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Abstract

In this paper, we consider the existence and nonexistence of non-trivial solutions to elliptic equations with
cylindrical potentials, concave term and subcritical exponent. First, we shall obtain a local minimizer by using the
Ekeland’s variational principle. Secondly, we deduce a Pohozaev-type identity and obtain a nonexistence result.
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Introduction

In this paper we study the existence, multiplicity and nonexistence
of nontrivial solutions of the following problem

—Au— y‘y‘iﬂ TE ‘u‘yiz u+Aig (x)‘u‘qiz uinR™,y # 0
(p/’vw)

u>0,

where ¢ k and N be integers such that § >3 and k belongs to

{1,.,N}\{0}, 2°=2N/(N-2) is the critical Sobolev exponent, i > 0,
y<2", 0<a<1,1<¢g<2,gisabounded function on R", A and f3 are
parameters which we will specify later.

We denote point x in RY by the pair (y,z)eR*xR"*
D;? = Dy ((R*\{0})xR") and ¢, =, ((R*\
of C7 ((R" \{0}) x ]R‘V’k) with respect to the norms

e (.[RN ‘Vu‘z )1 : and H”Hz.u = (.[M (‘Vu‘z _ ,U‘y‘iz ‘M‘Z )dx)' )

We define the weighted Sobolev space
Di=H, AL (R']" ax)n L (R".y{"ax) with b = ay, which is a Banach space

1y
2.1 + (.[nv .

My motivation of this study is the fact that such equations arise in
the search for solitary waves of nonlinear evolution equations of the
Schrodinger or Klein-Gordon type [1-3]. Roughly speaking, a solitary
wave is a nonsingular solution which travels as a localized packet in
such a way that the physical quantities corresponding to the invariances
of the equation are finite and conserved in time. Accordingly, a solitary
wave preserves intrinsic properties of particles such as the energy, the
angular momentum and the charge, whose finiteness is strictly related
to the finiteness of the L?- norm. Owing to their particle-like behavior,
solitary waves can be regarded as a model for extended particles and
they arise in many problems of mathematical physics, such as classical
and quantum field theory, nonlinear optics, fluid mechanics and
plasma physics [4].

{o})xRN*k) , the closure

with respect to the norm defined by N ||u [}=u

Several existence and nonexistence result are available in the case
k = N, we quote for example [5,6] and the reference therein. When y =
0 g(x)=1, problem (7,,,) has been studied in the famous paper by
Brézis and Nirenberg [7] and B. Xuan [8] which consider the existence
and nonexistence of nontrivial solutions to quasilinear Brézis-
Nirenberg-type problems with singular weights.

Concerning existence result in the case k < N we cite [9,10], and

the reference therein. As noticed in [11], for a = 0 and A = 0, M.
Badiale et al. has considered the problem (7,,,) . She established the

nonexistence of nonzero classical solutions when k<N and the pair
(B, y) belongs to the region. i.e: (8,7)e A= A UA UA where

={(Br)eR*:Be(0,2),72(2,,2').722\{(2.2')},
A ::{(ﬂ’}’)ERZ iﬂe(Z,N),yez(Z*,z,}),yzz},
A= {(Br)e R pelV <[22

Since our approach is variational, we define the functional 7,,
on D by

Iz,z,p( u)= l/y)J.RNy u‘ydxf/‘t(l/q)'[mwg(

We say that u€D is a weak solution of the problem (7,
nontrivial nonnegative function and satisfies

<12"M (u),v> = J‘RN (Vqu —u ‘y‘ﬁ uv — M*b ‘u -2
=0, for v€D.

—ay

(1/2) HuH

x)Juf dx.

)ifitisa

2

Concerning the perturbation g we assume
(G)gerL” (]RN )andg(x) >0 forallx e R".

In our work, we prove the existence of at least one critical points
of I,;, by the Ekeland’s variational in [12]. By the Pohozaev type
identities in [12], we show the nonexistence of positive solution for our
problem.

We shall state our main result

Theorem 1 Assume
0<a<l<q<2 and (G) hold.

2<k<N, /j<ﬁk:((k—2)/2)2, B=2,

If e(2,2*), then there exist A, and A* such that the problem
(,.,) hasatleast one nontrivial solution forany 1e(A",A,).
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Theorem 2 Let 2 <k < N, 0<a<1 and (G) hold.
If pe(2,3), ye(2,,,,2") with 2,,, =2N/(N-2(8-2a)), A <0
and 1<g<2, then (7,,,,) has no positive solutions.

