Evaluation of the Performance of High-Resolution Satellite Based Rainfall Products for Stream Flow Simulation

Dawit Girma 1* and Belete Berhanu2
1College of Engineering and Technology, Wolikite University, Wolikite, Ethiopia
2School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia

Abstract

Precipitation data is an intrinsic parameter of rainfall-runoff simulation, since it is strongly hooked into the accuracy of the spatial and temporal resolution of the precipitation. In areas where rainfall gauging stations are scarce, additional data sources could also be needed. Satellite platforms have provided as a satisfactory alternative because of their global coverage. Although a good range of satellite-based estimations of precipitation is out there, not all the satellite products are suitable for all regions. In addition, in data-scarce areas where interpolation schemes are applied, it becomes difficult to get an accurate performance assessment; another comparison method is required as rainfall-runoff models. Remotely-sensed estimates are to get realistic and reliable data to be accessed in water resource assessments. Therefore, there is a requirement to evaluate the accuracy of remote sensing techniques. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative meteorological stations. Inter comparison between Satellite rainfall product and observed data were done using point to grid method selecting representative meteorological stations. TAMSAT shows the average value of R=0.87 and NS =0.764. Considering four categorical index POD, FAR, FB and HSS, the average value 0.71, 0.22, 0.92, and 0.66 respectively. For CHIRPS average R and NS are 0.88 and 0.75 respectively and categorical index POD, FAR, FB and HSS were 0.8, 0.05, 0.85 and 0.81 respectively. The study model stream flow using both CHIRPS and TAMSAT rainfall products by using the SWAT model from 1983 to 2017. The model was calibrated from 1998 to 2003 and validated from 2004 to 2007 using SUFI-2 algorithm embodied in the SWAT-CUP. The Nash-Sutcliffe Efficiency (NSE), linear correlation coefficient (R) and BIAS indices were used to benchmark the model performance and shows very good result (having R2 and NS=0.71-0.95 during calibration and 0.72-0.97 during validation.

Keywords: •CHIRPS •SUFI-2 • SWAT •SWAT-CUP •TAMSAT

Introduction

A precise analysis of water resources issues (e.g., flood, drought, extreme events, socio-economic analysis) entails accurate measures/estimations of hydro climatic variables. For a comprehensive of the impact of rainfall on the environment, it is vital that one must use appropriate spatial and temporal resolution for rainfall measurements [1]. Satellite-based rainfall estimates with high spatial and temporal resolution and enormous areal coverage provided as a possible additional source of data for hydrological models in areas where conventional rain gauge measurements are not readily available, sparsely available and no radar for measuring representative rainfall magnitude [2,3]. These applications would even have far-reaching effects for several developing countries whose ground-based stations are sparse and no radar technology for measuring representative rainfall magnitude. However, there are errors associated with satellite-based rainfall which prompt several questions. How accurate are satellite-based rainfall products? Can high-resolution satellite rainfall products be used for hydrological applications? Focusing on this research questions needs coordinated efforts of scholars in different region of the world. Lack of knowledge on the accuracy of those satellite products is a challenge to the hydrological community especially under complex terrain. Therefore; it’s very important to assess the performance of these estimates. Several studies assessed the capability of satellite rainfall products for flow simulation capability using hydrological models. For instance, CMORPH, PERSIANN, and TRMM (TMPA) 3B42RT and TMPA 3B42 data with rainfall station data for two medium-scaled watersheds of the Ethiopian highlands as input to the hydrological model. These results revealed 3B42RT and CMORPH simulations show reliable skills in their simulations but with small under estimation large flood peaks, while 3B42 and PERSIANN simulations have inconsistent capability. Also, this result showed the simulation based on the satellite-only product (3B42RT) gave a better performance than the satellite-gauge product (3B42RT). Regarding our country Ethiopia, some studies have been carried out to evaluate performance, validation, Inter-comparison of satellite-based rainfall products especially for Blue Nile basin e.g [4,5]. For instance, CMORPH, PERSIANN, and TRMM (TMPA) 3B42RT and TMPA 3B42 data with rainfall station data for two medium-scaled watersheds of the Ethiopian highlands as input to the hydrological model. These results revealed 3B42RT and CMORPH simulations show reliable skills in their simulations but with small under estimation large flood peaks, while 3B42 and PERSIANN simulations have inconsistent capability. Also, this result showed the simulation based on the satellite-only product (3B42RT) gave a better performance than the satellite-gauge product (3B42RT) [6]. Regarding our country Ethiopia, some studies have been carried out to evaluate performance, validation, Inter-comparison of satellite-based rainfall products especially for Blue Nile basin e.g. [1,3,5] simulate stream flow [7]. Many satellite-based estimations of precipitation are out there in high spatial and temporal resolution, which makes them useful for distributed hydrological models [2]. However, not all the satellite rainfall estimates are suitable for all the areas (i.e., their suitability and performance vary from region to region [8]. There is, therefore, a requirement to quantify their uncertainties before selecting the acceptable product for the region [9]. Therefore, hydrologists are still uncertain in applying these products directly in hydrological applications knowing that a lot of uncertainties are still involved in such techniques [7,10]. This study intended to evaluate the performance of two widely used, high-resolution, easily available and highly suitable for fully and semi distributed hydrologic model; satellite rainfall datasets (namely, CHIRPS and TAMSAT) for simulating stream flow modeling in Genale.

