

Evolving Paradigms in Modern Breast Pathology

Chloe Williams*

Department of Cellular and Molecular Pathology, Sydney Biomedical Institute, Sydney, Australia

Introduction

The field of breast pathology is undergoing a significant transformation, driven by the integration of advanced technologies and a deeper understanding of tumor biology. Artificial intelligence (AI) is at the forefront of this change, offering tools that boost diagnostic accuracy and efficiency. Algorithms now assist with routine tasks like mitotic counting and identifying metastases, which helps reduce pathologist workload and smooths out differences in interpretation between individuals[1]. Parallel to this technological shift, the field has embraced molecular analysis as a standard of care. Contemporary practice now blends traditional microscopy with genomic profiling tests like Oncotype DX to determine prognosis and guide treatment, especially for ER-positive cancers[7]. This molecular focus extends to identifying specific gene mutations, such as PIK3CA and ESR1, to select patients for highly specific targeted drug therapies[7]. This evolution is also reshaping how breast cancer subtypes are classified and understood. Triple-negative breast cancer (TNBC), for instance, is now recognized as a varied group of tumors, and understanding its molecular subtypes is crucial for developing effective treatments for this aggressive cancer[2]. A major recent development is the definition of HER2-low breast cancer, a new category for tumors previously considered HER2-negative. This reclassification is clinically vital as it opens up treatment with novel antibody-drug conjugates, placing a new challenge on pathologists to score low levels of HER2 expression accurately[4]. The tumor microenvironment has also become a major focus, with the quantification of tumor-infiltrating lymphocytes (TILs) now a key prognostic practice. Higher levels of TILs are linked to better outcomes and response to therapy in TNBC and HER2-positive cancers, driving efforts to standardize counting methods[5]. Our understanding of precursor lesions is also maturing. The pathological evaluation of Ductal Carcinoma In Situ (DCIS) is adapting to a clinical trend of de-escalating treatment for low-risk cases, focusing on features like nuclear grade and necrosis for risk assessment[3]. Similarly, Lobular Carcinoma in Situ (LCIS) is viewed more as a risk marker than a direct precursor, and pathologists must distinguish classic LCIS from its more aggressive variants to guide patient management[6]. Even well-established entities like invasive lobular carcinoma (ILC) are being re-examined. Defined by its loss of E-cadherin and single-file growth pattern, ILC's unique genetic and metastatic profile underscores the need for different diagnostic and therapeutic strategies compared to ductal carcinoma[10]. The pathologist's role also extends to assessing treatment response, a cornerstone of modern care. Measuring the residual cancer burden (RCB) after neoadjuvant therapy provides a powerful prediction of long-term survival, making standardized reporting essential for clinical practice[8]. Finally, pathologists continue to navigate complex diagnostic challenges, such as with breast papillary lesions, where immunohistochemical stains are often needed to distinguish benign from malignant forms by assessing the myoepithelial cell layer[9]. Together, these advancements reflect a more nuanced, integrated, and

personalized approach to breast cancer diagnosis and management.

Description

Modern breast pathology is rapidly advancing beyond traditional morphology, integrating a suite of technological and molecular tools to deliver more precise and personalized diagnostics. The most significant technological shift is the adoption of Artificial Intelligence (AI), which is fundamentally changing diagnostic workflows. AI algorithms are being deployed to enhance both accuracy and efficiency in critical tasks such as mitotic counting, tumor grading, and the detection of metastases, thereby reducing pathologists' workloads and minimizing inter-observer variability[1]. This digital revolution is complemented by a profound shift towards molecular pathology. It is now standard practice to combine microscopic evaluation with genomic profiling. Tests like Oncotype DX and MammaPrint are routinely used to assess prognosis and guide adjuvant therapy decisions, particularly in ER-positive breast cancers, while identifying specific gene mutations like PIK3CA is becoming crucial for selecting patients for targeted therapies[7].

The classification of breast cancer itself is becoming more granular, leading to new therapeutic opportunities. Triple-negative breast cancer (TNBC) is no longer seen as a monolithic entity but as a heterogeneous collection of tumors with distinct molecular subtypes, a realization that is key to developing effective targeted treatments for this aggressive disease[2]. A prime example of this evolution is the recent clinical definition of HER2-low breast cancer. This new category includes tumors that were previously classified as HER2-negative, making a new population of patients eligible for treatment with novel antibody-drug conjugates. This creates a critical challenge for pathologists, who must now accurately and consistently score very low levels of HER2 expression to ensure appropriate patient selection[4]. The tumor microenvironment is also receiving intense scrutiny, with tumor-infiltrating lymphocytes (TILs) emerging as a powerful biomarker. Quantifying TILs on routine slides is a vital prognostic and predictive tool, as higher concentrations are associated with better outcomes and response to chemotherapy and immunotherapy, especially in TNBC and HER2-positive types[5].

There is also a significant re-evaluation of how precursor and high-risk lesions are managed, often with a trend towards treatment de-escalation. The approach to Ductal Carcinoma In Situ (DCIS) is a key example, where pathologists focus on nuclear grade, necrosis, and architecture to stratify risk for patients who may be candidates for less aggressive treatment. This has spurred research into finding molecular biomarkers that can better predict which DCIS lesions will progress to invasive cancer[3]. Lobular carcinoma in situ (LCIS) is increasingly understood as a risk marker for future cancer rather than an obligate precursor. Its diagnosis hinges on identifying discohesive cells lacking E-cadherin, and it is crucial for pathologists to differentiate classic LCIS from more aggressive pleomorphic vari-

ants to inform patient management correctly[6]. Certain diagnostic categories, like papillary breast lesions, continue to present a challenge, requiring pathologists to carefully assess the myoepithelial cell layer, often with the aid of immunohistochemical stains like p63, to distinguish benign from malignant entities[9].

