Research Article Open Access

Existence and Nonexistence for Elliptic Equation with Cylindrical Potentials, Subcritical Exponent and Concave Term

Mohamed El Mokhtar Ould El Mokhtar*

Departement of Mathematics, College of Science, Qassim University, Kingdom of Saudi Arabia

Abstract

In this paper, we consider the existence and nonexistence of non-trivial solutions to elliptic equations with cylindrical potentials, concave term and subcritical exponent. First, we shall obtain a local minimizer by using the Ekeland's variational principle. Secondly, we deduce a Pohozaev-type identity and obtain a nonexistence result.

Keywords: Existence; Nonexistence; Elliptic equation; Nontrivial solutions

Introduction

In this paper we study the existence, multiplicity and nonexistence of nontrivial solutions of the following problem

$$\left(\mathcal{P}_{\beta,\lambda,\mu}\right) \begin{cases} -\Delta u - \mu |y|^{-\beta} u = |y|^{-ay} |u|^{y-2} u + \lambda g(x) |u|^{q-2} u in \mathbb{R}^{N}, y \neq 0 \\ u > 0, \end{cases}$$

where \in k and N be integers such that $N \ge 3$ and k belongs to $\{1,...,N\} \setminus \{0\}$, $2^* = 2N/(N-2)$ is the critical Sobolev exponent, $\mu > 0$, $\gamma \le 2^*$, $0 \le a < 1$, 1 < q < 2, g is a bounded function on \mathbb{R}^N , λ and β are parameters which we will specify later.

We denote point x in \mathbb{R}^N by the pair $(y,z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $\mathcal{D}_0^{1,2} = \mathcal{D}_0^{1,2} \left(\left(\mathbb{R}^k \setminus \{0\} \right) \times \mathbb{R}^{N-k} \right)$ and $\mathcal{H}_{\mu} = \mathcal{H}_{\mu} \left(\left(\mathbb{R}^k \setminus \{0\} \right) \times \mathbb{R}^{N-k} \right)$, the closure of $C_0^{\infty} \left(\left(\mathbb{R}^k \setminus \{0\} \right) \times \mathbb{R}^{N-k} \right)$ with respect to the norms

$$||u|| = \left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^{1/2}$$
 and $||u||_{2,\mu} = \left(\int_{\mathbb{R}^N} \left(|\nabla u|^2 - \mu |y|^{-2} |u|^2\right) dx\right)^{1/2}$

We define the weighted Sobolev space $\mathcal{D}:=\mathcal{H}_{\mu}\cap L^{r}\left(\mathbb{R}^{N},|y|^{-b}dx\right)\cap L^{2}\left(\mathbb{R}^{N},|y|^{2}dx\right)$ with b=ay, which is a Banach space with respect to the norm defined by $\mathcal{N}\parallel u\parallel:=\|u\|_{2,u}+(\int_{\mathbb{R}^{N}}|y|^{-b}|u|^{r}dx)^{1/r}$.

My motivation of this study is the fact that such equations arise in the search for solitary waves of nonlinear evolution equations of the Schrödinger or Klein-Gordon type [1-3]. Roughly speaking, a solitary wave is a nonsingular solution which travels as a localized packet in such a way that the physical quantities corresponding to the invariances of the equation are finite and conserved in time. Accordingly, a solitary wave preserves intrinsic properties of particles such as the energy, the angular momentum and the charge, whose finiteness is strictly related to the finiteness of the L^2 - norm. Owing to their particle-like behavior, solitary waves can be regarded as a model for extended particles and they arise in many problems of mathematical physics, such as classical and quantum field theory, nonlinear optics, fluid mechanics and plasma physics [4].

Several existence and nonexistence result are available in the case k=N, we quote for example [5,6] and the reference therein. When $\mu=0$ $g(x)\equiv 1$, problem $(\mathcal{P}_{\beta,\lambda,\mu})$ has been studied in the famous paper by Brézis and Nirenberg [7] and B. Xuan [8] which consider the existence and nonexistence of nontrivial solutions to quasilinear Brézis-Nirenberg-type problems with singular weights.