*Address for Correspondence: Dawit Girma, College of Engineering and Technology, Wolikite University, Wolikite, Ethiopia, Tel: +2519117736107, E-mail: davegirma63@gmail.com

Copyright: © 2021 Girma D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received March 19, 2021; Accepted April 02, 2021; Published 28 April, 2021
Research Methodology

As a procedure we follow the following main approaches. 1) Inter-
comparison of satellite rain fall products with rain gauge data at daily,
monthly and annual time scale using point-to-grid intercomparison method.
In point-based inter-comparison methods, individual rainfall stations are compared with
the grid-based satellite and reanalysis products, whereas, in the grid-to-grid
inter-comparison, the observed rainfall are interpolated to the same resolutions
of the selected grid-based satellite and reanalysis rainfall products and then
evaluated. Grid to grid method of evaluation is appropriate where the area is
covered with a high number and uniformly networked gauge stations. In areas
with sparsely distributed and limited number of rain gauge stations and complex
terrain as in the case of the present study, point to grid method is the best
way to evaluate each satellite and reanalysis rainfall product independently
using their native resolution. In the present study, both statistical indices and
categorical statistical indices were adopted to evaluate the precision of the
satellite rainfall products. 2) Simulation of stream flow with SWAT using satellite
rainfall products. 3) Calibration and validation simulated stream flow with
SWAT-CUP using observed stream flow. 4) Comparison of the performance of
simulated stream flow obtained from calibration and validation.

Study area

Genale Dawa basin lies in the southern part of Ethiopia, covering
parts of Oromia, SNNP, and Somali regions. Geographically located between
3° 30’ and 7° 20’ North latitude and 37°05’ and 43° 20’ East longitude. The
basin covers an area of 172889 km². It is the third-largest river basin, after
Wabi Shebelle and Abbay river basins. Neighboring river basins are the Wabi
Shebelle to the north and east, Rift Valley basin to the west. Genale Dawa river
basin have very scarce metrological station and Mountainous topography and
provided as area where satellite rainfall products are beneficiary. The climate
of the country is mainly controlled by the seasonal migration of the Inter-
tropical Convergence Zone (ITCZ), which is conditioned by the confluence of
trade winds of the northern and southern hemisphere and the associated
atmospheric circulation. It is also highly influenced, regionally and locally, by
complex topography of the country.

High resolution satellite rainfall products

In this study two high-resolution, satellite-based rainfall estimations that
are available at high resolution (1 d, 0.037 × 0.037): TAMSAT and (1 d, 0.05 ×
0.05): CHIRPS. We use the satellite data set as input at daily time scale.