This paper is organized as follows. In Section 2, we give some
preliminaries. Section 3 is devoted to the proof of Theorem 1. Finally in
the last section, we give a nonexistence result by the proof of Theorem 2.

Preliminaries

We list here a few integrals inequalities. The first inequality that we
need is the weighted Hardy inequality [13]

A

The starting point for studying (7,,,) is the Hardy-Sobolev-
Maz’ya inequality that is peculiar to the cylindrical case k < N and that
was proved by Maz’ya in [14]. It state that there exists positive constant
C, such that

(bt arf <[
foru=0equationof (7, ) isrelated toafamily of inequalities given
by Caffarelli, Kohn and Nirenberg [15], for any veC(R*\{0})xR"*) .
The embedding H, — L (R’V,\y\fh dX) is compact where b=ay and
(R,

y‘iz Vidx < J.RN ‘Vv‘z dx,vveH,.

Vv‘2 - ,u‘y‘fz vz)aix,

V|

V)

_ N 2,
], = (bt )

K dx) is the weighted L space with respect to the norm

/y

Definition 1 Assume 2<k<N,0 <u<p, and 2<y<2". Then the
infimum S,, defined by

I ; ‘Vv‘z—,u‘y"z v?)dx

N

S,, =S, (ky)=inf = ( -,,y 2/,)
¥ dx)

veD\{0}
RN

is achieved on ’H#.

Lemmal Let (u,)= D be a Palais-Smale sequence ((PS), for short)
of 1,,, such that

(u,)—> 5andlzlyw (u,) > Oin D (dualof D)asn — o, (1)

q(r-2) ,
2(;/—q)’ u,—u in D and

1

201

for some SeR. Then if 4<A,=

[271.;1 (u) =0 -
Proof. From (??), we have

(17 2)HM”H;I -(1/ y)J.RN | [, [ dx—(2/ q)J.RNg(x) u,|"dx=35+0,(1)
and
u, ; 7L§N |y | dxfjw\,g(x) u,|" dx =0, (1), fornlarge,

Where o (1) denotes 0 (1) >0 as n . Then,
540,(1)= Ly, (1)~ (1 ){ 1o ,) )

L~ A(r=a) ar) [ e (x)|u,| dx

=((r=2)/27)|u, i,
2
2,u "

un

>[((r-2)/2r)-4((r-q)/ar)lgl, ]

q(r-2)
2(7-q) .
to a subsequence, we can assume that there exists €D such that

If A<A,= then, (u,) is bounded in D. Going if necessary

u, — uweakly in D

u, —> ustrongly in I (R’V, y\’b dx)
u, —> ustrongly in L (RN )
u, >uaeinR".

Consequently, we get for all v€Cy ((Rk \{0}) xRN )

[~

uv+Ag(x) 2 uv) =0,

ImN (Vqu +u ‘yr2 uv— ‘y‘ib |u u

which means that

1y, (u) =0.
Existence Result
Firstly, we require following Lemmas

Lemma 2 Let (u,)<D bea (PS), sequence of I,,, for some 6 €R.
Then,

u, —uinD

and either

u, s>uors=1,, (u)+ ((y -2)/ 2;/)(SM )yl(y_z) .

Proof. We know that (u,) is bounded in D. Up to a subsequence if
necessary, we have that

u, —uinD

u, —>uaeinR".

Denote v, =u, —u ,then v, — 0 . Asin Brézis and Lieb [16], we have

7

b 1 by |y -b
I A I A I B
and

2 2 2
Un 2. TV 2,u +Hu 2.u

From Lebesgue theorem and by using the assumption (G), we
obtain

b

" dx.

timf g (D)o = tim], v ()]l
Then, we deduce that
Ly (w,)=1,, (1)+(1/2)
and

<[2,/1./4 (”n )’”n> v zw _J.ny\'

From the fact that v, — 0 in D, we can assume that

+o,(1)

wll, =) [,

b
n v”

" +o, (1).

