Evaluation of Surgical Lymphadenectomy in Management of Cancer Endometrial

Rehab M. Abdelrahman* and Ahmed Y. Abdulkader

1Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2Department of Surgical Oncology, Faculty of Medicine, Al-Azhar University, Egypt

Abstract

Treatment for most endometrial cancer patients tends to be surgical. The treatment of choice for complete hysterectomy and bilateral salpingo-oophorectomy with or without lymphadenectomy has been an open abdominal approach. The application of pelvic lymphadenectomy in patients with early endometrial cancer is useful because it has a diagnostic role and a therapeutic role, prevents metastasis. It could be concluded that: endometrial cancer surgery can be conducted using an open procedure with high effectiveness in terms of nodal excision and complication rate and increased operational and postoperative enforcement.

Staging endometrial carcinoma to include pelvic lymphadenectomy in the recognition that lymph node status is one of the patients' most important prognostic factors. This led to widespread variations. Pelvic lymphadenectomy allows for accurate prognosis based on a pathological examination of the lymph node. It is an important marker of tumor aggressiveness. Lymphadenectomy distinguishes patients with advanced disease and helps tailor adjuvant therapy for those with adverse risk factors. Thus, it can be concluded that: 1-Pelvic lymphadenectomy has a diagnostic role in the management of adjuvant therapy. Pelvic lymphadenectomy may have a therapeutic benefit, but more studies are needed to confirm this role.

Keywords: Lymphadenectomy • Endometrial cancer • Endometrial carcinoma

Introduction

Endometrial Cancer (EC) is the most common gynecological cancer in developed countries, accounting for about 6 percent of all malignancies [1]. Despite the high prevalence of EC, many of its management features remain unresolved. The most controversial topic of EC treatment is the therapeutic role of lymphadenectomy [2].

The International Gynecology and Obstetrics Federation (FIGO) introduced the concept of EC surgical staging in 1988 and the American College of Obstetricians and Gynecologists (ACOG) approved surgical staging as an important part of EC management in 2005. The ACOG Committee proposed restricting adjuvant treatment to patients with healthy nodes [3]. Though adjuvant radiation therapy is controversial in women with uterine-limited disease based on systemic surgical staging [4]. Thoetically lymph node removal has several potential benefits. Complete surgical staging can enable the identification of patients with recorded lymphatic dissemination, thereby targeting postoperative care and potentially reducing morbidity [4]. Staging endometrial carcinoma to include pelvic lymphadenectomy in the recognition that lymph node status is one of the patients' most important prognostic factors [5].

This has contributed to wide variation in practice across the globe. Regional lymphadenectomy is a useful procedure for the purposes of prognosis and staging [6,7] and can potentially provide a significant survival benefit [8]. Some authors however suggested that routine pelvic lymphadenectomy is associated with increased operating time, both intra- and post-operative complications.

Lymphadenectomy also adds no However, some authors indicated that routine pelvic lymphadenectomy is associated with increased operating time, complications both intra and post-operative. In fact, lymphadenectomy doesn't bring any advantages to survivors [9].

Patients and Methods

A case series clinical observation study was conducted in the Department of Obstetrics and Gynecology, during the period between February 2018 and August 2019. This study included 24 patients with clinical stage 1 endometrial cancer. All cases underwent total abdominal hysterectomy with pelvic lymphadenectomy.

It should be mentioned that the study in its beginning was designed to include cases with early stages endometrial cancer which was meaning according to FIGO 1988 classification stages I (uterine corpus), and IIA (Endocervical glandular involvement only). These stages became all included in stage I according to FIGO 2009.

Appropriate informed consent was obtained from the patients after a thorough explanation of the planned operation, its potential risks and benefits. All cases had an established endometrial carcinoma proved by histopathology of the endometrial biopsy.

All patients included in this work were subjected to the following:-

I. Full history taking

II. Examination (general, abdominal, local)

III. Investigations:

a. Routine laboratory investigations as complete blood.

b. Count, kidney and liver function tests were done.

c. Electrocardiography (ECG) was done.

d. Ultrasonographic assessment.

e. Endometrial biopsy & Histopathology was done for every case.
f. To exclude the suspicion of metastatic disease: CT scan and / or MRI, Chest X-ray was done.