SWAT model

SWAT needs Soil, Land use and DEM to drive flows and sub-watershed.
These data are spatially distributed but SWAT lump the parameter into
hydrologic response units. Hydrologic response units (HRUs) that have unique
land use, soil, and slope. The land use, soil, and slope datasets were projected
into the same projections as DEM. After projection of the land use, soil, and
slope datasets were reclassified, overlapped and connected with the SWAT
catalogs and ready for HRU definition. The minimum threshold area of 10% for
land use, 10% for soil class and 10% for slope were used. The land use, soil
and slopes percentage areas covering less than the threshold area level were
eliminated, and then the remaining areas were reclassified so that a hundred
percent of the land area in the sub-basin could be used in the simulation
execution.

Parameter specifications

The sensitivity analysis was made using a built-in SWAT sensitivity
analysis tool that uses the Latin Hypercube One-factor-At-a-Time (LH-OAT)
[11]. The inputs were the observed daily flow data, the simulated annual flow
data and the sensitive parameter in relation to flow with the absolute lower and
upper bound and default type of change to be applied (method application)
were used. Latin Hypercube One-factor-At-a-Time (LH-OAT) combines the
OAT design and LH sampling by taking the Latin Hypercube samples as
initial points for OAT design. The Latin Hypercube One-factor-At-a-Time (LH-
OAT) sensitivity analysis method combines thus the robustness of the Latin
Hypercube sampling that ensures that the full range of all parameters has been
sampled with the precision of an OAT designs assuring that the changes in
the output in each model run are often unambiguously attributed to the input
changed in such a simulation resulting in a strong and efficient sensitivity
analysis method [11] (Table 1).

Calibration

After the selection of most sensitive parameter, we carried out auto
calibration through Sequential Uncertainty Fitting algorithm (SUFI-2) imbedded
in SWAT-CUP in SUFI-2, parameter uncertainty accounts for all sources of
uncertainties such as uncertainty in driving variables (e.g., rainfall), conceptual
model, parameters, and measured data [12]. The intelligence of SWAT-CUP
allows model parameters to be predefined and optimized throughout the
auto-calibration process or manually adjusted iteratively between calibration
batches [13]. Among various evaluation coefficients contained in SUFI-2,
Nash-Sutcliff (NSE) was selected for model optimization in SWAT-CUP.

Model performance evaluation

To evaluate the model simulation outputs relative to the observed data,
model performance evaluation is necessary. There are various methods to
evaluate the model performance during the calibration and validation periods.
For this study, the objective functions to measure the model’s goodness of fit
for discharge was Nash-Sutcliff Efficiency (NSE), Determination coefficient (R²),
The Root Mean Square Error (RMSE), and PBIAS. In the present study, both
statistical indices and categorical statistical indices were adopted to evaluate
the precision of the satellite rainfall products. Statistical indices evaluate the
performance of the Satellite rainfall product in estimating the cumulative rainfall
over a timeframe. The statistical indices are:

\[
R = \frac{\sum(o - \bar{d})(s - \bar{s})}{\sqrt{\sum(o - \bar{o})^2 \sum(s - \bar{s})^2}}
\]

\[
RSME = \sqrt{\frac{1}{N} \sum(s - o)^2}
\]

\[
ME = \frac{1}{N} \sum(s - o)
\]

