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Introduction 

A precise analysis of water resources issues (e.g., flood, drought, extreme 
events, socio-economic analysis) entails accurate measures/estimations of 
hydro climatic variables. For a comprehensive of the impact of rainfall on the 
environment, it is vital that one must use appropriate spatial and temporal 
resolution for rainfall measurements [1]. Satellite-based rainfall estimates with 
high spatial and temporal resolution and enormous areal coverage provided 
as a possible additional source of data for hydrological models in areas where 
conventional rain gauge measurements are not readily available, sparsely 
available and no radar for measuring representative rainfall magnitude [2,3]. 
These applications would even have far- reaching effects for several developing 
countries whose ground-based stations are sparse and no radar technology 
for measuring representative rainfall magnitude. However, there are errors 
associated with satellite-based rainfall which prompt several questions. How 
accurate are satellite-based rainfall products? Can high- resolution satellite 
rainfall products be used for hydrological applications? Focusing on this 
research questions needs coordinated efforts of scholars in different region 
of the world. Lack of knowledge on the accuracy of those satellite products is 
a challenge to the hydrological community especially under complex terrain. 
Therefore; it’s very important to assess the performance of these estimates. 
Several studies assessed the capability of satellite rainfall products for flow 
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simulation capability using hydrological models. For instance, CMORPH, 
PERSIANN, and TRMM (TMPA) 3B42RT) and TMPA 3B42 data with rainfall 
station data for two medium-scaled watersheds of the Ethiopian highlands as 
input to the hydrological model. These results revealed 3B42RT and CMORPH 
simulations show reliable skills in their simulations but with small under 
estimation large flood peaks, while 3B42 and PERSIANN simulations have 
inconsistent capability. Also, this result showed the simulation based on the 
satellite-only product (3B42RT) gave a better performance than the satellite- 
gauge product (3B42RT). Regarding our country Ethiopia, some studies have 
been carried out to evaluate performance, validation, Inter-comparison of 
satellite-based rainfall products especially for Blue Nile basin e. g [4,5]. For 
instance, CMORPH, PERSIANN, and TRMM (TMPA) 3B42RT) and TMPA 
3B42 data with rainfall station data for two medium-scaled watersheds of the 
Ethiopian highlands as input to the hydrological model. These results revealed 
3B42RT and CMORPH simulations show reliable skills in their simulations but 
with small under estimation large flood peaks, while 3B42 and PERSIANN 
simulations have inconsistent capability. Also, this result showed the simulation 
based on the satellite-only product (3B42RT) gave a better performance than 
the satellite-gauge product (3B42RT [6]. Regarding our country Ethiopia, 
some studies have been carried out to evaluate performance, validation, 
Inter-comparison of satellite-based rainfall products especially for Blue Nile 
basin e. g [1,3,5] simulate stream flow [7]. Many satellite-based estimations 
of precipitation are out there in high spatial and temporal resolution, which 
makes them useful for distributed hydrological models [2]. However, not all the 
satellite rainfall estimates are suitable for all the areas (i.e., their suitability and 
performance vary from region to region [8]. There is, therefore, a requirement 
to quantify their uncertainties before selecting the acceptable product for the 
region [9]. Therefore, hydrologists are still uncertain in applying these products 
directly in hydrological applications knowing that a lot of uncertainties are 
still involved in such techniques [7,10]. This study intended to evaluate the 
performance of two widely used, high-resolution, easily available and highly 
suitable for fully and semi distributed hydrologic model; satellite rainfall 
datasets (namely, CHRIPS and TAMSAT) for simulating stream flow modeling 
in Genale. 
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Abstract 

