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Introduction
We consider a randomized trial, in which subjects are assigned 

randomly to receive one of two experimental treatments, and each 
subject is classified as either a responder or a non-responder. In such 
a setting, data are summarized in a two-by-two contingency table, and 
hypothesis testing is performed to test the equality of the response 
proportions of the two groups.

Ninety years ago, Fisher [1,2] developed an exact test, which is 
often referred to as Fisher’s exact test. This test is a hypothesis test for 
the sharp, but not the weak, causal null hypothesis. Because rejection 
of the sharp causal null hypothesis does not imply that the weak causal 
null hypothesis is rejected, the true risk difference may still be zero even 
when the sharp causal null hypothesis is rejected by Fisher’s exact test.

Twenty years later, Barnard [3-5] developed another exact test, 
which is sometimes referred to as Barnard’s exact test. This test utilizes 
the product of two binomial probabilities, and it has advantages over 
Fisher’s exact test in that it can be more powerful for moderate to 
small samples [6,7]. Nevertheless, Barnard’s exact test cannot be a 
hypothesis test for the causal null hypothesis unless exchangeability 
can be assumed.

In this article, we provide exact tests for the weak causal null 
hypothesis without requiring any assumption (such as exchangeability) 
in the context of randomized trials, using the concept of principal 
stratification. To our knowledge, such an exact test has not been 
developed. First, an unconditional exact test for which neither 
marginal total is fixed is derived; then, a conditional exact test for 
which one marginal total is fixed is derived. In addition, we show that 
Fisher’s exact test can be a hypothesis test for the weak causal null 
hypothesis when monotonicity can be assumed. The derived exact 
tests are extended to hypothesis testing for non-inferiority trials and 
to construct confidence intervals linking to the exact tests. The derived 
exact tests and confidence intervals are illustrated using data from two 
clinical trials.

Notation and Principal Stratification Approach
Throughout this article, we denote X as the assigned treatment; X=1 

if a subject was assigned to the treatment group, and X=0 if assigned 
to the control group. Y denotes the binary outcome; Y=1 if the event 
occurred, and Y=0 if it did not. The results from a randomized trial are 
summarized in a two-by-two contingency table as shown in Table 1, 
where a, b, c, d, and n are the numbers of subjects.

For each subject, it is also possible to consider the potential 
outcomes [8-10], which correspond to the outcomes of the subject 
had he/she been in the other group of the trial. Y(x) denotes the 
potential outcome for each subject under X=x. Then, Pr(Y(1)=1) 
represents a potential response proportion if all subjects are assigned 
to the treatment group, and Pr(Y(0)=1) represents a potential response 
proportion if all subjects are assigned to the control group. Using the 
potential outcome, the null hypothesis that the potential response 
proportions of each group are equal can be defined as

H0: Pr(Y(1)=1)=Pr(Y(0)=1).
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Abstract
There are two principal exact tests for evaluation of data in two-by-two contingency tables: the tests of Fisher and 

Barnard. The latter cannot be a hypothesis test for the causal null hypothesis unless exchangeability can be assumed. 
Fisher’s exact test is a hypothesis test for the sharp causal null hypothesis (i.e., that there is no effect for all individuals), 
but not for the weak causal null hypothesis (i.e., that the true risk difference is zero). Rejection of the sharp causal null 
hypothesis does not mean that the weak causal null hypothesis is rejected (i.e., that the true risk difference is not zero). 
In this article, we provide exact tests for the weak causal null hypothesis, in the absence of any assumption, in the 
context of randomized trials. Using the concept of principal stratification, which considers four types of subjects to define 
four principal strata, we derive an unconditional exact test, for which neither marginal total is fixed, and a conditional 
exact test, for which one marginal total is fixed. In addition, we show that Fisher’s exact test can be a hypothesis test 
for the weak causal null hypothesis when monotonicity can be assumed. The derived exact tests are extended to 
hypothesis testing for non-inferiority trials and to construct confidence intervals linking to the exact tests. The derived 
exact tests and confidence intervals are illustrated using data from two clinical trials.

