

Evolving Anti-Doping: Detection, Prevention, Integrity

Arjun Malhotra*

Department of Exercise Physiology, Indian Institute of Science, Bangalore, India

Introduction

The landscape of anti-doping analysis demands continuous innovation to ensure fair competition. This review looks into the latest advancements in detecting erythropoietin (EPO) and its synthetic analogs, which are substances often misused for performance enhancement. It highlights how advanced analytical techniques are absolutely crucial for identifying emerging EPO-based substances, which directly helps maintain integrity and fair play in sports. The work emphasizes the constant evolution required in detection methods to stay ahead of sophisticated doping practices and uphold ethical standards in athletics [1].

In a similar vein, research explores the application of liquid chromatography-high-resolution mass spectrometry (LC-HRMS) for comprehensive doping control analysis of anabolic androgenic steroids (AAS). This method has demonstrated significant effectiveness in detecting a wide array of AAS, making it vital for developing effective anti-doping strategies and ensuring the honesty of athletic competitions worldwide. LC-HRMS stands as a powerful tool in the arsenal against doping, providing precision and broad coverage [2].

A more complex and evolving challenge comes from gene doping, which presents significant hurdles for anti-doping efforts. This area demands an understanding of emerging strategies for detection and points to the necessity for sophisticated analytical techniques. These techniques are needed to identify genetic modifications specifically aimed at enhancing athletic performance. This is a complex area, demanding continuous research and development to safeguard sports from new forms of illicit advantage [3].

Beyond analytical detection, understanding the psychological underpinnings of doping intention is another critical facet of anti-doping. Research here integrates the theory of planned behavior with self-determination theory to explore what drives athletes towards doping. Knowing these determinants is crucial for designing and implementing truly effective anti-doping education and prevention programs, particularly for athletes, by addressing the underlying psychological factors that influence their decisions and behaviors [4].

Returning to analytical methods, a paper provides an overview of recent advancements in doping control analysis using liquid chromatography-mass spectrometry (LC-MS). It covers its diverse application, ranging from broad untargeted screening to precise quantitative confirmation of specific substances. This underscores LC-MS as a cornerstone technology for efficiently and accurately detecting various prohibited substances, making it indispensable for maintaining clean sport [5].

Another complex issue under review is the presence of cannabinoids in anti-doping. This topic covers their detection, their pharmacological effects on the human body, and the current challenges testing agencies face. It highlights the in-

herent difficulties in setting appropriate thresholds for cannabinoids and acknowledges the evolving understanding of how these substances impact performance, which shapes current anti-doping policies and regulations [6].

Specific detection efforts include research on growth hormone-releasing peptides (GHRPs) and their metabolites. These compounds are potent stimulators of growth hormone secretion, making their illicit use a concern in anti-doping control. Identifying these substances and their breakdown products is absolutely critical for deterring and detecting athletes who might use them for performance enhancement, ensuring a level playing field [7].

The Athlete Biological Passport (ABP) represents another sophisticated tool in anti-doping. An article offers a clear overview of the ABP, detailing its current applications and future directions in the ongoing fight against doping. The ABP monitors individual biological markers over time, creating an indirect but powerful method to detect doping, thereby making it significantly harder for athletes to evade detection through conventional means [8].

A critical review also scrutinizes the intersection of dietary supplements and doping. This work particularly focuses on the inherent risks of contamination within supplements and the significant regulatory challenges involved. It highlights how unknowingly contaminated supplements can unfortunately lead to inadvertent doping violations, underlining the urgent need for stricter quality control measures and increased consumer awareness in the sports nutrition industry [9].

Finally, effective anti-doping efforts must also focus on prevention through education, especially for younger generations. A qualitative study explores effective strategies for targeting young athletes in anti-doping education. It delves into their perceptions of doping and prevention methods, which provides invaluable insights for designing more impactful and age-appropriate educational programs. These initiatives are essential to foster strong clean sport values from an early age, building a foundation for ethical competition [10].

Description

Anti-doping analysis is a dynamic field constantly adapting to new challenges in maintaining fair play in sports. For instance, recent advancements delve into improved methods for detecting erythropoietin (EPO) and its synthetic analogs [1]. These efforts underscore how advanced analytical techniques are essential for identifying novel EPO-based substances, which in turn helps preserve the integrity of athletic competition. Similarly, the application of liquid chromatography-high-resolution mass spectrometry (LC-HRMS) has proven effective for comprehensive doping control analysis of anabolic androgenic steroids (AAS) [2]. This method is vital for creating effective anti-doping strategies. In a broader sense, liquid

chromatography-mass spectrometry (LC-MS) has emerged as a cornerstone technology, moving from wide-ranging untargeted screening to precise quantitative confirmation of various prohibited substances, ensuring efficient and accurate detection across the board [5]. These developments showcase a concerted effort to enhance the technical capabilities available to anti-doping agencies.

Beyond established substances, the anti-doping community confronts more complex and evolving threats. Gene doping, for example, represents a significant and ongoing challenge. It demands the continuous development of sophisticated analytical techniques capable of identifying genetic modifications designed to enhance athletic performance [3]. This area is particularly intricate, requiring sustained research to protect the future of sports. Parallel to this, research focuses on detecting growth hormone-releasing peptides (GHRPs) and their metabolites [7]. GHRPs are powerful stimulators of growth hormone secretion, making their identification and detection critical for deterring athletes from using them for illicit performance enhancement, ensuring a level playing field.