Precipitation data is an intrinsic parameter of rainfall-runoff simulation, since it is strongly hooked into the accuracy of the spatial and temporal  
representation of the precipitation. In areas where rainfall gauging stations are scarce, additional data sources could also be needed. Satellite 
platforms have provided as a satisfactory alternative because of their global coverage. Although a good range of satellite-based estimations of 
precipitation is out there, not all the satellite products are suitable for all regions. In addition, in data-scarce areas where interpolation schemes 
are applied, it becomes difficult to get an accurate performance assessment; another comparison method is required as rainfal l-runoff models. 
Remotely-sensed estimates are to get realistic and reliable data to be accessed in water resource assessments. Therefore, there is a requirement 
to evaluate the accuracy of remote sensing techniques. Inter comparison between Satellite rainfall product and observed data were done using 
point to grid method selecting representative metrological stations. Inter comparison between Satellite rainfall product and observed data were 
done using point to grid method selecting representative metrological stations. TAMSAT shows the average value of R=0.87 and NS =0.764. 
Considering four categorical index POD, FAR, FB and HSS, the average value 0.71, 0.22, 0.92, and 0.66 respectively. For CHRIPS average R 
and NS are 0.88 and 0.755 respectively and categorical index POD, FAR, FB and HSS were 0.8,0.05, 0.85 and 0.81) respectively. The study 
model stream flow using both CHRIPS and TAMSAT rainfall products by using the SWAT model from 1983 to 2017. The model was calibrated from 
1998 to 2003 and validated from 2004 to 2007 using SUFI-2 algorithm embodied in the SWAT-CUP. The Nash-Sutcliffe Efficiency (NSE), linear 
correlation coefficient (R) and BIAS indices were used to benchmark the model performance and shows very good result (having R2 and NS=0.71- 
0.95 during calibration and 0.72-0.97 during validation. 
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Research Methodology 

As a procedure we follow the following main approaches.1) Inter- 
comparison of satellite rain fall products with rain gauge data at daily, monthly 
and annual time scale using point- to -grid inter comparison method. In point- 
based inter-comparison methods, individual rainfall stations are compared with 
the grid-based satellite and reanalysis products, whereas, in the grid-to-grid 
inter-comparison, the observed rainfall are interpolated to the same resolutions 
of the selected grid-based satellite and reanalysis rainfall products and then 
evaluated. Grid to grid method of evaluation is appropriate where the area is 
covered with a high number and uniformly networked gauge stations. In areas 
with sparsely distributed and limited number of rain gauge stations and complex 
terrain as in the case of the present study, point to grid method is the best 
way to evaluate each satellite and reanalysis rainfall product independently 
using their native resolution. In the present study, both statistical indices and 
categorical statistical indices were adopted to evaluate the precision of the 
satellite rainfall products. 2) Simulation of steam flow with SWAT using satellite 
rainfall products. 3) Calibration and validation simulated stream flow with 
SWAT-CUP using observed steam flow. 4) Comparison of the performance of 
simulated steam flow obtained from calibration and validation. 

Study area 

Genale Dawa river basin lies in the southern part of Ethiopia, covering 
parts of Oromia, SNNP, and Somali regions. Geographically located between 
30 30' and 70 20' North latitude and 37005' and 430 20' East longitude. The 
basin covers an area of 172889 km2. It is the third-largest river basin, after 
Wabi Shebelle and Abbay river basins. Neighboring river basins are the Wabi 
Shebelle to the north and east, Rift Valley basin to the west. Genale Dawa river 
basin have very scarce metrological station and Mountainous topography and 
provided as area where satellite rainfall products are beneficiary. The climate 
of the country is mainly controlled by the seasonal migration of the Inter- 
tropical Convergence Zone (ITCZ), which is conditioned by the convergence 
of trade winds of the northern and southern hemisphere and the associated 
atmospheric circulation. It is also highly influenced, regionally and locally, by 
complex topography of the country. 

High resolution satellite rainfall products 

In this study two high-resolution, satellite-based rainfall estimations that 
are available at high resolution (1 d, 0.037 × 0.037): TAMSAT and (1 d, 0.05 × 
0.05): CHRIPS. We use the satellite data set as input at daily time scale. 

SWAT model 

SWAT needs Soil, Land use and DEM to drive flows and sub-watershed. 
These data are spatially distributed but SWAT lumps the parameter into 
hydrologic response units. Hydrologic response units (HRUs) that have unique 

sampled with the precision of an OAT designs assuring that the changes in 
the output in each model run are often unambiguously attributed to the input 
changed in such a simulation resulting in a strong and efficient sensitivity 
analysis method [11] (Table 1). 

Calibration 

After the selection of most sensitive parameter, we carried out auto 
calibration through Sequential Uncertainty Fitting algorithm (SUFI-2) imbedded 
in SWAT-CUPIn SUFI-2, parameter uncertainty accounts for all sources of 
uncertainties such as uncertainty in driving variables (e.g., rainfall), conceptual 
model, parameters, and measured data [12]. The intelligence of SWAT-CUP 
allows model parameters to be predefined and optimized throughout the 
auto-calibration process or manually adjusted iteratively between calibration 
batches [13]. Among various evaluation coefficients contained in SUFI-2, 
Nash-Sutcliff (NSE) was selected for model optimization in SWAT-CUP. 