Event
Group Occurred

(Y=1)
Not occurred

(Y=0)
Total

Treatment (X=1) a b a+b
Control (X=0) c d c+d

Total a+c b+d n

Table 1: Two-by-two contingency table obtained from a randomized trial, where a, 
b, c, d, and n indicate the numbers of subjects.
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(X=1) with the probability of 1/(1+r) and nst,0 subjects are assigned to 
the control group (X=0) with the probability of r/(1+r). As each subject 
is independently assigned, we form the following probability:

11,1 11,1 10,1 10,1 01,1 01,1 00,1 00,1Pr( , , , )N n N n N n N n= = = =

1 1
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The first condition is the null hypothesis and the second is the total 
number of subjects. The last two conditions are needed such that the 
numbers of subjects in principal strata under the null hypothesis, (n11, 
n10, n01, n00), do not contradict the observed data in Table 1; i.e., Table 3 
is equal to Table 1 under at least one combination of nst,1 and nst,0. If (n11, 
n10, n01, n00) does contradict the observed data, subjects in the principal 
strata can no longer be the same sample as the subjects in the observed 
data. These conditions are derived from Tables 1 and 3 as follows; e.g., 
n11 ≤ a+c is derived from

a+c

=(n11,1+n10,1)+(n11,0+n01,0)

=n11+n10,1+n01,0,

and n11+n10 ≤ a+c+d is derived from

a+c+d

=(n11,1+n10,1)+(n11,0+n01,0)+(n00,0+n10,0)

=n11+n10+n01,0+n00,1.

The other inequalities are derived in a similar manner.

Here, we focus on the risk difference as the effect measure. The risk 
difference estimated from the observed data is

ORD : a c
a b c d

= −
+ +

from Table 1, and the risk difference under the null hypothesis is

11,1 10,1 11,0 01,0
N

11,1 10,1 01,1 00,1 11,0 10,0 01,0 00,0
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n n n n

n n n n n n n n
+ +
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from Table 3. We consider only the case of RDO ≤ 0 in this article, but 
the following methods can easily be applied to the case of RDO ≥ 0. For 
RDO ≤ 0, the one-sided p-value is defined as the probability that RDN is 
equal to or smaller than RDO if the same trial is conducted repeatedly 
under the null hypothesis. Therefore, Equation (1) yields the following 
one-sided p-value under a combination of (n11, n10, n01, n00) satisfying 

This null hypothesis is referred to as the weak causal null hypothesis 
[11], and implies that two different treatment statuses from one 
population are compared.

Here, we apply the principal stratification approach [12]. This 
approach considers the following four types of subjects to define the 
four principal strata:

(i) Individuals who would suffer the event regardless of the assigned                
treatment group; i.e., (Y(1), Y(0))=(1, 1).

(ii) Individuals who would suffer the event if assigned to the treatment 
group, but would not suffer the event if assigned to the control 
group; i.e., (Y(1), Y(0))=(1, 0).

(iii) Individuals who would not suffer the event if assigned to the 
treatment group, but would suffer the event if assigned to the 
control group; i.e., (Y(1), Y(0))=(0, 1).

(iv) Individuals who would not suffer the event regardless of the 
assigned treatment group; i.e., (Y(1), Y(0))=(0, 0).

These four types are summarized in Table 2, and all subjects belong to 
one of these four types.

Let nst denote the number of subjects with (Y(1), Y(0))=(s, t), 
where s, t=0, 1. Although the value of nst cannot be determined from 
the observed data, we can nevertheless express the weak causal null 
hypothesis by using nst. If all subjects are assigned to the treatment 
group (X=1), Pr(Y(1)=1)=(n11+n10)/n because only subjects with type 
(i) or (ii) would suffer the event (Table 2). Likewise, if all subjects are 
assigned to the control group (X=0), Pr(Y(0)=1)=(n11+n01)/n because 
only subjects with type (i) or (iii) would suffer the event. Thus, using the 
concept of the principal stratification, the weak causal null hypothesis 
can be expressed as n10=n01 from Pr(Y(1)=1)=Pr(Y(0)=1).

Proposed Exact Tests
Using the above notation, we derive an unconditional exact test for 

the weak causal null hypothesis n10=n01 in the context of randomized 
trials with complete (or equally simple) randomization, and apply it to 
derive a conditional exact test.