Concerning existence result in the case k < N we cite [9,10], and

the reference therein. As noticed in [11], for a=0 and $\lambda=0$, M. Badiale et al. has considered the problem $(\mathcal{P}_{\beta,0,\mu})$. She established the nonexistence of nonzero classical solutions when $k \leq N$ and the pair (β, γ) belongs to the region. i.e. $(\beta, \gamma) \in \mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ where

$$\mathcal{A}_{!} := \left\{ \left(\beta, \gamma\right) \in \mathbb{R}^{2} : \beta \in \left(0, 2\right), \gamma \notin \left(2_{\beta}, 2^{*}\right), \gamma \geq 2 \right\} \setminus \left\{ \left(2, 2^{*}\right) \right\},$$

$$\mathcal{A}_2 := \left\{ \left(\beta, \gamma\right) \in \mathbb{R}^2 : \beta \in \left(2, N\right), \gamma \not\in \left(2^*, 2_\beta\right), \gamma \geq 2 \right\},$$

$$\mathcal{A}_3 := \left\{ (\beta, \gamma) \in \mathbb{R}^2 : \beta \in [N, +\infty), \gamma \in [2, 2^*] \right\}.$$

Since our approach is variational, we define the functional $I_{2\lambda,\mu}$ on ${\mathcal D}$ by

$$I_{2,\lambda,\mu}(u) := (1/2) \|u\|_{2,\mu}^2 - (1/\gamma) \int_{\mathbb{R}^N} |y|^{-a\gamma} |u|^{\gamma} dx - \lambda (1/q) \int_{\mathbb{R}^N} g(x) |u|^q dx.$$

We say that $u \in \mathcal{D}$ is a weak solution of the problem $(\mathcal{P}_{2,\lambda,\mu})$ if it is a nontrivial nonnegative function and satisfies

$$\left\langle I_{2,\lambda,\mu}(u), v \right\rangle := \int_{\mathbb{R}^N} \left(\nabla u \nabla v - \mu |y|^{-2} uv - |y|^{-b} |u|^{y-2} uv - \lambda g(x) |u|^{q-2} uv \right)$$

$$= 0 \text{ for } v \in \mathcal{D}$$

Concerning the perturbation g we assume

$$(G)g \in L^{\infty}(\mathbb{R}^N)$$
 and $g(x) > 0$ for all $x \in \mathbb{R}^N$.

In our work, we prove the existence of at least one critical points of $I_{2,\lambda,\mu}$ by the Ekeland's variational in [12]. By the Pohozaev type identities in [12], we show the nonexistence of positive solution for our problem.

We shall state our main result

Theorem 1 Assume $2 < k \le N$, $\mu < \overline{\mu}_k = ((k-2)/2)^2$, $\beta = 2$, 0 < a < 1 < q < 2 and (G) hold.

If $\gamma \in (2,2^*)$, then there exist Λ_0 and Λ^* such that the problem $\binom{2\lambda,\mu}{2}$ has at least one nontrivial solution for any $\lambda \in (\Lambda^*,\Lambda_0)$.

*Corresponding author: Mohamed El Mokhtar Ould El Mokhtar, Departement of Mathematics, College of Science, Qassim University, Kingdom of Saudi Arabia, BO 6644, Buraidah: 51452 Tel: +966 16 380 0050; E-mail: med.mokhtar66@yahoo.fr

Received July 18, 2015; Accepted October 19, 2015; Published October 30, 2015

Citation: Ould El Mokhtar MEM (2015) Existence and Nonexistence for Elliptic Equation with Cylindrical Potentials, Subcritical Exponent and Concave Term. J Astrophys Aerospace Technol 3: 126. doi:10.4172/2329-6542.1000126

Copyright: © 2015 Ould EI Mokhtar MEM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Theorem 2 Let $2 < k \le N$, 0 < a < 1 and (G) hold.

If $\beta \in (2,3)$, $\gamma \in (2_{\beta-2a},2^*)$ with $2_{\beta-2a} = 2N/(N-2(\beta-2a))$, $\lambda < 0$ and 1 < q < 2, then $(\mathcal{P}_{\beta,\lambda,u})$ has no positive solutions.

