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Abstract

The discharge of nitrate-rich effluent has adverse effect on the receiving environment and the public health of the
polluted water users. The nitrates are eliminated in a denitrification step that requires reducing power in form of
organic carbon. The objective of this study was to evaluate the potential of utilizing organic carbon in effluent from
the anaerobic SBR as a carbon source for denitrification. Reactors were operated for one year using meat
processing wastewater. Anaerobically treated abattoir wastewater equivalent to 5, 10 and 15% of aerobic SBR
hydraulic volume were added to three separate reactors. A 12 h operating cycle consisted of the following periods:
(a) filling, 0.30 h; (b) settling, 11 h and (d) decanting, 0.30 h for the anoxic reactor. A comparison between different
carbon loads was performed based on biological carbon, nitrogen and phosphorus removal. Sufficient denitrification
was achieved with 10% (aerobic SBR hydraulic volume) of anaerobically-treated abattoir wastewater. TCOD, BOD5,
TKN, N02

-N, NO3
-N, PO4

3-, TS, EC and temperature and turbidity were reduced by 78, 70, 91, 100, 98, 62, 39, 65,
71, 5 and 39% respectively, with effluent mean concentrations of 80 ± 5 mg/L, 54 ± 12 mg/L, 35 ± 4, 00 ± 0, 2 ± 1, 18
± 1, 254 ± 12, 1.64 ± 0.01, 22.04 ± 0.02 and 738 ± 9 FAU. Organic carbon in effluent from the anaerobic SBR can be
used as a carbon source for anoxic denitrification. However, the denitrification rate is affected by the organic carbon
load used. Except TKN and o-PO43- mg/L, all other parameters in the denitrified effluent met discharge standards.

Keywords: Biological treatment; Denitrification; Nitrate; Organic
carbon; Sequencing batch reactors (SBR); Wastewater

Introduction
The discharge of nitrate-rich effluent has adverse effect on the

receiving environment and the public health of the polluted water
users [1,2]. Such effects manifest as toxicity to aquatic biota,
eutrophication [3,4] and public health complications such as thyroid
hypertrophy, methemoglobinemia, hypertension and cancer [5]. The
World Health Organization has set a limit of 10 and 100 mg/L NO3

- for
human and animal consumption, respectively. Wastewater above these
limits requires treatment [6-8].

Nitrates are biologically removed via denitrification, anoxic
reduction of NO3

- → NO2
- → NO → N2O → N2 by heterotrophic

bacteria such as Pseudonomas stutzeri, Alcaligenes faecalis and
Ochrobactrum anthropi [9,10]. Activated sludge based sequencing
batch reactor (SBR) allows the removal of carbon, nitrogen and
phosphorus using a single reactor [11-13]. The key to efficient
biological pollutant removal is transitioning between anaerobic,
aerobic, and anoxic phases. Doing so promotes transformation of the
carbon, nitrogen and phosphorus by triggering utilization of different
electron acceptors and donors [14].

However, simultaneous phosphorus and nitrogen removal is not
always successful [13,15]. Polyphosphate-accumulating organisms
(PAO) and denitrifying bacteria are both heterotrophic [9,10], and
thus able to take up organic carbon under anaerobic conditions and
store it for growth once a suitable electron acceptor is available

[14,16-18]. In combined denitrification and EBPR systems, organic
carbon availability is usually the limiting parameter [19,20], denitrifers
and PAOs directly compete for the available organic carbon [11,21].
Both processes are inhibited by this competition [13,22].

Insufficient denitrification is improved by addition of an external
organic carbon such as such as glucose, ethanol, acetate, methanol,
aspartate, formic acid [18,23], molasses, sulfite waste liquor, whey and
distillery stillage [24]. However, these solutions are costly, require an
adaptation period, lead to excessive sludge production and are not
always efficient [13]. Hence efficient and cost-effective solutions are
needed.

The use of wastewater as an internal carbon source is a promising
alternative [10]. However, denitrification is affected by the type and
dose of the organic carbon source used, duration of each phase and
time cycle. The choice of hydraulic retention times and sludge
retention time is dependent on this optimization [25,26]. The objective
of this study was to evaluate the potential of utilizing anaerobically
treated meat processing wastewater as a carbon source for
denitrification. A comparison between different carbon loads was
performed based on biological carbon, nitrogen and phosphorus
removal.
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Materials and Methods

Model reactors
Three glass reactors (Figure 1), each with a total volume of 25 L and

a working liquid volume of 20 L were set up at Makerere University
Biochemistry Research Lab. These reactors were fed with nitrified
effluent. To prepare the nitrified liquor, meat processing wastewater
from City Abattoir, Kampala-Uganda was treated sequentially in
anaerobic and aerobic SBR using a standard procedure as described by
Mutua et al. [19].