Unconditional exact test

When the random assignment is conducted by the ratio of 1:r, we 
assume that subjects are assigned as in Table 3 under the null hypothesis; 
i.e., of the nst subjects, nst,1 subjects are assigned to the treatment group 

Type Principal stratum Event under
the treatment group

Event under
the control group

(i) (Y(1), Y(0))=(1, 1) Yes Yes
(ii) (Y(1), Y(0))=(1, 0) Yes No
(iii) (Y(1), Y(0))=(0, 1) No Yes
(iv) (Y(1), Y(0))=(0, 0) No No

Table 2: Principal strata: “Yes” denotes that a subject would suffer the event, and 
“No” denotes that a subject would not suffer the event.

Table 3: Two-by-two contingency table with the numbers for the four types of 
subjects defining the four principal strata.

Event
Group Occurred

(Y=1)
Not occurred

(Y=0)
Total

Treatment (X=1) n11,1+n10,1 n00,1+n01,1 n11,1+n10,1+n01,1+n00,1

Control (X=0) n11,0+n01,0 n00,0+n10,0 n11,0+n10,0+n01,0+n00,0

Total n11+n10,1+n01,0 n00+n01,1+n10,0 n
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where I(z)=1 if z ≤ 0 and I(z)=0 if z>0 with z := RDN-RDO. Note that 
for cases in which one denominator in RDN is 0, we set the indicator 
to I(z)=1. Although this setting of the indicator yields larger p-values 
than setting to I(z)=0, the substantial effect will be trivial because the 
probability that either nst,1 or nst,0 is 0 for all s and t is very small.

Unfortunately, this calculation of the p-value yields plural p-values 
corresponding to the number of combinations of (n11, n10, n01, n00), and 
then we cannot yield a p-value immediately. A method to deal with 
such a problem is to calculate the p-values for all possible combinations 
of (n11, n10, n01, n00) and choose the maximum value [3]. Such a method 
may make the result of the hypothesis testing conservative. Using 
this method, we define the unconditional exact p-value based on the 
principal stratification as follows:

( )
11 10 01 00, , , 11 10 01 00 , ,{ : ,= n n n np sup n n n np  satisfying set of conditions 1}.

We note that neither marginal total is fixed for the unconditional 
exact test.

Conditional exact test

While the unconditional exact test does not fix the numbers of 
subjects assigned to the two groups, the conditional exact test does. 
Therefore, we consider a conditional probability on ∑s∑tNst,1=∑s∑tnst,1 
(=a+b) instead of Equation (1). This conditional probability can be 
expressed as

1 1 1 1
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where the following conditions are required:
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Consequently, we can define the conditional exact p-value based on the 
principal stratification as follows:

( )
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Other Exact Tests
Here, we discuss assumptions for Fisher’s and Barnard’s exact tests 

being hypothesis tests for the weak causal null hypothesis.

Fisher’s exact test

First, we show that Fisher’s exact test is a special case of the 
conditional exact test given here, with the null hypothesis of n10=n01=0. 
In this case, set of conditions 1 is n10=n01=0, n11+n00=n, n11 ≤ a+c and 

n00 ≤ b+d, and thus (n11, n10, n01, n00)=(a+c, 0, 0, b+d). In addition, 
under ∑s∑tnst,1=n11,1+n00,1=a+b in set of conditions 2, n11,1 ≥ a-d because 
b+d=n00,1+n00,0 ≥ n00,1=a+b-n11,1, and
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Therefore, I(z) in Equation (3) can be re-expressed as I(z)=1 if n11,1 
≤ a and I(z)=0 if n11,1>a. Consequently, under the null hypothesis of 
n10=n01=0, the conditional exact p-value can be calculated by
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This is equal to the calculation of the p-value for Fisher’s exact test. 
Therefore, Fisher’s exact test can be regarded as a special case of the 
conditional exact test given here under the null hypothesis of n10=n01=0.

Next, we show that Fisher’s exact test can be a hypothesis test for 
the weak causal null hypothesis when monotonicity can be assumed. 
The null hypothesis of n10=n01=0 implies that no subject with type (ii) or 
(iii) exists, and thus subjects who suffered the event are limited to those 
with type (i) (i.e., (Y(1), Y(0))=(1, 1)), and subjects who did not suffer 
the event are limited to those with type (iv) (i.e., (Y(1), Y(0))=(0, 0)). 
Therefore, this null hypothesis corresponds to

H0: Y(1)=Y(0) for all individuals,

which is referred to as the sharp causal null hypothesis [11]. Clearly, 
whenever the sharp causal null hypothesis holds, the weak causal 
null hypothesis also holds. However, rejection of the sharp causal 
null hypothesis does not imply that the weak causal null hypothesis 
is rejected. This can be explained using the concept of principal 
stratification as discussed below, and is illustrated using hypothetical 
data in the following section.

