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Introduction

This paper compares various deep learning methods for solving partial differ-
ential equations, evaluating their accuracy and computational efficiency across
different problem types. It highlights the strengths and weaknesses of physics-
informed neural networks (PINNs), deep Galerkin methods, and other data-driven
approaches, offering insights into their practical application for complex PDE so-
lutions [1].

This work presents an effective numerical method for solving time-fractional partial
differential equations, leveraging radial basis functions. It demonstrates how these
functions can approximate solutions with high accuracy, addressing the non-local
nature of fractional derivatives and providing a robust tool for various scientific and
engineering applications involving complex phenomena [2].

This survey provides an overview of recent advances in inverse problems for par-
tial differential equations, covering topics from theoretical foundations to numerical
algorithms. It discusses how to determine unknown parameters or source terms
within a PDE from boundary measurements, highlighting applications in medical
imaging, geophysics, and material science, and outlining open challenges in the
field [3].

This article explores the growing intersection of machine learning and partial dif-
ferential equations, focusing on data-driven approaches for both discovering PDEs
from observed data and solving them. It showcases how techniques like sparse
regression and neural networks can identify underlying governing equations and
provide efficient solution methods, bridging the gap between theoretical modeling
and empirical data analysis [4].

This review examines the application of deep learning techniques to solve high-
dimensional partial differential equations, a challenging area due to the ’curse of
dimensionality.’ It discusses various deep learning architectures and algorithms
that can effectively approximate solutions for these complex problems, offering
significant potential in fields like quantitative finance and statistical physics where
high-dimensional models are prevalent [5].

This survey focuses on numerical methods for the optimal control of partial dif-
ferential equations, covering various algorithms and computational strategies. It
highlights recent advancements in efficiently solving optimization problems con-
strained by PDEs, essential for applications in engineering design, process control,
and resource management, offering a comprehensive overview of both theoretical
and practical aspects [6].

This overview discusses variational methods applied to nonlocal partial differential
equations, a class of PDEs where interactions occur over a distance. It explores
how these methods are used to establish existence, regularity, and qualitative

properties of solutions, particularly relevant for modeling phenomena in anoma-
lous diffusion, image processing, and material science, offering insights into their
theoretical underpinnings [7].

This comprehensive review explores the application of deep learning methods to
solve the Navier-Stokes equations, fundamental to fluid dynamics. It covers vari-
ous neural network architectures and their performance in modeling complex fluid
flows, addressing challenges like turbulence and high-dimensional spaces, and
offering insights into the future of data-driven computational fluid dynamics [8].

This review surveys recent advancements in image restoration models that utilize
partial differential equations. It focuses on how PDEs effectively denoise, deblur,
and super-resolve images by modeling image features and noise characteristics,
discussing various PDE-based algorithms and their performance in improving im-
age quality across different applications [9].

This overview reviews numerical methods for solving stochastic partial differen-
tial equations, which are essential for modeling systems influenced by random
noise. It covers various discretization techniques and approximation schemes,
discussing their stability and convergence properties, and highlighting their impor-
tance in fields such as finance, physics, and biology for capturing the unpredictable
nature of complex systems [10].

Description

The growing confluence of deep learning and Partial Differential Equations (PDEs)
is marking a new era in computational science. This field actively explores and
compares various deep learning methodologies, focusing intently on their preci-
sion and operational efficiency when applied to diverse PDE problems. Leading
techniques include physics-informed neural networks (PINNs) and deep Galerkin
methods, which are demonstrating significant promise in providing practical and
effective solutions for highly complex PDE scenarios [1]. Furthermore, machine
learning as a broader discipline offers powerful data-driven avenues for both the
discovery of new PDEs from observed phenomena and the efficient generation of
their solutions. Through techniques like sparse regression and neural networks,
researchers can discern the fundamental governing equations underlying empir-
ical data, effectively bridging the gap between abstract theoretical modeling and
concrete empirical analysis [4].