Table 1. Sensitivity analysis results.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Rank</th>
<th>Mean relative sensitivity</th>
<th>Category of Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_CCN2.mgt</td>
<td>1</td>
<td>1.06</td>
<td>Very High</td>
</tr>
<tr>
<td>V_ALPHA_BNK.rte</td>
<td>2</td>
<td>0.689</td>
<td>Very High</td>
</tr>
<tr>
<td>V_CH_K2.rte</td>
<td>3</td>
<td>0.319</td>
<td>High</td>
</tr>
<tr>
<td>V_SOL_AWC(..).sol</td>
<td>4</td>
<td>0.23</td>
<td>High</td>
</tr>
<tr>
<td>V_GWQMN.gw</td>
<td>5</td>
<td>0.16</td>
<td>High</td>
</tr>
<tr>
<td>V_ALPHA_BF.gw</td>
<td>6</td>
<td>0.132</td>
<td>High</td>
</tr>
<tr>
<td>V_JRU_SLP.hru</td>
<td>7</td>
<td>0.127</td>
<td>High</td>
</tr>
<tr>
<td>V_FPCO.hru</td>
<td>8</td>
<td>0.121</td>
<td>High</td>
</tr>
<tr>
<td>V_BEVAPM.gw</td>
<td>9</td>
<td>0.106</td>
<td>High</td>
</tr>
<tr>
<td>V_SOL_K[..].sol</td>
<td>10</td>
<td>0.097</td>
<td>Medium</td>
</tr>
<tr>
<td>V_SURLAG.hru</td>
<td>11</td>
<td>0.081</td>
<td>Medium</td>
</tr>
<tr>
<td>V_SLSUBBSN.hru</td>
<td>12</td>
<td>0.072</td>
<td>Medium</td>
</tr>
<tr>
<td>V_CANMX.hru</td>
<td>13</td>
<td>0.067</td>
<td>Medium</td>
</tr>
<tr>
<td>V_CH_N2.rte</td>
<td>14</td>
<td>0.062</td>
<td>Medium</td>
</tr>
<tr>
<td>V_ESCO.hru</td>
<td>15</td>
<td>0.034</td>
<td>Medium</td>
</tr>
<tr>
<td>V_GW_REVAP.gw</td>
<td>16</td>
<td>0.005</td>
<td>Small</td>
</tr>
<tr>
<td>V_RCHRDP.gw</td>
<td>17</td>
<td>0.004</td>
<td>Small</td>
</tr>
<tr>
<td>v_GW_DELAY.gw</td>
<td>18</td>
<td>0.002</td>
<td>Small</td>
</tr>
</tbody>
</table>
MAE = \(\frac{1}{N} \sum |s - o| \)

\[
\text{NSE} = 1 - \frac{\sum (o - s)^2}{\sum (o - \bar{o})^2}
\]

\[
\text{Bias} = \frac{\sum s}{\sum o}
\]

Where \(O \) is the total observed rainfall, \(S \) is the satellite rainfall product, and \(N \) is the number of data pairs compared. The measure of ME and MAE are in mm, whereas NSE and Bias are unit less. ME and MAE both provides information on the typical estimation error. ME ranges from \(-\infty \) to \(\infty \), whereas MAE ranges from 0 to \(\infty \), and an ideal score for both is 0. MAE was used here instead of the root mean square error to avoid the effect of extremely high rainfall values or outliers [14]. The Bias statistic indicates how well the mean estimate and gauge mean correspond; its value ranges from 0 to \(\infty \), with 1 being an ideal score. Values of Bias >1 and positive ME values indicate an overestimation, whereas values of Bias <1 and negative ME indicate an underestimate. NSE shows the skill of the estimates relative to a reference (in this case, the mean of the gauge observations); it ranges from \(-\infty \) to 1, with higher values indicating better agreement between the Satellite rainfall and gauge measurements. Negative NSE values indicate that the reference mean may be a better estimate than the SREs; 0 indicates that the reference mean is nearly as good as the Satellite rainfall. A categorical statistical index evaluates the rainfall detection capabilities of satellite rainfall product. For the evaluation of the rainfall detection capabilities of the Satellite rainfall product (rainfall threshold \(\geq 1 \) mm), we used a suite of binary skill scores that encapsulated information on rain/no-rain days in a contingency table (Table 2). The contingency table was constructed to compute categorical statistics that included the probability of detection (POD), false alarm index (FBI), and Heidke skill score (HSS) as follows:

\[
\text{POD} = \frac{A}{A + C}
\]

\[
\text{FAR} = \frac{B}{A + B}
\]

\[
\text{FBI} = \frac{A + B}{A + C}
\]

\[
\text{HSS} = \frac{2(AD - BC)}{(A + C)(C + D) + (A + B)(B + D)}
\]