The pathologist's role is also central to assessing treatment effectiveness and understanding distinct tumor behaviors. Evaluating the pathologic response after neoadjuvant therapy is a cornerstone of modern care. By measuring the residual cancer burden (RCB), pathologists provide a powerful predictor of long-term survival, with a pathologic complete response (pCR) being a key therapeutic goal[8]. Concurrently, research continues to unravel the complexities of specific histologic types like invasive lobular carcinoma (ILC). Characterized by E-cadherin loss and a diffuse, single-file infiltration pattern that makes it difficult to detect, ILC has a unique genetic profile and metastatic pattern that demands distinct diagnostic and therapeutic strategies from the more common ductal carcinomas[10]. These collective developments underscore the pathologist's evolving and critical role in navigating the complexities of modern breast cancer care.

Conclusion

Contemporary breast pathology is marked by a dynamic integration of technology, molecular science, and evolving disease classification. Artificial Intelligence (AI) is significantly improving diagnostic accuracy and efficiency for tasks like tumor grading and mitotic counting[1]. This is happening alongside the routine use of molecular and genomic profiling to guide prognosis and treatment, particularly in ER-positive cancers[7]. The classification of breast cancer is also becoming more refined, with the establishment of new, clinically actionable categories like HER2-low breast cancer, which opens doors to novel therapies[4]. Similarly, subtypes like triple-negative breast cancer are now understood to be heterogeneous, requiring a more nuanced therapeutic approach[2]. There is a growing emphasis on the tumor microenvironment, where the quantification of tumor-infiltrating lymphocytes (TILs) has become a key prognostic marker[5]. The management of precursor lesions such as Ductal Carcinoma In Situ (DCIS) and Lobular Carcinoma In Situ (LCIS) is shifting, with a focus on risk stratification to guide treatment de-escalation[3, 6]. Pathologists also play a crucial role in evaluating the response to neoadjuvant therapy, as the residual cancer burden is a powerful predictor of patient survival[8]. Finally, a deeper understanding of the unique pathological and genetic features of less common types, like invasive lobular carcinoma and papillary lesions, continues to inform more effective diagnostic and management strategies[9, 10].

Acknowledgement

None.

Conflict of Interest

None.

References

1. Ismail Sahin, Suleyman Erturk, Ufuk Gunduz, Mehmet Ali Eryilmaz. "Artificial intelligence in breast pathology: a review of the literature." *Virchows Arch* 483 (2023):177-189.
2. Vilma-Julia Vihervuori, Anni Tervasmäki, Maija Allinen, Jutta Heikkilä, Peeter Karihtala. "Pathology of triple-negative breast cancer." *Breast Cancer Res Treat* 197 (2023):1-13.
3. Anna Polydoridou, Allen M. Gown, Giuseppe Viale. "Ductal Carcinoma In Situ (DCIS): An Update for the Pathologist in the Era of De-escalation." *Adv Anat Pathol* 30 (2023):1-11.
4. Valentina Rossi, Ilaria Sarotto, Federico Maggiorotto, Isabella Castellano, Anna Sapino. "Pathology of HER2-Low Breast Cancer: A Comprehensive Review." *Cancers* 15 (2023):4181.
5. Carmen Criscitiello, Vincenzo Bagnardi, Andrea Vingiani, Giuseppe Curigliano. "Tumor-Infiltrating Lymphocytes (TILs) in Breast Cancer: A Comprehensive Overview of Their Prognostic and Predictive Value." *Cancers* 13 (2021):4166.
6. Maria Pia Foschini, Caterina Accattoli, Gábor Cserni, Puay Hoon Tan. "Lobular Carcinoma In Situ (LCIS): A Practical Approach for the Surgical Pathologist." *Pathologica* 114 (2022):183-195.
7. Charlotte K. Y. Ng, Britta Weigelt, Jorge S. Reis-Filho. "Molecular pathology of breast cancer in the modern era." *J Pathol* 259 (2023):145-158.
8. Elena Provenzano, Gary A. Ulaner, Giuseppe Viale. "Pathologic evaluation of breast cancer after neoadjuvant therapy." *Breast* 67 (2023):68-79.
9. Bodour Salhia, Joshua Andrews, Kyu-Rae Um, Shi Wei, Isam-Eldin Eltoum. "Papillary Breast Lesions: An Update and Practical Approach to Diagnosis." *Arch Pathol Lab Med* 146 (2022):1493-1507.
10. Amy E. McCart Reed, Jamie R. Kutasovic, Sunil R. Lakhani, Peter T. Simpson. "Pathology of invasive lobular carcinoma: new insights and clinical relevance." *Breast* 57 (2021):101-112.

How to cite this article: Williams, Chloe. "Evolving Paradigms in Modern Breast Pathology." *J Surg Path Diag* 07 (2025):17.

***Address for Correspondence:** Chloe, Williams, Department of Cellular and Molecular Pathology, Sydney Biomedical Institute, Sydney, Australia, E-mail: c.williams@sydbiomed.au

Copyright: © 2025 Williams C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-May-2025, Manuscript No. jsdp-25-172592; **Editor assigned:** 05-May-2025, PreQC No. P-172592; **Reviewed:** 19-May-2025, QC No. Q-172592; **Revised:** 22-May-2025, Manuscript No. R-172592; **Published:** 29-May-2025, DOI: 10.37421/2684-4575.2025.7.017