The fight against doping also involves indirect detection methods and addressing regulatory complexities. The Athlete Biological Passport (ABP) serves as an advanced tool that monitors individual biological markers over time [8]. This provides an indirect yet powerful method to detect doping, making it harder for athletes to circumvent traditional testing. Separately, cannabinoids present a nuanced issue in anti-doping. Reviews examine their detection, pharmacological effects, and the inherent challenges testing agencies face, especially regarding the difficulty in establishing appropriate detection thresholds and understanding their performance impact [6]. Moreover, dietary supplements pose a notable risk due to potential contamination. This highlights how unknowingly consuming tainted supplements can result in inadvertent doping violations, emphasizing the pressing need for stricter quality control and greater consumer awareness in the sports nutrition industry [9].

Ultimately, effective anti-doping efforts hinge on both detection and prevention, with a strong focus on education. Understanding the psychological determinants of doping intention is a crucial aspect here [4]. By integrating theories like planned behavior and self-determination, researchers aim to uncover the factors influencing athletes' decisions. This knowledge is essential for creating strong anti-doping education and prevention programs tailored to address these psychological drivers. Furthermore, targeting young athletes in anti-doping education is paramount [10]. Qualitative studies explore their perceptions and preferred prevention strategies, offering valuable insights for designing impactful and age-appropriate educational initiatives. These programs are vital for fostering clean sport values from an early age, building a foundation for ethical participation throughout their athletic careers.

Conclusion

Anti-doping analysis continuously evolves to maintain fair play in sports. Recent advancements focus on detecting erythropoietin and its synthetic analogs, utilizing sophisticated analytical techniques like liquid chromatography-high-resolution mass spectrometry for comprehensive doping control of substances such as anabolic androgenic steroids and growth hormone-releasing peptides. There's also a significant challenge from gene doping, which requires constant research for detection strategies. Beyond detection, understanding the psychological factors influencing doping intention is crucial for effective prevention programs, particularly for athletes. The Athlete Biological Passport offers an indirect, powerful method by monitoring individual biological markers over time. The anti-doping landscape also contends with complex issues like cannabinoids, where setting appropriate detection thresholds is a challenge. Dietary supplements pose risks of inadvertent doping due to contamination, emphasizing the need for stricter quality control. En-

gaging young athletes through targeted education, addressing their perceptions, helps foster clean sport values early on. Overall, anti-doping efforts involve a multifaceted approach, combining advanced analytical methods, psychological understanding, and educational initiatives to combat performance enhancement and uphold sports integrity.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Mario Thevis, Simon Schänzer, Anna Kristina K.P. Thomas. "Advances in the detection of erythropoietin and its analogues in anti-doping analysis: A review." *Drug Test Anal* 15 (2023):902-917.
2. José A. Rodríguez-Rodríguez, Amparo D. García-Galán, Sara Casado. "Liquid chromatography-high-resolution mass spectrometry for comprehensive doping control analysis of anabolic androgenic steroids." *Talanta* 247 (2022):123533.
3. Flavia Perteghella, Stefania D'Amato, Anna Balducci. "Gene Doping: Emerging Strategies and Challenges for Detection." *Int J Mol Sci* 21 (2020):5040.
4. Rebecca Kavussanu, Stephen Boardley, Daragh D. McDonald. "Understanding the determinants of doping intention: An integrative model based on the theory of planned behavior and self-determination theory." *Psychol Sport Exerc* 53 (2021):101886.
5. Wen Sun, Min Wu, Xiaohui Ruan. "Recent advances in doping control analysis based on liquid chromatography-mass spectrometry: From untargeted screening to quantitative confirmation." *J Chromatogr A* 1684 (2022):463583.
6. Marilyn A. Huestis, Walter W. Pompe van Meerdervoort, Shaun M. Scanlon. "Cannabinoids and anti-doping: detection, pharmacological effects, and current challenges." *Drug Test Anal* 13 (2021):742-756.
7. Norbert G. H. Wagner, Walter W. Chang, Si-Yi Su. "Detection of growth hormone-releasing peptides (GHRPs) and their metabolites in anti-doping control." *J Chromatogr B Analyt Technol Biomed Life Sci* 1147 (2020):122119.
8. Romain H. R. D'Angelo, Giancarlo G. Di Girolamo, Tiago R. A. Magalhães. "The Athlete Biological Passport: An overview of current applications and future perspectives in anti-doping." *Drug Test Anal* 14 (2022):219-231.
9. Holly R. Goodwin, David C. Gribble, Lewis J. V. King. "Dietary supplements and doping: A critical review of contamination, risks, and regulatory challenges." *Food Chem Toxicol* 173 (2023):113645.
10. Daria A. Halayko, Peter R. Holmes, Rebecca E. Hyland. "Targeting young athletes in anti-doping: A qualitative study on perceptions and strategies for prevention." *Scand J Med Sci Sports* 31 (2021):260-268.

How to cite this article: Malhotra, Arjun. "Evolving Anti-Doping: Detection, Prevention, Integrity." *J Sports Med Doping Stud* 15 (2025):441.

***Address for Correspondence:** Arjun, Malhotra, Department of Exercise Physiology, Indian Institute of Science, Bangalore, India, E-mail: arjun@malhotra.in

Copyright: © 2025 Malhotra A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jul-2025, Manuscript No. jsmds-25-174513; **Editor assigned:** 03-Jul-2025, PreQC No. P-174513; **Reviewed:** 17-Jul-2025, QC No. Q-174513; **Revised:** 22-Jul-2025, Manuscript No. R-174513; **Published:** 29-Jul-2025, DOI: 10.37421/2161-0673.2025.15.441