Where A, B, C, and D represent hits (the satellite successfully detected rain), false alarms (the satellite did detect the no-rain case), misses (the satellite did not detect rain), and correct negitives (the satellite successfully detected the no-rain case), respectively (Table 3). POD quantifies the proportion of observed rainfall days that were correctly estimated by the satellite product. Far is that the proportion of satellite-estimated rainfall days when there was in fact no rain. Both POD and FAR range from 0 to 1, with 1 being an ideal POD and 0 being an ideal FAR. FBI, which ranges from 0 to \(\infty \), compares the rainfall-day detection frequency of the Satellite rainfall product with that of the rain gauge measurements: an FBI of less than (greater than) 1 indicates an underestimate (overestimate) of rainfall days. HSS, which ranges from \(-\infty \) to 1, is a measure of the overall skill of the rainfall-day estimates after rain events detected by random chance have been removed; an HSS less than 0 indicates that random chance is better than the Satellite rainfall product; an HSS of 0 means the Satellite rainfall has no skill; and an HSS of 1 indicates an ideal estimation of rainfall days by the Satellite rainfall product.

Table 2. Contingency table for comparing rain gauge measurements and satellite-based rainfall estimates.

<table>
<thead>
<tr>
<th></th>
<th>Gauge >1 mm</th>
<th>Gauge <1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite >1 mm</td>
<td>A (Hit)</td>
<td>B (False detection)</td>
</tr>
<tr>
<td>Satellite <1 mm</td>
<td>C (Miss)</td>
<td>D (Correct No rain)</td>
</tr>
</tbody>
</table>

Table 3. Comparison of categorical and continuous evaluation statistics.

<table>
<thead>
<tr>
<th>Evaluation Statistics</th>
<th>TAMSAT</th>
<th>CHIRPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD</td>
<td>0.71</td>
<td>0.81</td>
</tr>
<tr>
<td>FAR</td>
<td>0.22</td>
<td>0.05</td>
</tr>
<tr>
<td>FB</td>
<td>0.92</td>
<td>0.86</td>
</tr>
<tr>
<td>HSS</td>
<td>0.66</td>
<td>0.81</td>
</tr>
<tr>
<td>R</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>ME</td>
<td>0.05</td>
<td>-0.44</td>
</tr>
<tr>
<td>BIAS</td>
<td>1.08</td>
<td>0.8</td>
</tr>
<tr>
<td>RSME</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>NSE</td>
<td>0.76</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Results and Discussion

a) Comparison of rainfall input

Excellent performance of a product for rainfall detection would be characterized by a combination of high POD, high FBI, low FAR, and high HSS. For all the selected stations, TAMSAT had the lowest rainfall detection skill compared to CHIRPS. It truly identified more than 71.62% of the observed rainy days (POD). While, CHIRPS had the highest rainfall detection skill: it correctly dictates more than 81% of the rainfall events for all the selected stations. The POD values reveal that both the SREs missed moderate rainfall events in all the nine selected stations. FAR values indicated that around 22% and 5% of the estimated rainy days were falsely estimated by the TAMSAT and CHIRPS respectively. In general, FAR was relatively low for all the selected stations. FBI values were 86% and 92.1% for CHIRPS and TAMSAT respectively, an indication that these two SREs underestimated the frequency of rainfall. The main problem with the SREs over the study region therefore seems to be the moderate overestimation (TAMSAT) and underestimation (CHIRPS) of rainfall occurrence. The HSS values were high, the implication being that the skill of the SREs in detecting rainfall occurrences was much better than random chance. Generally, CHIRPS demonstrates better rainfall detection capability on most of the evaluation metrics compared to TAMSAT over all the selected stations (Table 3).