Model performance evaluation 

To evaluate the model simulation outputs relative to the observed data, 
model performance evaluation is necessary. There are various methods to 
evaluate the model performance during the calibration and validation periods. 
For this study, the objective functions to measure the model's goodness of fit for 
discharge was Nash-Sutcliffe Efficiency (NSE), Determination coefficient (R2), 
The Root Mean Square Error (RMSE), and PBIAS. In the present study, both 
statistical indices and categorical statistical indices were adopted to evaluate 
the precision of the satellite rainfall products. Statistical indices evaluate the 
performance of the Satellite rainfall product in estimating the cumulative rainfall 
over a timeframe. The statistical indices are: 
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Table 1. Sensitivity analysis results. 

 
 

land use, soil, and slope. The land use, soil, and slope datasets were projected 
into the same projections as DEM. After projection of the land use, soil, and 

Parameters Rank 
Mean relative

 
Category of 

Sensitivity 

slope datasets were reclassified, overlapped and connected with the SWAT 
catalogs and ready for HRU definition. The minimum threshold area of 10% for 
land use, 10% for soil class and 10% for slope were used. The land use, soil 
and slopes percentage areas covering less than the threshold area level were 
eliminated, and then the remaining areas were reclassified so that a hundred 
percent of the land area in the sub-basin could be used in the simulation 
execution. 

Parameter specifications 

The sensitivity analysis was made using a built-in SWAT sensitivity 
analysis tool that uses the Latin Hypercube One-factor-At-a-Time (LH-OAT) 
[11]. The inputs were the observed daily flow data, the simulated annual flow 
data and the sensitive parameter in relation to flow with the absolute lower and 
upper bound and default type of change to be applied (method application) 
were used. Latin Hypercube One-factor-At-a-Time (LH-OAT) combines the 
OAT design and LH sampling by taking the Latin Hypercube samples as 
initial points for OAT design. The Latin Hypercube One-factor-At-a-Time (LH- 
OAT) sensitivity analysis method combines thus the robustness of the Latin 
Hypercube sampling that ensures that the full range of all parameters has been 

R   CN2.mgt 1 1.06 Very High 

V   ALPHA_BNK.rte 2 0.689 Very High 

V   CH_K2.rte 3 0.319 High 

V   SOL_AWC(..).sol 4 0.23 High 

V GWQMN.gw 5 0.16 High 

V   ALPHA_BF.gw 6 0.132 High 

V   HRU_SLP.hru 7 0.127 High 

V   EPCO.hru 8 0.121 High 

V   REVAPMN.gw 9 0.106 High 

V   SOL_K(..).sol 10 0.097 Medium 

V   SURLAG.hru 11 0.081 Medium 

V   SLSUBBSN.hru 12 0.072 Medium 
 V CANMX.hru 13 0.067 Medium 

 V CH_N2.rte 14 0.062 Medium 

 V ESCO.hru 15 0.034 Medium 

V GW_REVAP.gw 16 0.005 Small 

V RCHRG_DP.gw 17 0.004 Small 

V GW_DELAY.gw 18 0.002 Small 
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Table 2. Contingency table for comparing rain gauge measurements and satellite-based 
rainfall estimates. 
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Table 3. Comparison of categorical and continuous evaluation statistics. 
 

 

  Product  
 

Evaluation Statistics  TAMSAT CHRIPS 

 POD 0.71 0.81 

Where O is that the total observed rainfall, O ̅ is that the mean observed 
rainfall, S is a satellite rainfall product, and N is the number of data pairs 
compared. The measure of ME and MAE are in mm, whereas NSE and Bias 
are unit less. ME and MAE both provides information on the typical estimation 
error. ME ranges from –∞ to ∞, whereas MAE ranges from 0 to ∞, and an ideal 
score for both is 0. MAE was used here instead of the root mean square error 
to avoid the effect of extremely high rainfall values or outliers [14]. The Bias 
statistic indicates how well the mean estimate and gauge mean correspond; its 
value ranges from 0 to ∞, with 1 being an ideal score. Values of Bias >1 and 