This paper is organized as follows. In Section 2, we give some preliminaries. Section 3 is devoted to the proof of Theorem 1. Finally in the last section, we give a nonexistence result by the proof of Theorem 2.

Preliminaries

We list here a few integrals inequalities. The first inequality that we need is the weighted Hardy inequality [13]

$$\overline{\mu}_k \int_{\mathbb{R}^N} |y|^{-2} v^2 dx \le \int_{\mathbb{R}^N} |\nabla v|^2 dx, \forall v \in \mathcal{H}_u$$

The starting point for studying $(\mathcal{P}_{2,\lambda,\mu})$ is the Hardy-Sobolev-Maz'ya inequality that is peculiar to the cylindrical case k < N and that was proved by Maz'ya in [14]. It state that there exists positive constant C_v such that

$$C_{\nu} \left(\int_{\mathbb{R}^{N}} |v|^{\nu} dx \right)^{2/\nu} \le \int_{\mathbb{R}^{N}} \left(|\nabla v|^{2} - \mu |y|^{-2} v^{2} \right) dx,$$

for $\mu=0$ equation of $(\mathcal{P}_{2,\lambda,\mu})$ is related to a family of inequalities given by Caffarelli, Kohn and Nirenberg [15], for any $v\in C_c^\infty((\mathbb{R}^k\setminus\{0\})\times\mathbb{R}^{N-k})$. The embedding $\mathcal{H}_\mu\rightarrowtail L^\gamma(\mathbb{R}^N,|y|^{-b}\,dx)$ is compact where $b=a\gamma$ and $L^\gamma(\mathbb{R}^N,|y|^{-b}\,dx)$ is the weighted L^γ space with respect to the norm

$$|u|_{\gamma,b}^2 = \left(\int_{\mathbb{R}^N} |y|^{-b} |v|^{\gamma} dx\right)^{2/\gamma}$$

Definition 1 Assume $2 \le k < N, 0 < \mu \le \overline{\mu}_k$ and $2 < \gamma < 2^*$. Then the infimum $S_{\mu,\gamma}$ defined by

$$S_{\mu,\gamma} = S_{\mu,\gamma}\left(k,\gamma\right) \coloneqq \inf_{v \in \mathcal{D}\setminus \{0\}} \frac{\int_{\mathbb{R}^N} \left(\left|\nabla v\right|^2 - \mu \left|y\right|^{-2} v^2\right) dx}{\left(\left(\int_{\mathbb{R}^N} \left|y\right|^{-b} \left|v\right|^{\gamma} dx\right)^{2/\gamma}},$$

is achieved on \mathcal{H}_{u} .

Lemma 1 Let $(u_n) \subset \mathcal{D}$ be a Palais-Smale sequence $((PS)_{\delta})$ for short) of $I_{2,\lambda,\mu}$ such that

$$I_{2,\lambda,\mu}(u_n) \to \delta \text{ and } I_{2,\lambda,\mu}(u_n) \to 0 \text{ in } \mathcal{D}' \text{ (dual of } \mathcal{D}) \text{ as } n \to \infty,$$
 (1)

for some $\delta \in \mathbb{R}$. Then if $\lambda < \Lambda_0 = \frac{q(\gamma - 2)}{2(\gamma - q)}$, $u_n \rightharpoonup u$ in \mathcal{D} and $I_{2,\lambda,\mu}(u) = 0$.

Proof. From (??), we have

$$(1/2)||u_n||_{2,\mu}^2 - (1/\gamma)\int_{\mathbb{R}^N} |y|^{-b} |u_n|^{\gamma} dx - (\lambda/q)\int_{\mathbb{R}^N} g(x)|u_n|^q dx = \delta + o_n(1)$$

and

$$||u_n||_{2,n}^2 - \int_{\mathbb{R}^N} |y|^{-b} |u_n|^{\gamma} dx - \int_{\mathbb{R}^N} g(x) |u_n|^q dx = o_n(1)$$
, for n large,