At a daily time scale the ME was small relative to the average daily rainfall (\(O^-\)) for both the SREs. There were small random errors in the TAMSAT estimates for all the selected stations, as indicated by the lower ME values 0.05 and -0.44 for TAMSAT and CHIRPS respectively. TAMSAT and CHIRPS estimated the amount of rainfall reasonably well (high efficiency, low random errors, and bias <10%) at daily time scales. The better accuracy of the TAMSAT estimates may have resulted from the use of thresholds that varied spatially and temporally and from the high temporal resolution. The fact that TAMSAT is bias-adjusted, and CHIRPS is bias-adjusted and includes contemporaneous station data could also result in better rainfall estimation. CHIRPS had the NSE and R (\(>0.75, >0.88 \)) respectively and TAMSAT had the NSE and R (\(>0.76, >0.88 \)) respectively. All the evaluation statistics confirm that TAMSAT and CHIRPS performed better and the differences in the evaluation statistics between TAMSAT and CHIRPS were very small for all selected stations.

Inter-comparison of daily rainfall estimates. The comparison statistics (\(R = \) Pearson’s correlation coefficient) are given in each plot. Correlations between satellite rainfall values and rain gauge values were very good which ranges (0.8064 - 0.9614) for CHIRPS and (0.827-0.951) for TAMSAT (Figures 1-3).

Inter-comparison of mean monthly rainfall data for rainfall estimates. The mean monthly maximum rainfall has the same trend as observed data. The
rainfall maximum is in April with a secondary maximum in October for each location and the minimum are in January and July for each location. Compared to rain gauges values, CHRIPS satellite rainfall products underestimated the monthly rainfall in the range 0.84% to 28.5%, While TAMSAT over estimated in the range 0.52% to 30% (Figure 4). Inter-annual variation of rain observed by rain gauges was generally captured by both of satellite rainfall products for all selected stations. The CHRIPS product shows a small underestimation of annual maximum rainfall for the whole study period and all selected station from 39.9 to 6938.8 mm/yr. But shows better performance in capturing inter-annual variation of rainfall. TAMSAT product shows overestimation of annual maximum rainfall from 84.4 to 2054.81 mm/yr. for the whole study period when compared with Observed data (Figure 5). In capturing both magnitude and trend of annual rainfall bias corrected TAMSAT shows better performance.

The above comparison, especially the daily basis is very important in our case because Arc SWAT uses daily observed rainfall data. Therefore, both
CHRIPS and TAMSAT rainfall estimates gave a very good result, and this result also consistent with findings in Eastern parts of Ethiopia [15,16]. There have been subsequent studies that conducted in Ethiopia to evaluate satellite rainfall products in the estimation of rainfall [17-19]; based on their studies and the result of this study, it is concluded that TAMSAT and CHRIPS are much closer to the actual rainfall fields in Ethiopian basins [1,3].

b) Model simulation, calibration and validation

Base flow and surface flow were separated using the automated digital filter methods based on the daily flow data measured at the outlet. The base flow separation technique indicated that about 29.8% of the total water yield was contributed from the subsurface water source which was less than surface runoff involvement for the total water yield at the outlet of the watershed for CHRIPS product and 29% of the total water yield was contributed from the subsurface water source which was again less than surface runoff involvement for the total water yield at the outlet of the watershed for TAMSAT. The average value of CN of the sub-basin lies between 75.57 and 86.22 for CHRIPS and 83.36 and 87.16 for TAMSAT model. The value of saturated soil conductivity can also affect groundwater flow. Consequently, this maximum value of CN2 and moderate conductivity SOL_K indicates flow to be surface flow dominated. Percent of error of the observed and simulated daily flows at the selected gauge stations are (2.8 - 8.2)% for CHRIPS product and (-11.6 - 3.6)% for TAMSAT product which is well within the acceptable range of ±15%. Further a good agreement between observed and simulated daily flows are shown by the coefficient of determinations ($R^2=0.84 - 0.88$) for CHRIPS and ($R^2=0.71 - 0.95$) for TAMSAT and the Nash-Sutcliffe simulation efficiency ($NSE=0.78 - 0.86$) for CHRIPS and ($NSE=0.7 - 0.92$) for TAMSAT thus fulfilled the requirements for $R >0.6$ and $ENS>0.5$ (Figure 6).