Categorical 
FAR 0.22 0.05 

 

positive ME values indicate an overestimation, whereas values of Bias <1 and 
negative ME indicate an underestimate. NSE shows the skill of the estimates 
relative to a reference (in this case, the mean of the gauge observations); it 
ranges from –∞ to 1, with higher values indicating better agreement between 
the Satellite rainfall and gauge measurements. Negative NSE values indicate 
that the reference mean may be a better estimate than the SREs; 0 indicates 
that the reference mean is nearly as good as the Satellite rainfall. A categorical 
statistical index evaluates the rainfall detection capabilities of satellite rainfall 
product. For the evaluation of the rainfall detection capabilities of the Satellite 
rainfall product (rainfall threshold ≥1 mm), we used a suite of binary skill 
scores that encapsulated information on rain/no-rain days in a contingency 
table (Table 2). The contingency table was constructed to compute categorical 
statistics that included the probability of detection (POD), false alarm ratio 
(FAR), frequency bias index (FBI), and Heidke skill score (HSS) as follows: 

 
 

Results and Discussion 

a) Comparison of rainfall input 

Excellent performance of a product for rainfall detection would be 
characterized by a combination of high POD, high FBI, low FAR, and high 
HSS. For all the selected stations, TAMSAT had the lower rainfall detection 
skill: compared to CHRIPS. It truly identified more than 71.62% of the observed 
rainy days (POD). While, CHIRPS had the highest rainfall detection skill: it 
correctly dictates more than 81% of the rainfall events for all the selected 
stations. The POD values reveal that both the SREs missed moderate rainfall 
events in all the nine selected stations. FAR values indicated that around 22% 
and 5% of the estimated rainy days were falsely estimated by the TAMSAT 
and CHRIPS respectively. In general, FAR was relatively low for all the 

POD 



FAR 
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
HSS 
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A  C 
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A  B 

A  B 

A  C 

  2  AD  BC   

 A  C C  D   A  B B  D

selected stations. FBI values were 86% and 92.1% for CHIRPS and TAMSAT 
respectively, an indication that these two SREs underestimated the frequency 
of rainfall. The main problem with the SREs over the study region therefore 
seems to be the moderate overestimation (TAMSAT) and underestimation 
(CHIRPS) of rainfall occurrence. The HSS values were high, the implication 
being that the skill of the SREs in detecting rainfall occurrences was much 
better than random chance. Generally, CHRIPS demonstrates better rainfall 
detection capability on most of the evaluation metrics compared to TAMSAT 
over all the selected stations (Table 3). 

At a daily time scale the ME was small relative to the average daily rainfall 
(O ¯) for both the SREs. There were small random errors in the TAMSAT 
estimates for all the selected stations, as indicated by the lower ME values 
0.05 and -0.44 for TAMSAT and CHRIPS respectively. TAMSAT and CHIRPS 
estimated the amount of rainfall reasonably well (high efficiency, low random 

Where A, B, C, and D represent hits (the satellite successfully detected 
rain), false alarms (the satellite did detect the no-rain case), misses (the satellite 
did not detect rain), and correct negatives (the satellite successfully detected 
the no-rain case), respectively (Table 3). POD quantifies the proportion of 
observed rainfall days that were correctly estimated by the satellite product. 
FAR is that the proportion of satellite-estimated rainfall days when there was 
in fact no rain. Both POD and FAR range from 0 to 1, with 1 being an ideal 
POD and 0 being an ideal FAR. FBI, which ranges from 0 to ∞, compares the 
rainfall-day detection frequency of the Satellite rainfall product with that of the 
rain gauge measurements: an FBI of less than (greater than) 1 indicates an 
underestimate (overestimate) of rainfall days. HSS, which ranges from –∞ to 
1, is a measure of the overall skill of the rainfall-day estimates after rain events 
detected by random chance have been removed: an HSS less than 0 indicates 
that random chance is better than the Satellite rainfall product; an HSS of 0 
means the Satellite rainfall product has no skill; and an HSS of 1 indicates an 
ideal estimation of rainfall days by the Satellite rainfall product. 

errors, and bias <10%) at daily time scales. The better accuracy of the TAMSAT 
estimates may have resulted from the use of thresholds that varied spatially 
and temporally and from the high temporal resolution. The fact that TAMSAT 
is bias-adjusted, and CHIRPS is bias-adjusted and includes contemporaneous 
station data could also result in better rainfall estimation. CHIRPS had the 
NSE and R (> 0.75, >0.88) respectively and TAMSAT had the NSE and R 
(> 0.76, >0.88) respectively. All the evaluation statistics confirm that TAMSAT 
and CHIRPS performed better and the differences in the evaluation statistics 
between TAMSAT and CHIRPS were very small for all selected stations. 