Y]

—b
" =a>0.

v

2
tim|[v,[;. = tim[ ||
oo 2T JRY "

Assume & > 0, we have by definition of S, ,
@)
azS, 17,
and so
7/(r-2)
o= (SM) .
Then, we get

62 IZJ»,ﬂ (u)+((772)/2}/)(SA1-7)

Therefore, if not we obtain « = 0. i.e u >uinD.

7/(r-2)

Lemma 3 Suppose 2<k<N, #<p and (G) hold. There exist
A*>0 such that if A>A" , then there exist p and v positive constants
such that,
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i) there exist @ €R" such that /,, , (@) <0,

i) we have

1, (u)=v>0for HuHZ‘# = py-

Proof. i) Lett,> 0, t, small and ¢<Cy ((RA \{0})XR‘H) such that

a(r-2) then, if 4€(A"A,)

2(7-q)
—(’J/V)ka\y\’b o 1-

IRt

¢ =0. Choosing A" =g * <A, =

L, (tg)= (fg /2)‘ (tg /q)LRN 4" 2g(x)

<(/2)lls, (5 /

<0

v ltle(x)

l]

Thus, if ®=1¢ , we obtain that I,, ,(»)<0.

it) By the Holder inequality and the definition of §,, and since

7>2, we get for all ueD\{0}

L ()= I/ZHM\ZA, (U7 7) [l e

(a/ q)_[mN " g (x)dx

1/7

u,

o el = (27 @)lgl e[,

If A > 0, then there exist v > 0 and p,>0 small enough such that

IZ,A,‘U( )>V>0f0rHuH2y Po-

We also assume that £, is so small enough such that HM’\
Thus, we have

<
2. Po .

¢ = inf{]lM (u):u EBﬂo} <0,whereB, ={ueD,N|ul<p,}.

Using the Ekeland’s variational principle, for the complete metric
space B, with respect to the norm of D, we can prove that there

exists a (PC)L.1 sequence (u,)c B,, such that u_-u, for some u, with

Nl [I£ py-

Now, we claim that u_->u,. If not, by Lemma 2, we have

621, (ul)+((y— 2)/ 2}/)(S;1,y )MH)

> +((7-2)/27)(s,,,) "

>c,

which is a contradiction.

Then we obtain a critical point u, of 1,,, forall 1e (A*,AO) .
Proof of Theorem 1

Proof. From Lemmas 2 and 3, we can deduce that there exists at
least a nontrivial solution u, for our problem (7, ,) with positive
energy [17-19].

Nonexistence Result

By a Pohozaev type identity we show the nonexistence of
positive solution of (B,,) when BE(2,3), 76(2,6,20,2*) with

2,,,=2N/(N-2(f-2a))> A <0, 1<gq<2 and (G) hold with 0<a<1.
First, we need the following Lemma

Lemma 4 Let u€ D be a positive solution of (B, ,) and. Then the
following identity holds

N-2 N-p 2 N-ay N-p
R

—ay

u‘y dx

N N-p
= i[?—TJJ.R‘,\,g(x)‘u‘q dx.

Proof. [we shall state the similar proof of proposition 30 and
Lemma 31 in [11]].

1) Multiplying the equation of (7, , ) by the inner product (xVu)

B
and integrating on R¥, we obtain

(%)L@N‘Vu‘z dx+(N;ﬁjj‘RNﬂ‘y‘iﬁ‘u‘2 dx (2)

_ [N;a}/).[w Rar +ﬂ[%]J‘RNg(x)‘u‘q dx.

2) By multiplying the equation of (Po) by u, using the identity

uAu div(uVu) - ‘Vu‘

in (R*\{0})xR"* and applying the divergence theorem on RY, we
obtain

.[RN ‘Vu‘z dx + _[RN,u y‘fﬁ ‘u‘z dx = IRN [ Ju] dx+ 2 R‘N,g(x)‘u‘q dx. (3)

From (3), we have

G M s @

2
[l [NT—ﬂj [Lg ()l d.

5

Combining (??) and (??), we obtain

N-2 N- N-ay N- W
| L Ce e [

=1 [g - NT%] ij'g () [ue]” .

Proof of Theorem 2.We proceed by contradictions.

From Lemma 4, since (G) hold and 1<q<2 therefore, if f€(2,3),
7 €(2,,,.2") with 2, =2N /(N -2(-2a)) we obtain that A > 0 what
contradicts the fact that A > 0.
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