Where $o_n(1)$ denotes $o_n(1) \rightarrow 0$ as $n \rightarrow$. Then,

$$\delta + o_n(1) = I_{2,\lambda,\mu}(u_n) - (1/\gamma) \left\langle I_{2,\lambda,\mu}(u_n), u_n \right\rangle$$

$$= \left(\left(\gamma - 2 \right) / 2 \gamma \right) \left\| u_n \right\|_{2,\mu}^2 - \lambda \left(\left(\gamma - q \right) / q \gamma \right) \int_{\mathbb{R}^N} g(x) \left| u_n \right|^q dx$$

$$\geq \left[\left(\left(\gamma-2\right)/2\gamma\right)-\lambda\left(\left(\gamma-q\right)/q\gamma\right)\left|g\right|_{\infty}\right]\left\|u_{n}\right\|_{2,\mu}^{2}.$$

If $\lambda < \Lambda_0 = \frac{q(\gamma - 2)}{2(\gamma - q)}$ then, (u_n) is bounded in \mathcal{D} . Going if necessary to a subsequence, we can assume that there exists $u \in \mathcal{D}$ such that

$$u_n \rightharpoonup u$$
 weakly in \mathcal{D}

$$u_n \to u$$
 strongly in $L^{\gamma}\left(\mathbb{R}^N, |y|^{-b} dx\right)$

$$u_n \to u$$
 strongly in $L^q(\mathbb{R}^N)$

$$u_{\cdot \cdot} \to u$$
 a.e in \mathbb{R}^N .

Consequently, we get for all $v \in C_0^{\infty}((\mathbb{R}^k \setminus \{0\}) \times \mathbb{R}^{N-k})$,

$$\int_{\mathbb{R}^{N}} \left(\nabla u \nabla v + \mu |y|^{-2} uv - |y|^{-b} |u|^{\gamma - 2} uv + \lambda g(x) |u|^{q - 2} uv \right) = 0,$$

which means that

$$I_{2,\lambda,\mu}(u)=0.$$

Existence Result

Firstly, we require following Lemmas

Lemma 2 Let $(u_n) \subset \mathcal{D}$ be a $(PS)_{\delta}$ sequence of $I_{2,\lambda,\mu}$ for some $\delta \in \mathbb{R}$.

$$u_n \rightharpoonup u \text{ in } \mathcal{D}$$

and either

$$u_n \to u \text{ or } \delta \ge I_{2,\lambda,\mu}(u) + ((\gamma - 2)/2\gamma)(S_{\mu,\gamma})^{\gamma/(\gamma - 2)}.$$

Proof. We know that (u_n) is bounded in \mathcal{D} . Up to a subsequence if necessary, we have that

$$u_n \rightharpoonup u \text{ in } \mathcal{D}$$

$$u_n \to u \text{ a.ein}\mathbb{R}^N$$

Denote $v_n = u_n - u$, then $v_n \rightarrow 0$. As in Brézis and Lieb [16], we have

$$\int_{\mathbb{D}^{N}} |y|^{-b} |u_{n}|^{\gamma} = \int_{\mathbb{D}^{N}} |y|^{-b} |v_{n}|^{\gamma} + \int_{\mathbb{D}^{N}} |y|^{-b} |u|^{\gamma}$$

and

$$\|u_n\|_{2,\mu}^2 = \|v_n\|_{2,\mu}^2 + \|u\|_{2,\mu}^2$$

From Lebesgue theorem and by using the assumption (G), we obtain

$$\lim_{n \to \infty} \int_{\mathbb{R}^{N}} g(x) |y|^{-b} |u_{n}|^{\gamma} dx = \lim_{n \to \infty} \int_{\mathbb{R}^{N}} g(x) |y|^{-b} |u|^{\gamma} dx.$$

Then, we deduce that

$$I_{2,\lambda,\mu}(u_n) = I_{2,\lambda,\mu}(u) + (1/2) ||v_n||_{2,\mu}^2 - (1/\gamma) \int_{\mathbb{R}^N} |y|^{-b} |v_n|^{\gamma} + o_n(1)$$

and

$$\langle I_{2,\lambda,\mu}(u_n), u_n \rangle = ||v_n||_{2,\mu}^2 - \int_{\mathbb{R}^N} |y|^{-b} |v_n|^{\gamma} + o_n(1)$$