As all subjects must be those with (Y(1), Y(0))=(1, 1) or (0, 0) under 
the sharp causal null hypothesis, rejection of this hypothesis implies 
that subjects with (Y(1), Y(0))=(1, 0) or (0, 1) exist. However, even 
when such subjects are present, if the number of subjects with (Y(1), 
Y(0))=(1, 0) is equal to the number with (Y(1), Y(0))=(0, 1) (> 0), the 
weak causal null hypothesis still cannot be rejected (i.e., we cannot 
deny that the true risk difference is zero), because

Pr( (1) 1) Pr( (0) 1)
{Pr( (1) 1, (0) 0) Pr( (1) 1, (0) 1)}

{Pr( (1) 0, (0) 1) Pr( (1) 1, (0) 1)}
Pr( (1) 1, (0) 0) Pr( (1) 0, (0) 1)
0.

Y Y
Y Y Y Y

Y Y Y Y
Y Y Y Y

= − =
= = = + = =
− = = + = =

= = = − = =
=

Consequently, in general, Fisher’s exact test cannot be a hypothesis test 
for the weak causal null hypothesis.

Nevertheless, Fisher’s exact test can be a hypothesis test for the weak 
causal null hypothesis under the following monotonicity assumption 
[13,14]:

Assumption 1 (Monotonicity):
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may be greater in the treatment group than in the control group, and 
instead the numbers of subjects with type (iii) and (iv) may be less in 
the treatment group than in the control group. Therefore, Assumption 
2 may not strictly hold in many randomized trials, and then Barnard’s 
exact test, which requires this assumption, may not adequately test 
the causal null hypothesis to compare two different treatment statuses 
from one population.

However, the exact tests given here directly test the weak causal null 
hypothesis; they do not require that the numbers of subjects with each 
type of (i)-(iv) in the treatment group are equal to those in the control 
group when subjects are assigned in a 1:1 ratio by randomization. 
Therefore, the exact tests do not require Assumption 2. Rather, the 
exact tests yield the p-value by comparing the risk differences under 
the null hypothesis generated by violation of Assumption 2 with the 
risk difference estimated from the observed data. This violation can 
incidentally be caused as a result of random assignment.

In Table 4, we have summarized the assumptions and the pros and 
cons of the three exact tests (Fisher, Barnard, and Proposed) for the 
weak causal null hypothesis.

Extension to Non-Inferiority Trials and Confidence 
Intervals
Non-inferiority trials

The derived conditional and unconditional exact tests are extended 
to hypothesis testing for non-inferiority trials below. Hypothesis 
testing of non-inferiority focuses on the null hypothesis of Pr(Y(1)=1) 
- Pr(Y(0)=1)=δ rather than Pr(Y(1)=1) - Pr(Y(0)=1)=0, where δ (> 
0) is a small quantity specified in advance. Again, we can express as 
Pr(Y(1)=1)=(n11+n10)/n and Pr(Y(0)=1)=(n11+n01)/n by using the 
concept of principal stratification. Therefore, the null hypothesis for 
non-inferiority, Pr(Y(1)=1)-Pr(Y(0)=1)=δ, can be expressed as n10-
n01=δn.

However, when δn is not an integer value, the null hypothesis for the 
exact tests cannot be prescribed. Therefore, we set the null hypothesis 
to a maximum integer value satisfying n10-n01 ≤ δn. Consequently, for 
non-inferiority trials, the conditional and unconditional exact p-values 
are calculated by substituting n10=n01 in the set of conditions 1 and 2 
by n10-n01=m, where m is a maximum integer value satisfying m ≤ δn.

Confidence intervals

A confidence interval (CI) for a single parameter θ is defined as 
follows: The interval (L, U) is a 100(1-α)% CI for θ if Pr(L ≤ θ ≤ U)=1-α 
[19]. The value of L can be found by seeking a minimum value of the 
null hypothesis that is not rejected at the significance level α/2, and 
similarly the value of U can be found by seeking a maximum value of 
the null hypothesis that is not rejected at the significance level α/2.

Since the causal risk difference can be expressed as Pr(Y(1)=1)-
Pr(Y(0)=1)=(n10-n01)/n, the upper limit of 100(1 - α)% CI for the risk 
difference, U, linking to the unconditional exact test can be calculated 
as follows:

Y(0) ≤ Y(1) for all individuals.