Preoperative preparation

All the patients underwent the same standard preparation prior to surgery, including antibiotic prophylaxis (Cefotriaxone 1 gm) about half to one hour before operation. Administration of low molecular weight heparin (LMWH) and compression stockings were applied as prophylaxis against deep vein thrombosis.

Surgical technique

Anaesthesia: All procedures were performed under general anaesthesia with endotracheal intubation.

Position: Patients were positioned supine with sacrum positioned over the table break or over a firm pillow to allow for hyper extension of lumbar spine and better vision into the pelvis.

Incision: Midline vertical incision was the routine approach. The abdomen was kept open by a self-retaining retractor, and the bowel was kept in place with warm, wet pads. The abdominal viscera were thoroughly examined, including the liver, gallbladder, stomach, and aortic lymph nodes.

Pelvic lymphadenectomy

Transperitoneal pelvic lymphadenectomy was initiated. Node Dissection started by separating the lymph nodes overlying the outer iliac artery from the vessel by entering the dissection plane between the artery adventitia and the iliacosarcal tissue. Dissection was performed caudally down to the inguinal ligament and proximally up to the bifurcation of the iliac. Medially the outer iliac vessels were withdrawn and the dissection was carried between them. The specimen had been removed along the adventitial plane from the medial part of the external iliac artery and vein. Separation of the artery and vein was done to remove the lymph nodes between them. The lymphatic tissue was removed from the outer iliac vein’s inferior part. The entire obturator nerve was released from the lymphatic pad with blunt dissection.

Total hysterectomy

After completion of pelvic lymphadenectomy, total hysterectomy was started. The round ligament was cut between two clamps, then the vesico-uterine ligament was secured with figure-of-eight suture ligatures, and then closure of the free edges of the vagina were grasped with long Allis clamps. The vaginal vault was completed.

The obturator, internal iliac lymph node groups were affected in all patients with adenocarcinoma, 25% proved to be clear cell carcinoma. 18 cases were stage IA (75%), 6 cases were stage IB (25%), 75% of cases proved to be stage IC. The mean age of hospital stay was [116.4 ± 17.31 hours]. Complications encountered in this study were: Lymphorrhea in 4 cases. Fever more than 38 °C was documented in one case. Blood transfusion was needed for 6 cases. (Tables 4 and 5).

Discussion

Endometrial carcinoma is one of the most common female genital tract malignancies. The most common presentation was bleeding which occurred in all patients (100%), followed by diabetes mellitus in 20 patients and hypertension which occurred in 18 out of 24 patients (63.3%) (Table 2). The laboratory findings in the studied population, the mean hemoglobin concentration was 10 ± 1.6, the mean white blood cell count was 17.1 ± 4.7, the mean platelet count was 384.1 ± 228, the mean alanine aminotransferase was 52.1 ± 25.8, the mean aspartate aminotransferase was 33.7 ± 8.2 and the mean creatinine concentration was 1.65 ± 0.85 (Table 5).

Table 4 showed the lymph node status among the studied population. From the 24 patients, 16 patients (66.7%) have positive lymph nodes and 8 patients (33.3%) have negative lymph nodes. The mean diameter was 7.13 ± 1.25 mm. The mean number of excised pelvic lymph nodes was 15 (ranging from 12-18). The obturator, internal iliac lymph node groups were affected in all patients with positive lymph nodes (18 patients) while external iliac group of lymph nodes was affected in only 4 cases in addition to obturator and internal iliac nodes.

The mean operative time was 140.85 ± 10.1 minutes. The mean amount of blood loss was [127.5 ± 42.9 ml]. The mean number of the pelvic lymph nodes excised was 13.6 ± 3.43 (Table 4). Regarding the postoperative details, Hemoglobin decline 24 hours after surgery was (1.52 ± 0.530 gm/dl). Duration of hospital stay was [116.4 ± 17.31 hours]. Complications encountered in this study were: Lymphorrhea in 4 cases. Fever more than 38 °C was documented in one case. Blood transfusion was needed for 6 cases. (Tables 4 and 5).