Inter-comparison of daily rainfall estimates. The comparison statistics (R = 
Pearson’s correlation coefficient) are given in each plot. Correlations between 
satellite rainfall values and rain gauge values were very good which ranges 
(0.8064 – 0.9614) for CHRIPS and (0.827-0.951) for TAMSAT (Figures 1-3). 

Inter-comparison of mean monthly rainfall data for rainfall estimates. The 
mean monthly maximum rainfall has the same trend as observed data. The 

2 

 Gauge >=1 mm Gauge <1 mm 

Satellite >=1 mm A (Hit) B (False detection) 

Satellite <1 mm C (Miss) D (Correct No rain) 

 

 FB 0.92 0.86 

HSS 0.66 0.81 
 R 0.88 0.88 

 ME 0.05 -0.44 

Continuous BIAS 1.08 0.8 

 RSME 3.7 3.5 
 NSE 0.76 0.75 
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Figure 1. Study area map. 

 

Figure 2. Soil, slope and land use/ cover characteristics of the study area. 

 

rainfall maximum is in April with a secondary maximum in October for each 
location and the minimum are in January and July for each location. Compared 
to rain gauges values, CHRIPS satellite rainfall products underestimated the 
monthly rainfall in the range 0.84% to 28.5%, While TAMSAT over estimated 
in the range 0.52% to 30% (Figure 4). Inter-annual variation of rain observed 
by rain gauges was generally captured by both of satellite rainfall products for 
all selected stations. The CHRIPS product shows a small underestimation of 
annual maximum rainfall for the whole study period and all selected station 

 

from 39.9 to 6938.8 mm/yr. But shows better performance in capturing inter- 
annual variation of rainfall. TAMSAT product shows overestimation of annual 
maximum rainfall from 84.4 to 2054.81mm/yr. for the whole study period when 
compared with Observed data (Figure 5). In capturing both magnitude and 
trend of annual rainfall bias corrected TAMSAT shows better performance. 

The above comparison, especially the daily basis is very important in our 
case because Arc SWAT uses daily observed rainfall data. Therefore, both 
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Figure 3. Inter comparison of daily rainfall from satellite rainfall products and rain gauge. 

 

CHRIPS and TAMSAT rainfall estimates gave a very good result, and this 
result also consistent with findings in Eastern parts of Ethiopia [15,16]. There 
have been subsequent studies that conducted in Ethiopia to evaluate satellite 
rainfall products in the estimation of rainfall [17-19]; based on their studies and 
the result of this study, it is concluded that TAMSAT and CHRIPS are much 
closer to the actual rainfall fields in Ethiopian basins [1,3]. 

b) Model simulation, calibration and validation 

Base flow and surface flow were separated using the automated digital 
filter methods based on the daily flow data measured at the outlet. The base 
flow separation technique indicated that about 29.8% of the total water yield 
was contributed from the subsurface water source which was less than surface 
runoff involvement for the total water yield at the outlet of the watershed for 
CHRIPS product and 29% of the total water yield was contributed from the 
subsurface water source which was again less than surface runoff involvement 
for the total water yield at the outlet of the watershed for TAMSAT. The average 
value of CN of the sub-basin lies between 75.57 and 86.22 for CHRIPS and 
83.36 and 87.16 for TAMSAT model. The value of saturated soil conductivity 
can also affect groundwater flow. Consequently, this maximum value of CN2 
and moderate conductivity SOL_K indicates flow to be surface flow dominated. 
Percent of error of the observed and simulated daily flows at the selected 
gauge stations are (2.8 - 8.2)% for CHRIPS product and (-11.6 - 3.6)% for 
TAMSAT product which is well within the acceptable range of ±15%. Further a 

 

good agreement between observed and simulated daily flows are shown by the 
coefficient of determinations (R2 =0.84 - 0.88) for CHRIPS and (R2 =0.71 - 0.95) 
for TAMSAT and the Nash-Suttcliffe simulation efficiency (NSE=0.78-0.86) for 
CHRIPS and (NSE=0.7 - 0.92) for TAMSAT thus fulfilled the requirements for 
R >0.6 and ENS> 0.5 (Figure 6). 

