u               (5.2)

Since g is a continuous function on ,

N  not identically zero, we 

can choose ( )0 \{0}φ ∞∈ 

NC  such that ( ) 0.φ >∫


N g x dx  It follows that 
for 0>t  small, 
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We also assume that t is so small enough such that .
µ

φ <t   Thus, 
we have ( )1 ,inf { : } 0,λ µ= ∈ <c I u u B  where ,{ }( .)= ∈ ≤B u u       
(5.4)

Using the Ekeland’s variational principle, for the complete metric 
space B  with respect to the norm of ,  we can prove that there exists 

a ( )
1c

PC  sequence ( ) ⊂nu B  such that 1nu u  for some u1 with 

1( ) .≤u �

Now, we claim that 1.→nu u  If not, by Lemma??; we have 
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which is a contradiction.

Then we obtain a critical point u1 of ,λ µI  for all ( )0,λ λ∗∈  
satisfying ( )1 , 1 0.λ µ= <c I u  

On the other hand we have 
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Thus u1 is a nontrivial solution of our problem with negative 
energy.

Existence of mountain pass type solution

We use the mountain pass theorem without Palais-Smale 
conditions to prove the existence of a nontrivial solution with positive 
energy. For this, we need the following Lemma.

Lemma 4: Let 0λ∗ >  such that 

, 0 for all (0, ).λ λ λ∗ ∗> ∈pc
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Where εω  veri.es (2:2)

Then, we claim that there is an 0ε  such that 

( ) ( ) ( )N 00,for any  0, .εϕ ε ε> ∈∫


g x x            (5.7)

In fact, ( ) 0≥g x  or ( ) 0≤g x  for all ,∈Nx  and (5.7) holds 
obviously. If there exists an 0 ∈

Nx  such that ( )0 0,>g x  by the 
continuity of ( )g x  there is an 0η >  such that ( ) 0>g x  for all 

( )0 .η∈x B x  Then, by the definition of ( )0εω −x x  it is easy to see that 
there exists an 0ε  small enough such that

( ) ( ) ( )0 0  0, 0, .εω ε ε− > ∈∫


N g x x x for any               (5.8)

Now, we consider the following functions 
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Since ,im ,( )l λ µ εϕ→∞
= −∞

t
I t  we can choose T >0  large enough such 

that ( ), 0.λ µ εϕ <I T  From Proposition 1, we have , 0λ µ δ|∂ ≥ >BI
  

for all ( )0, .λ λ∗∈  By mountain pass theorem without the Palais-
Smale condition, there exists a ( )

2c
PC  sequence ( )nu  in   which is 

characterized by 
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inf ,max λ µγ

γ
∈Γ   ∈

=
t
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with 

[ ]( ) ( ) ( ){ 0,1 , , 0 0, 1 }.εγ γ γ ϕΓ = ∈ = =C T

Then, ( )nu  has a subsequence, still denoted by ( )nu  such that 

2nu u  in .  

By Lemma 3, if un doesn.t converge to u2; we get 
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( ) ( )( )( ) ( )//
2 , 2 0 , ,/ ,λ µ µ λ

−− ∗≥ + − ≥
q q pp q

q pc I u q p pq h S c  

what contradicts the fact that, by Lemma 4, we have  ( ), ,
0

sup ,λ µ ε λϕ ∗

≥
< p

t
I t c  

for all ( )0, .λ ∈ Λ  Then  2 in .→nu u 

Thus, we obtain a critical point u2 of ,λ µI   for all ( )0,λ λ∗∈  with 

{ }: min ,λ∗ ∗Λ = Λ   satisfying ( ), 2 0.λ µ >I u
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