Figure 1: Schematic anoxic sequencing batch reactors.

Then, anaerobically treated abattoir wastewater equivalent to 5, 10
and 15% of aerobic SBR hydraulic volume were added to three separate
reactors (the properties of the anaerobically treated wastewater are
shown in Table 1.

Parameter Outflow conc.

TCOD 3554 ± 58

SCOD 762 ± 3

BOD5 1869 ± 27

TKN 400 ± 30

NH4–N 288 ± 7

NO2–N NIL

NO3–N NIL

TP 129 ± 1

◦-PO4
3-–P 82 ± 1

Turbidity 2800 ± 9

TS 2307 ± 21

pH 6.56 ± 0.03

EC 3.02 ± 0.01

Temperature 25.7 ± 0.2

Table 1: Mean ± standard error values of the physiochemical
parameters determined for the anaerobic SBR effluent, (n=6).

Concentrations of TCOD, SCOD, BOD5, TKN, NO2
-N NO3

-N, TP,
o-PO4

3-, Turbidity and TS are expressed in mg/L; Turbidity, EC, and
temperature are expressed in (FAU), (ms/cm) and (◦C), respectively.

An 12 hour operating cycle consisted of the following periods: (a)
filling, 0.30 h; (b) settling, 11 h and (d) decanting, 0.30 h for the anoxic
reactors. At the end of each cycle, 10 litres of the supernatant was
decanted, followed by feeding of an equal amount of wastewater. The
system operated at a nominal Sludge Retention Time (SRT) of 5 days.
The organic loading was 12.8 kg COD/m3/day, during the study
period. Steady-state conditions were obtained after 3 months.

Analytical procedure
Physical water quality variables (temperature, pH and electrical

conductivity) were measured in situ per hour using portable WTW
(Wissenchaftlich Technishe Werkstatten) microprocessor probes and
meters. Chemical parameters such as total chemical oxygen demand
(TCOD), biochemical oxygen demand (BOD5), soluble chemical
oxygen demand (SCOD), ammonia (NH3), total kjeldahl nitrogen
(TKN), nitrite (NO2

-), nitrate-nitrogen (NO3
-), total phosphorus (TP),

ortho-phosphate (o-PO4
3-), solids content (TSS) and turbidity were

analyzed according to standard method.

Statistical analysis
One-way analysis of variance (ANOVA) was used to compare

treatment means. The results were expressed as mean ± SEM. The
differences were considered significant, when P<0.05.

Results
Figures 2 to 7 and Table 2 show the denitrification efficiencies

obtained when 5, 10 and 15% organic carbon load were used.

Figure 2: Comparison of TCOD removal efficiency in a
denitrification step using 5, 10 and 15% organic carbon load in a
lab-scale SBR treating abattoir wastewater (n=6).

Figure 3: Comparison of BOD5 removal efficiency in a
denitrification step using 5, 10 and 15% organic carbon load in a
lab-scale SBR treating abattoir wastewater (n=6).

The TCOD removal efficiency significantly differed between 5% and
each of 10% (p=0.000) and 15% (p=0.000) carbon load and the TCOD
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removal efficiency significantly differed between 10% and 15% carbon
load (p=0.000) (Figure 2, Table 2).

The BOD removal efficiency did not significantly differ between 5%
and each of 10% and 15% carbon load. However, there was significant
difference in BOD removal efficiency between 10 and 15% carbon load
(p=0.007) (Figure 3, Table 2).

The TKN removal efficiency significantly differed between 5% and
each of 10% (p=0.000) and 15% (p=0.000) organic carbon load and the
TKN removal efficiency significantly differed between 10% and 15%
organic carbon load (p=0.000) (Table 2).