Validation of the model was carried out and the percent of error between 
the observed and simulated daily flow are (-0.82 - 3)% for CHRIPS and (-14 
- 0.3)% for TAMSAT. Thus, it is found within the tolerable range of ±15%. The 
coefficient of determinations (R2) was found to be (0.72 - 0.93) for CHRIPS and 
(0.81 -0.87) for TAMSAT respectively and Nash-Sutcliffe simulation efficiency 
(NSE) was (0.7 - 0.95) for CHRIPS and (0.76 -0.88) for TAMSAT respectively 
(Figure 7). These shows a very good correlation of the simulation results with 
the observed values. 

Generally, there is a good fit between measured and simulated output and 
a slight over estimation of the low flows and under estimation of the peak flows 
were observed at the validation period. Since the model performed as well in 
the validation period, as for the calibration period hence, the set of optimized 
parameters listed in Table 3 and Table 4 during calibration process for Genale 
Dawa River Basin can be taken as the representative set of parameters for 
the basin. Thus, the validation check illustrates the accuracy of the model for 
simulating time-periods outside of the calibration period. The model performed 
as good in the validation period (2004-2007), as for the calibration period 
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Figure 4. Inter-comparison of mean monthly rainfall data from satellite rainfall products and rain gauge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Inter-comparison of annual rainfall data from satellite rainfall products and rain gauge. 
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Figure 6. Calibration and validation of model for CHRIPS rainfall product. 

 

 

Figure 7. Calibration and validation of model for TAMSAT rainfall product. 
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Table 4. Model performance statistics. 

Calibration (1998-2003) Validation (2004-2007) 
 

Product Criteria Dawa at Melka Guba Dimtu Nr Bore Dawa at Melka Guba Dimtu Nr Bore 

CHRIPS R2 0.86 0.88 0.83 0.72 
 NSE 0.84 0.85 0.8 0.7 
 PBIAS 8.2 4.6 -0.82 0.7 
 RSR 0.42 0.38 0.34 0.55 
 R2 0.95 0.81 0.87 0.88 

TAMSAT NSE 0.92 0.8 0.83 0.88 
 PBIAS -11.5 2 -4.8 -2.3 
 RSR 0.27 0.44 0.4 0.35 

 

(1998-2003) at the four-gauge stations as indicated in Table 4. Hence, the set 
of optimized parameters used during calibration process can be taken as the 
representative set of parameters to explain the hydrologic characteristic of the 
Genale Dawa River Basin and further simulations using SWAT model can be 
carried out by using these parameters for any period of time. 

Similar study conducted by Samuel [20] reported that the results of testing 
and verification of the model at monthly time pace gave NSE of 0.65, Pbias of 
15 and RSR of 0.4, while E of 0.5, Pbias of 31 and RSR of 0.5 were recorded 
for validation. Shawul A. Alemayehu et al. [21] reported R2 of 0.86 and NSE of 
0.85 for calibrated monthly flows, and for validation the following monthly flows 
statistics were reported as R2 of 0.69 and NSE of 0.61. Ruan, Hongwei et al. 
[22] reported R2 of 0.75 and NSE of 0.74 for calibrated monthly flows, and for 
validation the following monthly flows statistics were reported as R2 of 0.58 and 
NSE of 0.69. Shawul A. Alemayehu et al. [23] reported R2 of between 0.62 and 
0.84 and NSE of between 0.41 and 0.84 for calibrated monthly flows. Bayissa, 
Yared et al. [17] noted R2 of 0.80 and NSE of 0.73 for calibrated while R2 of 0.80 
and NSE of 0.71 for validation period. In an interrelated study also reported by 
Shawul A. Alemayehu [21] that the SWAT model had a worthy demonstration 
in replicating the stream flow with the R2, NSE and percent difference values 

and shows small over estimation from 0.75% to 3.4% for TAMSAT product. On 
the basis of annual comparison our result showed that tend correctly captured 
and CHRIPS shows small under estimation while TAMSAT shows small over 
estimation. Our results reveal that the utility of satellite rainfall products as 
input to SWAT for daily stream flow simulation strongly depends on the product 
type. 