Validation of the model was carried out and the percent of error between the observed and simulated daily flow are (-0.82 - 3)% for CHRIPS and (-14 - 0.3)% for TAMSAT. Thus, it is found within the tolerable range of ±15%. The coefficient of determinations (R^2) was found to be (0.72 - 0.93) for CHRIPS and (0.81 -0.87) for TAMSAT respectively and Nash-Sutcliffe simulation efficiency (NSE) was (0.7 - 0.95) for CHRIPS and (0.76 -0.88) for TAMSAT respectively (Figure 7). These shows a very good correlation of the simulation results with the observed values.

Generally, there is a good fit between measured and simulated output and a slight over estimation of the low flows and under estimation of the peak flows were observed at the validation period. Since the model performed as well in the validation period, as for the calibration period hence, the set of optimized parameters listed in Table 3 and Table 4 during calibration process for Genale Dawa River Basin can be taken as the representative set of parameters for the basin. Thus, the validation check illustrates the accuracy of the model for simulating time-periods outside of the calibration period. The model performed as good in the validation period (2004-2007), as for the calibration period.
Figure 4. Inter-comparison of mean monthly rainfall data from satellite rainfall products and rain gauge.

Figure 5. Inter-comparison of annual rainfall data from satellite rainfall products and rain gauge.
Figure 6. Calibration and validation of model for CHRIPS rainfall product.

Figure 7. Calibration and validation of model for TAMSAT rainfall product.
(1998-2003) at the four-gauge stations as indicated in Table 4. Hence, the set of optimized parameters used during calibration process can be taken as the representative set of parameters to explain the hydrologic characteristic of the Genale Dawa River Basin and further simulations using SWAT model can be carried out by using these parameters for any period of time.

Similar study conducted by Samuel [20] reported that the results of testing and verification of the model at monthly time pace gave NSE of 0.65, Pbias of 15 and RSR of 0.4, while E of 0.5, Pbias of 31 and RSR of 0.5 were recorded for validation. Shawul A. Alemayehu et al. [21] reported R² of 0.86 and NSE of 0.85 for calibrated monthly flows, and for validation the following monthly flows were recorded as R² of 0.69 and NSE of 0.61. Ruan, Hongwei et al. [22] reported R² of 0.75 and NSE of 0.74 for calibrated monthly flows, and for validation the following monthly flows statistics were reported as R² of 0.58 and NSE of 0.69. Shawul A. Alemayehu et al. [23] reported R² of between 0.62 and 0.84 and NSE of between 0.41 and 0.84 for calibrated monthly flows. Bayissa, Yared et al. [17] noted R² of 0.80 and NSE of 0.73 for calibrated while R² of 0.80 and NSE of 0.71 for validation period. In an interrelated study also reported by Shawul A. Alemayehu [21] that the SWAT model had a worthy demonstration in replicating the stream flow with the R², NSE and percent difference values of 0.81, 0.75 and 23 respectively in the testing period, while R², NSE and percent difference values of 0.65, 0.59 and 20 respectively in the verification period. There is some variation in statistical values among researchers, in this particular study too, this variation might be due to mainly spatial data used (predominantly land use land cover data), disparity in catchment sensitive parameters that affect calibration processes, uncertainty during data handling and due many more cases.

Discussion and Conclusion

The study “Evaluation of the performance of high-resolution Satellite rainfall product for stream flow simulation was conducted as a case study of Genale Dawa River basin. The basin can be provided as a good example where the use of satellite-derived precipitation could be beneficial. To overcome limitation of lacking sufficient station data, this research study uses some of the available globally gridded high resolution precipitation datasets to simulate runoff using SWAT model. Two satellite precipitation products (CHRIPS and TAMSAT) were selected for this evaluation.