From the fact that $v_n \rightarrow 0$ in \mathcal{D} , we can assume that

$$\lim \|v_n\|_{2,\mu}^2 = \lim \int_{\mathbb{R}^N} |y|^{-b} |v_n|^{\gamma} = \alpha \ge 0.$$

Assume $\alpha > 0$, we have by definition of $S_{\mu,\gamma}$

$$\alpha \geq S_{\mu \nu} l^{(2/\gamma)},$$

and so

$$\alpha \ge \left(S_{\mu,\gamma}\right)^{\gamma/(\gamma-2)}$$

Then, we get

$$\delta \geq I_{2\lambda,\mu}(u) + \left((\gamma - 2)/2\gamma \right) \left(S_{\mu,\gamma} \right)^{\gamma/(\gamma - 2)}.$$

Therefore, if not we obtain $\alpha = 0$. i.e $u_{ij} \rightarrow u$ in \mathcal{D} .

Lemma 3 Suppose $2 < k \le N$, $\mu < \overline{\mu}_k$ and (G) hold. There exist $\Lambda^* > 0$ such that if $\lambda > \Lambda^*$, then there exist ρ and ν positive constants such that,

i) there exist $\omega \in \mathbb{R}^N$ such that $I_{2,\lambda,\mu}(\omega) < 0$,

ii) we have

$$I_{2\lambda,\mu}(u) \ge \nu > 0$$
 for $||u||_{2\mu} = \rho_0$.

Proof. i) Let $t_0 > 0$, t_0 small and $\phi \in C_0^{\infty}\left(\left(\mathbb{R}^k \setminus \{0\}\right) \times \mathbb{R}^{N-k}\right)$ such that $\phi \neq 0$. Choosing $\Lambda^* = \left|t_0\phi\right|^{1-q} < \Lambda_0 = \frac{q\left(\gamma - 2\right)}{2\left(\gamma - q\right)}$ then, if $\lambda \in \left(\Lambda^*, \Lambda_0\right)$

$$I_{2,\lambda,\mu}(t_{0}\phi) := (t_{0}^{2}/2) \|\phi\|_{2,\mu}^{2} - (t_{0}^{\gamma}/\gamma) \int_{\mathbb{R}^{N}} |y|^{-b} |\phi|^{\gamma} 1 - (t_{0}^{q}/q) \int_{\mathbb{R}^{N}} |\phi|^{q} \lambda g(x)$$

$$< (t_{0}^{2}/2) \|\phi\|_{2,\mu}^{2} - (t_{0}^{\gamma}/\gamma) \int_{\mathbb{R}^{N}} |y|^{-b} |\phi|^{\gamma} 1 - \lambda (t_{0}/q) \int_{\mathbb{R}^{N}} |\phi| g(x)$$

$$< 0$$

Thus, if $\omega = t_0 \phi$, we obtain that $I_{2,\lambda,\mu}(\omega) < 0$.

ii) By the Holder inequality and the definition of $S_{\mu,\gamma}$ and since $\gamma \geq 2$, we get for all $u \in \mathcal{D} \setminus \{0\}$

$$I_{2,\lambda,\mu}(u) := (1/2) \|u\|_{2,\mu}^2 - (1/\gamma) \int_{\mathbb{R}^N} |y|^{-b} |u|^{\gamma} dx - (\lambda/q) \int_{\mathbb{R}^N} |u|^{q} g(x) dx$$

$$\geq (1/2) \|u\|_{2,\mu}^2 - (1/\gamma) S_{\mu,y} \|u\|_{2,\mu}^{\gamma} - (\lambda/q) |g|_{\infty} \|u_{n}\|_{2,\mu}^{q}$$

If $\lambda > 0$, then there exist $\nu > 0$ and $\rho_0 > 0$ small enough such that

$$I_{2,\lambda,\mu}(u) \ge \nu > 0$$
 for $||u||_{2,\mu} = \rho_0$.