Simulation from both rainfall inputs showed the trend of observed 
hydrograph. Simulation based on CHRIPS and TAMSAT showed consistent 
and modest skills in their simulations. Overall, the results indicate that although 
some uncertainties exist in these gridded datasets (CHRIPS & TAMSAT), the 
appliance of these gridded data prove useful for hydrological studies within 
the absence of station data. When comparing simulation from both inputs, R2 

ranges from 0.72 to 0.97 for CHRIPS and from 0.71 to 0.95 for TAMSAT during 
calibration and validation. The NS ranges from 0.7 to 0.95 for CHRIPS and 
from 0.7 to 0.92 for TAMSAT. It strongly indicates the raising potential of the 
predictive accuracy of the satellite rainfall products in reproducing hydrological 
features. The SWAT model also proves to be a good tool in such a modeling 
approach. In all cases the bias corrected TAMSAT shows better results 
compared to CHRIPS. 

of 0.81, 0.75 and 23 respectively in the testing period, while R2, NSE and    
percent difference values of 0.65, 0.59 and 20 respectively in the verification 
[24] period. There is some variation in statistical values among researchers, in 
this particular study too, this variation might be due to mainly spatial data used 
(predominantly land use land cover data), disparity in catchment sensitive 
parameters that affect calibration processes, uncertainty during data handling 
and due many more cases. 

 
 

Discussion and Conclusion 

The study "Evaluation of the performance of high-resolution Satellite rainfall 
product for stream flow simulation was conducted as a case study of Genale 
Dawa River basin. The basin can be provided as a good example where the 
use of satellite-derived precipitation could be beneficial. To overcome limitation 
of lacking sufficient station data, this research study uses some of the available 
globally gridded high resolution precipitation datasets to simulate runoff using 
SWAT model. Two satellite precipitation products (CHRIPS and TAMSAT) 
were selected for this evaluation. 

The products were evaluated and compared on daily, monthly and annual 
time scales against the ground precipitation measurements through visual 
assessment of plots and by using some statistical methods such as Nash- 
Sutcliffe Coefficient of Efficiency, root mean square difference, estimation 
bias, and correlation coefficients and so on. The comparison results of rainfall 
magnitudes from satellite rainfall products and rain gauges revealed that the 
CHRIPS and bias corrected TAMSAT rainfall estimates gave relatively accurate 
result compared to rain gauge rainfall estimates at daily scale. Comparing 
CHRIPS and bias corrected TAMSAT, the former shows better result. The 
result revealed that, in this region, correlations between satellite rainfall values 
and rain gauge values were good (R Values are ranging from 0.72 to 0.96) for 
different selected stations. 

On comparison of monthly datasets, the trend is totally captured while 
the magnitude shows under estimation from 5.7% to 30% by CHRIPS product 

Data Access and Format 

The daily rainfall estimates (in mm per day) are freely available as net 
CDF files for each day from the TAMSAT website (http://www.tamsat.org.uk) 
and the University of Reading Research Data Archive. The spatial resolution 
is 0.0375° latitude by 0.0375° longitude with estimates provided for all land 
points in Africa, including Madagascar. In addition, the TAMSAT website 
contains quick look images for each day and a time series extraction tool can 
be used to extract area-average data for countries, administrative districts and 
user defined rectangular regions or user defined pixels in csv format. Climate 
Hazards Group Infrared Precipitation with Stations (CHIRPS) with a relatively 
high spatial and temporal resolution (i.e., 5 km resolution at daily temporal 
scale) and quasi-global coverage from January 1981 onwards. This product 
is accessed from (http://ftp.chg.ucsb.edu). The weather input data required for 
SWAT simulation includes daily data of Precipitation, maximum and minimum 
temperature, relative humidity, wind speed, and solar radiation. These were 
obtained from the Ethiopian National Meteorological Agency. The weather 
data used were represented from six stations inside Genale Dawa River basin. 
The climatic data used for this study covers 22 years from January 1996 to 
December 2017. Stream flow data used for calibration and validation of the 
model were collected from Ethiopian ministry of water and electricity. It covers 
10 years (1998-2007); six years for calibration and four years for validation. 
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