The products were evaluated and compared on daily, monthly and annual time scales against the ground precipitation measurements through visual assessment of plots and by using some statistical methods such as Nash-Sutcliffe Coefficient of Efficiency, root mean square difference, estimation bias, and correlation coefficients and so on. The comparison results of rainfall magnitudes from satellite rainfall products and rain gauges revealed that the CHRIPS and bias corrected TAMSAT rainfall estimates gave relatively accurate result compared to rain gauge rainfall estimates at daily scale. Comparing CHRIPS and bias corrected TAMSAT, the former shows better result. The result revealed that, in this region, correlations between satellite rainfall values and rain gauge values were good (R Values are ranging from 0.72 to 0.96) for different selected stations.

On comparison of monthly datasets, the trend is totally captured while the magnitude shows under estimation from 5.7% to 30% by CHRIPS product and shows small over estimation from 0.75% to 3.4% for TAMSAT product. On the basis of annual comparison our result showed that trend correctly captured and CHRIPS shows small under estimation while TAMSAT shows small over estimation. Our results reveal that the utility of satellite rainfall products as input to SWAT for daily stream flow simulation strongly depends on the product type.

Simulation from both rainfall inputs showed the trend of observed hydrograph. Simulation based on CHRIPS and TAMSAT showed consistent and modest skills in their simulations. Overall, the results indicate that although some uncertainties exist in these gridded datasets (CHRIPS & TAMSAT), the appliance of these gridded data prove useful for hydrological studies within the absence of station data. When comparing simulation from both inputs, R² ranges from 0.72 to 0.97 for CHRIPS and from 0.71 to 0.95 for TAMSAT during calibration and validation. The NS ranges from 0.7 to 0.95 for CHRIPS and from 0.7 to 0.92 for TAMSAT. It strongly indicates the raising potential of the predictive accuracy of the satellite rainfall products in reproducing hydrological features. The SWAT model also proves to be a good tool in such a modeling approach. In all cases the bias corrected TAMSAT shows better results compared to CHRIPS.

Data Access and Format

The daily rainfall estimates (in mm per day) are freely available as netCDF files for each day from the TAMSAT website (http://www.tamsat.org.uk) and the University of Reading Research Data Archive. The spatial resolution is 0.0375° latitude by 0.0375° longitude with estimates provided for all land exist in these gridded datasets (CHRIPS & TAMSAT), the rainfall products. The SWAT model also proves to be a good tool in such a modeling approach. In all cases the bias corrected TAMSAT shows better results compared to CHRIPS.

Table 4. Model performance statistics.

<table>
<thead>
<tr>
<th>Product</th>
<th>Criteria</th>
<th>Dawa at Melka Guba</th>
<th>Dimtu Nr Bore</th>
<th>Dawa at Melka Guba</th>
<th>Dimtu Nr Bore</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRIPS</td>
<td>R²</td>
<td>0.86</td>
<td>0.88</td>
<td>0.83</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>NSE</td>
<td>0.84</td>
<td>0.85</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>PBIAS</td>
<td>8.2</td>
<td>6.6</td>
<td>-0.82</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>RSR</td>
<td>0.42</td>
<td>0.38</td>
<td>0.34</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.95</td>
<td>0.81</td>
<td>0.87</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>NSE</td>
<td>0.92</td>
<td>0.8</td>
<td>0.83</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>PBIAS</td>
<td>-11.5</td>
<td>2</td>
<td>-4.8</td>
<td>-2.3</td>
</tr>
<tr>
<td></td>
<td>RSR</td>
<td>0.27</td>
<td>0.44</td>
<td>0.4</td>
<td>0.35</td>
</tr>
</tbody>
</table>

References

How to cite this article: Dawit Girma, and Belete Berhanu. "Evaluation of the Performance of High-Resolution Satellite Based Rainfall Products for Stream Flow Simulation." Civil Environ Eng 11 (2021): 383