We also assume that t_0 is so small enough such that $\left\|t_0\phi\right\|_{2,\mu} \leq \rho_0$. Thus, we have

$$c_1 = \inf \left\{ I_{2,\lambda,\mu} \left(u \right) : u \in B_{\rho_0} \right\} < 0, \text{where} B_{\rho_0} = \left\{ u \in \mathcal{D}, \mathcal{N} \mid\mid u \mid\mid \leq \rho_0 \right\}.$$

Using the Ekeland's variational principle, for the complete metric space \overline{B}_{ρ_0} with respect to the norm of \mathcal{D} , we can prove that there exists a $(PC)_{c_1}$ sequence $(u_n) \subset \overline{B}_{\rho_0}$ such that $u_n \to u_1$ for some u_1 with $\mathcal{N} \parallel u_1 \parallel \leq \rho_0$.

Now, we claim that $u_n \rightarrow u_1$. If not, by Lemma 2, we have

$$c_{1} \ge I_{2,\lambda,\mu}(u_{1}) + ((\gamma - 2)/2\gamma)(S_{\mu,\gamma})^{\gamma/(\gamma - 2)}$$

$$\ge c_{1} + ((\gamma - 2)/2\gamma)(S_{\mu,\gamma})^{\gamma/(\gamma - 2)}$$

$$> c_{1},$$

-1,

which is a contradiction.

Then we obtain a critical point u_i of $I_{2,\lambda,\mu}$ for all $\lambda \in (\Lambda^*, \Lambda_0)$.

Proof of Theorem 1

Proof. From Lemmas 2 and 3, we can deduce that there exists at least a nontrivial solution u_1 for our problem $(\mathcal{P}_{2,\lambda,\mu})$ with positive energy [17-19].

Nonexistence Result

By a Pohozaev type identity we show the nonexistence of positive solution of $(\mathcal{P}_{2,\lambda,\mu})$ when $\beta \in (2,3)$, $\gamma \in (2_{\beta-2a},2^*)$ with $2_{\beta-2a} = 2N/(N-2(\beta-2a))$, $\lambda < 0$, 1 < q < 2 and (G) hold with 0 < a < 1.

First, we need the following Lemma

Lemma 4 Let $u \in \mathcal{D}$ be a positive solution of $(\mathcal{P}_{2,\lambda,\mu})$ and. Then the following identity holds

$$\left(\frac{N-2}{2}-\frac{N-\beta}{2}\right)\int_{\mathbb{R}^{N}}\left|\nabla u\right|^{2}dx-\left(\frac{N-a\gamma}{\gamma}-\frac{N-\beta}{2}\right)\int_{\mathbb{R}^{N}}\left|y\right|^{-a\gamma}\left|u\right|^{\gamma}dx$$

$$=\lambda\left(\frac{N}{q}-\frac{N-\beta}{2}\right)\int_{\mathbb{R}^{N}}g\left(x\right)\left|u\right|^{q}dx.$$

Proof. [we shall state the similar proof of proposition 30 and Lemma 31 in [11]].

1) Multiplying the equation of $(\mathcal{P}_{\beta,\lambda,\mu})$ by the inner product $(x \nabla u)$ and integrating on \mathbb{R}^N , we obtain

$$\left(\frac{N-2}{2}\right) \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \left(\frac{N-\beta}{2}\right) \int_{\mathbb{R}^{N}} \mu |y|^{-\beta} |u|^{2} dx
= \left(\frac{N-a\gamma}{\gamma}\right) \int_{\mathbb{R}^{N}} |y|^{-a\gamma} |u|^{\gamma} + \lambda \left(\frac{N}{q}\right) \int_{\mathbb{R}^{N}} g(x) |u|^{q} dx.$$
(2)

2) By multiplying the equation of $(\mathcal{P}_{2,\lambda,\mu})$ by u, using the identity $u\Delta u \quad div(u\nabla u) - |\nabla u|$

in $(\mathbb{R}^k \setminus \{0\}) \times \mathbb{R}^{N-k}$ and applying the divergence theorem on \mathbb{R}^N , we obtain

$$\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx + \int_{\mathbb{R}^{N}} \mu |y|^{-\beta} |u|^{2} dx = \int_{\mathbb{R}^{N}} |y|^{-ay} |u|^{y} dx + \lambda \int_{\mathbb{R}^{N}} g(x) |u|^{q} dx.$$
 (3)