This assumption implies that there is no subject with (Y(1), 
Y(0))=(0, 1). Therefore, under Assumption 1, rejection of the sharp 
causal null hypothesis implies that there are subjects with (Y(1), 
Y(0))=(1, 0). Then, the weak causal null hypothesis is also rejected, 
because

Pr( (1) 1) Pr( (0) 1)
Pr( (1) 1, (0) 0) Pr( (1) 0, (0) 1)
Pr( (1) 1, (0) 0)
0.

Y Y
Y Y Y Y
Y Y

= − =
= = = − = =
= = =
>

This demonstrates that, under Assumption 1, whenever the sharp 
causal null hypothesis is rejected, the weak causal null hypothesis is 
also rejected. Consequently, under the monotonicity assumption, 
Fisher’s exact test is legitimately a hypothesis test for the weak causal 
null hypothesis.

Barnard’s exact test

Barnard’s exact test considers the following null hypothesis:

H0: Pr(Y=1 | X=1)=Pr(Y=1 | X=0),

where Pr(Y=1 | X=1) represents the response proportion for subjects 
who received the treatment, and Pr(Y=1 | X=0) represents the response 
proportion for subjects who received the control. Therefore, in general, 
the null hypothesis for Barnard’s exact test is the descriptive null 
hypothesis to compare two different populations [11], but not the 
causal null hypothesis to compare the different treatment statuses from 
one population.

Nevertheless, under randomization, two distributions 
generated from a single random sample may be the same as those 
generated by taking two independent random samples [15-17]; i.e., 
Pr(Y(x)=1)=Pr(Y=1 | X=x) for x=0, 1. If this is true, the following 
exchangeability assumption [18] must hold:

Assumption 2 (exchangeability):

Pr(Y(x)=1 | X=1)=Pr(Y(x)=1 | X=0) for x=0, 1.

This assumption means that for x=1, the response proportion for 
subjects in the treatment group is equal to that if subjects in the control 
group had received the treatment, and similarly for x=0, the response 
proportion for subjects in the control group is equal to that if subjects 
in the treatment group had received the control. As a hypothesis test 
for the causal effect, Barnard’s exact test requires the exchangeability 
assumption. See Greenland [11] for a detailed discussion.

Applying the concept of principal stratification, Assumption 2 
implies that when subjects are assigned in a 1:1 ratio by randomization, 
the numbers of subjects with each type of (i)-(iv) in the treatment 
group are exactly equal to those in the control group. Although this 
exact equality may hold at least approximately when the sample size 
is very large, it may not be true when the sample size is small. For 
example, by chance, the numbers of subjects with type (i) and (ii) 

Fisher Barnard Proposed
Assumption Monotonicity Exchangeability None

Pros It is sufficient to test the sharp causal null 
hypothesis.

It is not a problem to assume exchangeability 
in randomized trials.

No assumption is required.

Cons Rejection of the sharp causal null hypothesis does 
not imply that the causal risk difference is not zero.

Exchangeability may not hold in randomized 
trials with moderate to small samples.

Table 4: Assumptions and the pros and cons of the three exact tests (Fisher, Barnard, and Proposed) for the weak causal null hypothesis.
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conditions 1 excluding n10=n01, and the lower limit, L, can be calculated 
as follows:
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where PL(n11, n10, n01, n00) is 11 10 01 00, , ,n n n np  in Equation (1) with set of 
conditions 1 excluding n10=n01, where the reverse inequality is adopted 
for the indicator I(z); i.e., I(z)=1 if z ≥ 0 and I(z)=0 if z<0 with z :=RDN-
RDO. To derive the CI linking to the conditional exact test, Equation 
(2) and set of conditions 1 are replaced by Equation (3) and set of 
conditions 2.

It is important to note that the upper limit of this CI cannot be 
larger than the upper bound for the nonparametric bounds [20,21], 
Pr(Y = 1, X = 1) + Pr(Y = 0, X = 0), and, likewise, the lower limit cannot 
be smaller than the lower bound, –{Pr(Y = 1, X = 0) + Pr(Y = 0, X = 1)}, 
even when the sample size is very small. Therefore, the width of CI is 
always smaller than or equal to 1. This is because

11 10

11 01

00 10

00 01

a n n n b
c n n n d
d n n n c
b n n n a

≤ + ≤ −
 ≤ + ≤ −
 ≤ + ≤ −
 ≤ + ≤ −

,

which is derived from the second equation and the fourth inequality in 
set of conditions 1, corresponds to the nonparametric bounds:

Pr(Y=1, X=x) ≤ Pr(Y(x)=1) ≤ 1- Pr(Y=0, X=x) for x=0, 1.