A particularly challenging domain where deep learning excels is the resolution of
high-dimensional Partial Differential Equations (PDEs), a field long hindered by
the ’curse of dimensionality.’ Recent comprehensive reviews meticulously survey
the spectrum of deep learning architectures and algorithms that can successfully
approximate solutions for these incredibly intricate problems. This area holds sub-

Page 1 of 3



Torres R. J Appl Computat Math, Volume 14:1, 2025

stantial potential for applications in critical fields such as quantitative finance and
statistical physics, where high-dimensional models are commonplace [5]. Extend-
ing this application, deep learning methods are also making profound impacts on
the Navier-Stokes equations, which are cornerstones of fluid dynamics. Extensive
reviews delve into various neural network configurations and assess their efficacy
in simulating complex fluid flows, skillfully navigating challenges like turbulence
and vast dimensional spaces. This work offers crucial perspectives on the trajec-
tory of data-driven computational fluid dynamics [8].

Beyond deep learning, the landscape of numerical and variational methods for
Partial Differential Equations (PDEs) continues its vigorous evolution, addressing
a wide array of specialized challenges. Innovative numerical techniques employ-
ing radial basis functions have proven highly effective for solving time-fractional
PDEs, demonstrating notable accuracy in managing the non-local nature of frac-
tional derivatives [2]. Numerical methods are also indispensable for optimal con-
trol problems constrained by PDEs, encompassing algorithms and computational
strategies essential for engineering design, process control, and resourcemanage-
ment, offering a comprehensive overview of both theoretical and practical aspects
[6]. Moreover, variational methods are increasingly applied to nonlocal PDEs,
where interactions span considerable distances. These methods are pivotal for
establishing solution properties, finding relevance in anomalous diffusion, image
processing, and material science, alongside providing deep insights into their the-
oretical underpinnings [7].

The quest to solve inverse problems for Partial Differential Equations (PDEs) re-
mains a vibrant research frontier. These endeavors concentrate on deducing
unknown parameters or source terms within a PDE, often solely from boundary
measurements. Recent surveys encapsulate theoretical foundations and numer-
ical algorithms, underscoring their diverse applicability across medical imaging,
geophysics, and material science, while also identifying current open challenges
[3]. Concurrently, for systems inherently shaped by random influences, numeri-
cal methods for stochastic PDEs are critically important. These overviews detail
various discretization techniques and approximation schemes, scrutinizing their
stability and convergence. Their significance is paramount in disciplines like fi-
nance, physics, and biology, where modeling unpredictable dynamics is essen-
tial [10]. Finally, PDEs form a sophisticated basis for advanced image restoration
models. These models adeptly utilize PDE principles to effectively denoise, deblur,
and super-resolve images. By meticulously modeling image features and inherent
noise characteristics, these PDE-based algorithms consistently deliver enhanced
image quality across a spectrum of applications [9].

Conclusion

This collection of papers highlights the broad and evolving landscape of research
into Partial Differential Equations (PDEs), particularly emphasizing advanced com-
putational and analytical techniques. A significant focus lies on the application
of deep learning, including physics-informed neural networks (PINNs) and deep
Galerkin methods, for solving various PDE types and for data-driven discovery
of governing equations. These methods are crucial for tackling challenges like
high-dimensional PDEs and complex fluid dynamics problems, such as the Navier-
Stokes equations. Beyond deep learning, numerical methods play a central role,
with innovations seen in solving time-fractional PDEs using radial basis functions,
and developing strategies for optimal control problems constrained by PDEs. The
collection also covers the analysis of stochastic PDEs, which are vital for modeling
systems affected by randomness in fields like finance and biology. Furthermore,
it delves into inverse problems for PDEs, focusing on determining unknown pa-

rameters from boundary measurements, with applications in medical imaging and
geophysics. Variational methods for nonlocal PDEs are explored, offering the-
oretical insights for phenomena like anomalous diffusion. Finally, the practical
application of PDEs extends to image processing, where PDE-based models are
effectively used for image restoration tasks like denoising and super-resolution.
This body of work underscores the interdisciplinary nature of PDE research, push-
ing the boundaries of both theoretical understanding and practical implementation
across science and engineering.
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