Parameter Aerobic SBR effluent Carbon load (%) Inflow conc. Outflow Conc. % Change

TCOD 332 ± 16 5 351 ± 8 165 ± 12a -53

10 359 ± 9 80 ± 5 -78

15 430 ± 12 229 ± 7bc -47

BOD5 164 ± 20 5 168 ± 13 91 ± 5 -46

10 180 ± 16 54 ± 12 -70

15 205 ± 16 132 ± 17a -36

TKN 186 ± 12 5 209 ± 14 165 ± 18a -21

10 225 ± 2 35 ± 4 -91

15 269 ± 11 229 ± 10bc -15

NO2-N 115 ± 9 5 105 ± 4 43 ± 6a -59

10 93 ± 17 .00 ± 0 -100

15 82 ± 9 29 ± 7a -65

NO3-N 184 ± 15 5 172 ± 13 124 ± 15a -28

10 122 ± 1 2 ± 1 -98

15 146 ± 9 115 ± 7a -7

TP 22 ± 1 5 26 ± 4 27 ± 3 +4

10 34 ± 1 18 ± 1 -47

15 48 ± 9 32 ± 9 -33

PO4
3- 18 ± 1 5 16 ± 1 14 ± 1 -1

10 21 ± 1 8 ± 1 -62

15 33 ± 6 21 ± 7 -36

Turbidity 1015 ± 6 5 1156 ± 28 683 ± 34 -41

10 1210 ± 16 738 ± 9 -39

15 1325 ± 54 912 ± 29a -31

TS 655 ± 12 5 678 ± 13 217 ± 10 -68

10 729 ± 7 254 ± 12 -65

15 798 ± 15 365 ± 19a -54

pH 7.05 ± 0.05 5 6.93 ± 0.03 6.96 ± 0.13a 0

10 6.81 ± 0.04 7.00 ± 0.0 -27

15 6.45 ± 0.13 6.75 ± 0.07a -4

EC 4.18 ± 0.02 5 5.27 ± 0.02 3.34 ± 0.1a -37
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10 5.69 ± 0.1 1.64 ± 0.01 -71

15 5.86 ± 0.14 3.64 ± 0.09a -38

Temperature 22.06 ± 0.1 5 23.02 ± 0.1 22.72 ± 0.02 -1

10 23.23 ± 0.8 22.04 ± 0.02a -5

15 23.49 ± 0.11 22.09 ± 0.02a -6

Table 2: Mean ± standard error values of physiochemical parameter determined in anoxic denitrification using 5, 10 and 15% (of the aerobic SBR
hydraulic volume) carbon load from anaerobic SBR (n=6).

Concentrations of TCOD, BOD5, TKN, NO2
-N, NO3

-N, TP, PO4
3-,

and TS are expressed in mg/L; Turbidity, EC, and temperature are
expressed in (FAU), (ms/cm3) and (°C), respectively. - signifies
reduction, + signifies increment.

The NH4-H removal efficiency did not significantly differ between
5% and each of 10%. However, there was significant difference in NH4-

H removal efficiency between 15% each of 5 and 10% carbon load
(p=0.007) (Table 2).

The NO2
-N removal efficiency significantly differed between 10%

and each of 5% (p=0.004) and 15% (p=0.004) carbon load. However,
there was no significant difference in NO2

-N removal efficiency
between 5% and 15% carbon load (p>0.05) (Figure 4, Table 2).

Figure 4: Comparison of NO2
-N removal efficiency in a

denitrification step using 5, 10 and 15% organic carbon load in a
lab-scale SBR treating abattoir wastewater (n=6).

Figure 5: Comparison of NO3
-N removal efficiency in a

denitrification step using 5, 10 and 15% organic carbon load in a
lab-scale SBR treating abattoir wastewater (n=6).

The NO3
-N removal efficiency significantly differed between 10%

and each of 5% (p=0.000) and 15% (p=0.000) carbon load. However,
there was no significant difference in NO3

-N removal efficiency
between 5% and 15% carbon load (p>0.05) (Figure 5, Table 2). The TP
and PO4

3- removal efficiency did not significantly differ between and
among 5%, 10% and 15% organic carbon load used (Figures 6 and 7,
Table 2).

Figure 6: Comparison of TP removal efficiency in a denitrification
step using 5, 10 and 15% organic carbon load in a lab-scale SBR
treating abattoir wastewater, (n=6).

The turbidity removal efficiency did not significantly differ between
5% and 10% (p>0.05) carbon load. However, there was significant
difference in turbidity removal efficiency between 15% and each of 5%
and 10% organic carbon load (p<0.05) (Table 2).

The TS removal efficiency did not significantly differ between 5%
and 10% (p>0.05) carbon load. However, there was significant
difference in TS removal efficiency between 15% and each of 5% and
10% organic carbon load (p<0.05) (Table 2). The pH did not
significantly differ between 5% and 15% (p>0.05) organic carbon load.
However, there was significant difference in pH between 10% and each
of 5% and 15% organic carbon load (p<0.05) (Table 2).