Illustration
We illustrate the derived conditional and unconditional exact tests 

using the data from two clinical trials. The first is a cardiac arrest clinical 
trial, which is a superiority trial, and the second is an oncology clinical 
trial, which is a non-inferiority trial. We also show that rejection of the 
sharp causal null hypothesis does not imply that the weak causal null 
hypothesis is rejected using the data from a hypothetical clinical trial.

Application to a cardiac arrest clinical trial

Perondi et al. [22] reported a cardiac arrest clinical trial evaluating 
the next dose of epinephrine to be taken to children suffering cardiac 
arrest when the initial dose of epinephrine was unsuccessful. In this 
trial, subjects were randomly assigned in a 1:1 ratio to receive either 
the same (standard) dose or a higher dose. The endpoint was survival 
at 24 hours. The results are summarized in Table 5. The risk difference 
was -0.1765.

The unconditional exact test with r=1 yielded the two-sided 
p-values shown in Figure 1, with several possible combinations of (n11, 
n10, n01, n00). The maximum p-value was 0.0415, which was calculated 
under n10=n01=9. The 95% CI was -0.3382 (-23/68) to -0.0147 (-1/68). 
The conditional exact test yielded the two-sided p-values shown in 
Figure 2, with several possible combinations of (n11, n10, n01, n00). 

The maximum p-value was 0.0555, which was also calculated under 
n10=n01=9. The 95% CI was -0.3529 (-24/68) to 0 (0/68). We note that, 
in this example, twice the one-sided p-value was equal to the sum of the 
one-sided p-value and the opposite one-sided p-value.

In Figure 2, it seems that the p-value under n10=n01=0, which 
corresponds to Fisher’s exact test, behaves exceptionally. This is simply 
because Equation (3) with n10=n01=0 is more discrete than Equation 
(3) with n10=n01≠0. As discreteness is smaller when the sample size is 
larger, the extent of the exceptional behavior will be smaller with the 
larger sample size. Conversely, the p-value under n10=n01=0 will be 
largest for a small sample size, for which violation of the monotonicity 
assumption (i.e., that at least one subject with (Y(1), Y(0))=(0, 1) exists 
in the trial) will not be assured.

Application to an oncology clinical trial

Rodary et al. [23] reported an oncology clinical trial, a 
childhood nephroblastoma study, to demonstrate that pre-operative 
chemotherapy (new treatment) was not inferior to radiation therapy 
(standard treatment) in terms of tumor rupture proportions following 
nephrectomy. The criterion for non-inferiority required that the 
difference in the proportion of subjects who developed tumor rupture 
was 0.1 between the chemotherapy (PC) and radiation (PR) groups; 
i.e., the null hypothesis was PC-PR=0.1. The subjects were randomly 

Survival at 24 hours
Group Yes No Total

Higher dose 1 33 34
Standard dose 7 27 34

Table 5: Results from a cardiac arrest clinical trial.

 

Figure 1: Two-sided p-values for the unconditional exact test under several 
possible combinations of (n11, n10, n01, n00) for the data in Table 5, where the 
null hypothesis is n10=n01.

 

Figure 2: Two-sided p-values for the conditional exact test under several 
possible combinations of (n11, n10, n01, n00) for the data in Table 5, where the 
null hypothesis is n10=n01.
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assigned to either group in a 1:1 ratio. The results are summarized in 
Table 6. The risk difference was -0.0353.

To apply the conditional and unconditional exact tests, we set 
the null hypothesis to n10-n01=16 because δn=0.1×164=16.4. The 
respective unconditional and conditional exact tests yielded the one-
sided p-values displayed in Figures 3 and 4, under several possible 
combinations of (n11, n10, n01, n00). The unconditional exact test yielded 
a maximum p-value of 0.003640 when n01=22 and 95% CI of -0.1280 
(-21/164) to 0.0610 (10/164), and the conditional exact test yielded a 
maximum p-value of 0.003601 when n01=22 and 95% CI of -0.1280 
(-21/164) to 0.0610 (10/164).