From (3), we have

$$\left(\frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} |\nabla u|^2 dx + \left(\frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} \mu |y|^{-\beta} |u|^2 dx
= \left(\frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} |y|^{-ay} |u|^{\gamma} + \lambda \left(\frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} g(x) |u|^q dx.$$
(4)

Combining (??) and (??), we obtain

$$\left(\frac{N-2}{2} - \frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} |\nabla u|^2 dx - \left(\frac{N-a\gamma}{\gamma} - \frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} |y|^{-a\gamma} |u|^{\gamma} dx$$

$$= \lambda \left(\frac{N}{a} - \frac{N-\beta}{2}\right) \int_{\mathbb{R}^N} g(x) |u|^q dx.$$

Proof of Theorem 2.We proceed by contradictions.

From Lemma 4, since (*G*) hold and 1 < q < 2 therefore, if $\beta \in (2,3)$, $\gamma \in (2_{\beta-2a}, 2^*)$ with $2_{\beta-2a} = 2N / (N - 2(\beta - 2a))$ we obtain that $\lambda > 0$ what contradicts the fact that $\lambda > 0$.

References

- Badiale M, Benci V, Rolando S (2004) Solitary waves: physical aspects and mathematical results. Rend Sem Math Univ Pol Torino 62: 107-154.
- Benci V, Fortunato D (2007) Solitary waves in the nonlinear wave equation and in gauge theories. J Fixed Point Theory Appl 1: 61-86.
- Strauss WA (1978) Nonlinear invariant wave equations. Lecture Notes in Phisics, Springer Berlin Heidelberg, Germany.
- 4. Withan GB (1974) Linear and nonlinear waves, John Wiley and Sons.
- Caldiroli P, Musina R (1999) On the existence of extremal functions for a weighted Sobolev embedding with critical exponent. Calculus of Variations and Partial Differential Equations 8: 365-387.
- Catrina F, Wang ZQ (2001) On the Ca Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm Pure Appl Math 54: 229-258.
- Brezis H, Nirenberg L (1983) Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Comm Pure Appl Math 36: 437-477.
- Xuan B (2005) The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights. Nonlinear Analysis 62: 703-725.
- 9. Badiale M, Tarantello G (2002) A Sobolev-Hardy inequality with applications

- to a nonlinear elliptic equation arising in astrophysics. Arch Ration Mech Anal 163: 252-293.
- Musina R (2009) Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities. Nonlinear Analysis TMA 70: 3002-3007.
- 11. Badiale M, Guida M, Rolando S (2007) Elliptic equations with decaying cylindrical potentials and power-type nonlinearities. Adv Di Eq 12: 1321-1362.
- 12. Ekeland I (1974) On the variational principle. J Math Anal Appl 47: 324-353.
- Adimurthi, Chaudhuri N, Ramaswamy M (2002) An improved Hardy–Sobolev inequality and its application. Proc Amer Math Soc 130: 489-505.
- Gazzini M, Musina R (2009) On the Hardy-Sobolev-Maz'ja inequalities: symmetry and breaking symmetry of extremal functions. Commun Contemp Math 11: 993-1007.

- Caffarelli L, Kohn R, Nirenberg L (1984) First order interpolation inequalities with weights. Compositio Math 53: 259-275.
- Brézis H, Lieb E (1983) A Relation Between Point convergence of Functions and convergence of Functional and convergence of Functionals. Proc Amer Math Soc 88: 486-490.
- 17. Tarantello G (1992) On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst Henri Poincaré 9: 281-304.
- 18. Ambrosetti A, Brézis H, Cerami G (1994) Combined effects of concave and convex nonlinearity in some elliptic problems. J Funct Anal 122: 519-543.
- 19. Bouchekif M, El Mokhtar MEO (2010) On nonhomogeneous singular elliptic equations with cylindrical weight. Ricerche di Matematica 61: 147-156.