The EC did not significantly differ between 5% and 15% (p>0.05)
organic carbon load. However, there was significant difference in EC
between 10% and each of 5% and 15% organic carbon load (p<0.05)
(Table 2). Temperature did not significantly differ between 10% and
15% (p>0.05) organic carbon load. However, there was significant
difference in temperature between 5% and each of 10% and 15%
organic carbon load (p<0.05) (Table 2).
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Discussion
The National Environmental Management Authority (NEMA) has

set wastewater discharge standards of: COD, 100 mg/L; NH4
–N, 10

mg/L, TKN, 10 mg/L; TSS, 100 mg/L; ortho-P, 5 mg/L and total-P, 10
mg/L; and Turbidity, 300 NTU/FAU; [19]. Effluent above these limits
needs further processing to reduce pollutant concentrations.

Denitrification is anoxic reduction of the NO3
- → NO2

-
 → NO →

N2O → N2 by heterotrophic bacteria such as Pseudonomas stutzeri,
Alcaligenes faecalis and Ochrobactrum anthropi [9,10]. Most
denitrifiers are facultative heterotrophic bacteria that use organic
carbon as energy source and nitrite-nitrates as electron acceptors [15].
While most waters contain a reducing power in the form of organic
substrate, it is difficult to preserve the reducing power required for
denitrification, due to the necessary preceding aerobic oxidation step
[24,26]. Consequently, sufficient organic carbon source must be
provided for proper denitrification [18].

Limited carbon is known to cause repression of denitrifying
enzymes [11] as shown when 5% organic carbon (C:N ratio 1.68) is
added (Figures 2 and 3). The current interpretation of this
phenomenon is that nitrate entering the anoxic phase is used as an
electron acceptor in the growth of non-poly heterotrophs [14]. This
reduces the amount of the substrate available for sequestration by the
poly organisms and hence reduces the amount of phosphorous
removal that can be achieved [15]. Moreover, phosphate removal
efficiency is affected by competition for the organic substrate between
denitrifiers and PAOs [13,19] leading to high phosphorus
concentration in the effluent (Figure 7, Table 2).

10% organic carbon load had a C:N ratio of 1.89 mg COD.L-1 N-
TKN which achieved complete nitrite removal (Figure 4). Negligible
amounts of nitrates (2 ± 1 mg/L) remained within the system (Figure 5,
Table 2). This is consistent with research findings by Obaja et al. [25]
and Rahman et al. [24] that complete denitrification is obtained when
the C/N ratio is ≥ 1.7. According to Fabregas [27], the high DO
concentration (14.40 mg/L-1) at the beginning of anoxic period could
have lowered the level of biodegradability of the wastewater and hence
complete nitrate removal was not achieved. Carbon decrease observed
was as a result of both assimilative and dissimilative carbon utilization
by denitrifying and other bacteria [20,24]. The COD concentration
measured at the end of the cycle was from the fraction of slowly
biodegradable substrate contained in the abattoir wastewater [15].
Denitrification resulted in a rise in alkalinity of the system [13,28,29],
with corresponding increase in pH (Table 2).

The rate of phosphate removal increases (Figures 6 and 7) after most
of the denitrification had taken place because denitrifers have high
affinity for organic carbon than PAOs [11]. The phosphorus uptake
under anoxic conditions is attributable to the activity of denitrifying
phosphorus accumulating organisms (DNPAO), capable of
accumulating high amounts of polyphosphates [20]. Towards the end
of anoxic phase, orthophosphorus had a slight increase with no
corresponding total phosphorus increase. This observation can be
attributed to anoxic orthophosphorus release by PAOs and total
phosphorus absorption by sediments [22].

The use of 15% organic carbon load decreases C:N ratio (1.59). This
system overload inhibits both denitrifiers and PAOs activity [13,15],
decreasing nitrates and ortho-phosphorus removal efficiencies. The

initial high NO2- and NO3- removal efficiencies were likely due to
dilution factor.

Figure 7: Comparison of PO4
3- removal efficiency in a

denitrification step using 5, 10 and 15% organic carbon dose in a
lab-scale SBR treating wastewater, (n=6).

Conclusion
Organic carbon in effluent from the anaerobic SBR can be used as a

carbon source for anoxic denitrification and phosphorus removal.
However, the denitrification rate is affected by the organic carbon load
used. The best denitrification and phosphorus removal efficiencies are
achieved with 10% (of the anoxic SBR operational volume) of the
anaerobic effluent. Except o-PO4

3-–P (8 ± 1 mg/L) and TKN (35 ± 4
mg/L) all other parameters (BOD, TCOD, SCOD, TP, TSS, NH4+ -N
and turbidity) in the denitrified effluent met permissible discharge
standards when 10% (of anoxic bioreactor) organic load was used.
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