A hypothetical clinical trial

To demonstrate that rejection of the sharp causal null hypothesis 
does not imply that the weak causal null hypothesis is rejected, we use 
the data from a hypothetical randomized clinical trial, shown in Table 
7. The risk difference is -0.1000.

The conditional exact test for the null hypothesis of n10=n01 yielded 
the one-sided p-values shown in Figure 5, with several possible 
combinations of (n11, n10, n01, n00). The maximum p-value was 0.0371 
under n10=n01=26, which corresponds to the p-value for the weak 
causal null hypothesis. Under n10=n01=0, which corresponds to the 
p-value for the sharp causal null hypothesis, the p-value was 0.0166. At 
the significance level of 0.025 (one-sided), the sharp null hypothesis is 
rejected but the weak causal null hypothesis is not rejected.

As noted in the above cardiac arrest clinical trial, the extent of the 
exceptional behavior of the p-value under n10=n01=0 will decrease with 
a larger sample size. This is demonstrated by comparison of Figures 2 
and 5. For the larger sample size, there will be more cases in which the 
sharp null hypothesis is rejected, but the weak causal null hypothesis is 
not rejected.

Discussion and Conclusion
In this article, we have derived conditional and unconditional 

exact tests for the weak causal null hypothesis on a binary outcome 
in randomized trials, using the concept of principal stratification. The 
derived exact tests have the advantage that they can be extended to 
non-inferiority trials and to construct CIs in a straightforward manner 
as a unified approach.

The unconditional exact test will be applied to randomized trials 
with complete (or equally simple) randomization, and the conditional 
exact test will be applied to randomized trials with any restriction. 
However, restricted randomization does not randomly select all a+b 
subjects of n subjects, and some of them are assigned with dependence 
on already assigned subjects. Therefore, the conditional exact test may 
strictly be invalid under restricted randomization. This problem was 
also pointed out in the context of Fisher’s exact test [24].

It might be thought that the exact tests given here should be 
compared with the existing exact tests for numerical aspects. However, 
such comparisons would be meaningless, because our new exact tests 
are hypothesis tests for the weak causal null hypothesis, whereas existing 

Tumor rupture
Treatment Yes No Total

Chemotherapy 5 83 88
Radiation 7 69 76

Table 6: Results from an oncology clinical trial.

 
Figure 3: One-sided p-values for the unconditional exact test under several 
possible combinations of (n11, n10, n01, n00) for the data in Table 6, where the 
null hypothesis is n10-n01=16.

Figure 5: One-sided p-values for the conditional exact test under several 
possible combinations of (n11, n10, n01, n00) for the data in Table 7, where the 
null hypothesis is n10=n01.

Figure 4: One-sided p-values for the conditional exact test under several 
possible combinations of (n11, n10, n01, n00) for the data in Table 6, where the 
null hypothesis is n10-n01=16.

Event
Group Occurred Not occurred Total

Treatment 1 69 70
Control 8 62 70

Table 7: Results from a hypothetical clinical trial. 
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exact tests are not. It is important to consider which null hypothesis 
should be tested. In many randomized trials, this will be the weak 
causal null hypothesis H0: Pr(Y(1)=1)=Pr(Y(0)=1). As an example, let 
us consider the cardiac arrest clinical trial illustrated in this article. In 
this trial, researchers set the sample size under the assumption that the 
24-hour survival proportion would increase from 20% in the standard
dose group to 50% in the higher dose group. This assumption implies
that there would certainly be subjects with type 10 (n10 ≠ 0). However,
one cannot deny that the 24-hour survival proportion would be higher
in the standard dose group than in the higher dose group (i.e., that there 
would be subjects with type 01 (n01 ≠ 0)). Therefore, at the time of study 
planning, we should determine to test the weak causal null hypothesis
rather than the sharp causal null hypothesis, which corresponds to the
null hypothesis of n10=n01=0.

The derived exact tests require a numerical search to yield the 
p-value for the hypothesis testing. The computational effort increases
dramatically with the sample size. Therefore, further work is needed
to create an efficient algorithm with which the derived exact tests will
be feasible. Recently, Rigdon and Hudgens [25] reported a method to
construct the CIs applying a similar, but different, approach. Further
work will be to compare their CI method with ours.
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