Histological type, grading, tumor stage is analyzed in Table 6. 18 cases were stage IA (75%), 6 cases were stage IB (25%), 75% of cases proved to be adenocarcinoma, 25% proved to be clear cell carcinoma.
malignancies, accounting for nearly half of all gynecologic cancers in United States. About 39,300 new cases are reported annually with over 6,600 deaths. Various early screening methods have been developed for endometrial cancer. Until now, curettage and histological assessment are necessary for definitive diagnosis [2].

Staging endometrial carcinoma to include pelvic lymphadenectomy in the recognition that lymph node status is one of the patients’ most important prognostic factors. This has contributed to wide variation in practice across the globe. Regional lymphadenectomy is a useful treatment for forecasting and staging purposes and may offer a small survival benefit [7,10,11].

There is still a general debate in endometrial carcinoma cases management, some add pelvic lymphadenectomy to the radical resection and others deny that role. Therefore, the aim of this work was to develop protocol for the best line in endometrial cancer management. During the period between February 2018 and August 2019, 24 patients with endometrial cancer were scheduled for total abdominal hysterectomy with pelvic lymphadenectomy at the Department of Obstetrics and Gynecology.

The mean age of the patients in this study was 63.5 ± 2.7 years (range from 59 to 68 years). This was nearly in agreement with reported age incidence for endometrial carcinoma in study done by MacDonald et al. [11] who reported that the mean age of endometrial carcinoma at diagnosis is 61 years. In this study, the most common presentation was bleeding which occurred in all patients (100%) followed by diabetes mellitus and hypertension which occurred in 20 out of 24 patients (83.3%).

This agrees with Soliman et al. [12] who found that the relative risk of association of endometrial carcinoma with diabetes was 4.1 and with hypertension 1.6, they concluded that diabetics and hypertensives are identifiable risk group of endometrial carcinomas and thus form a suitable target population for a trial of the efficacy of screening for endometrial carcinoma (Table 7) [13-16].

In our study, the lymph node status among the studied population. The mean diameter was 7.13 ± 1.25 mm. Obermaier et al. [17] concluded from their study that the positive predictive value of an endometrial thickness greater than 5 mm for the presence of cancer was only 35% and it was not possible on the basis of endometrial thickness to discriminate between cases of hyperplasia and carcinoma.

Venkat et al. [13] concluded that it is known that transvaginal sonography has a very high sensitivity to detect early endometrial carcinoma, but the specificity remains low. To order to detect endometrial cancer at an early stage, further tests should be carried out when the endometrial thickness is ≥ 4 mm, especially when women have risk factors such as obesity, late menopause or current hormone use.

Endometrial thickness greater than 13 mm which is hyperechoic or inhomogeneous with presence of intratumoral new blood vessels with R.I. <0.4 were detected in 93.3% of cases of endometrial carcinoma by transvaginal ultrasonography with color flow Doppler with diagnostic accuracy 94.33%, the sensitivity and specificity were 93.33% and 98.33% respectively and P.P.V and N.P.V 93.33% and 98.33% respectively (Kappa=91.7%) blood flow assessed by color Doppler ultrasound might play an important role in predicting tumor progression and metastasis in endometrial carcinoma [12].

From the 12 patients, 8 patients (66.7%) have positive lymph nodes and 4 patients (33.3%) have negative lymph nodes. This was also suggested by Venkat et al. [13]. One controversial point is the number of lymph nodes that need to be cut for proper surgical staging. In our study, the mean number of excised pelvic lymph nodes was 15 (ranging from 12-18), this was agreed with Lutman et al. [14] who found that pelvic lymph node count ~12 is an independent prognostic factor for overall and progression- free survival in FIGO stage I and II patients with high-risk histology.

Increasing the number of lymph nodes removed and the number of nodal metastases showed a correlation. We concluded that the removal of 21 to 25 nodes was considered to substantially increase the chance of finding at least one metastasis of the lymph nodes [15]. In our study we found that the
Conclusion

Pelvic lymphadenectomy plays a diagnostic role in endometrial cancer management. There may be a therapeutic benefit to pelvic lymphadenectomy but more studies are needed to confirm this role.

References
