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Abstract
In clinical research, a medical predictive model is intended to provide insight into the impact of risk factors (predictors) such as demographics 
and patient characteristics on clinical outcomes. A validated medical predictive model informs disease status and treatment effects under study. 
More importantly, it can be used for disease management. However, a gap in the development process of these models is often observed. That 
is, most studies only focus on the internal validation for the model's reproducibility but overlook the external validation needed for evaluating 
generalizability. To solve this issue, this article proposes several methods for assessing both the reproducibility and generalizability of a developed/
validated medical predictive model. The generalizability estimation approaches allow for sensitivity analysis in situations where data on new 
populations is not available, which provides valuable insights into the model's applicability to patients from a different population.
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Introduction
Medical predictive models have long played a crucial role in clinical 

research and practice, especially in recent times when personalized medicine 
has become increasingly popular. Usually, a medical predictive model 
is designed to express a clinical outcome (response) as a function of a 
multivariate set of predictors (risk factors). It offers valuable insight into the 
association between clinical outcomes and predictors and more importantly, 
facilitates disease management. Such models can be either diagnostic or 
prognostic. A diagnostic model reflects the patient's current health conditions, 
while a prognostic model estimates the probability or risk of developing an 
outcome over a specific period. For example, the Framingham Risk Score is a 
prognostic medical predictive model that takes a multivariate set of risk factors 
as input and estimates the 10-year risk of developing cardiovascular disease [1]. 

The procedure for developing a medical predictive model involves the 
following steps: 

(i) Predictor Identification, where potential predictors are identified and a
subset to be included in the model is selected via regression methods.

(ii) Collinearity testing, which involves detecting and addressing
collinearity among predictors to enhance the model's parsimony and
interpretability.

(iii) Model Building, which estimates the coefficients by fitting a regression 
model based on the identified predictors and assesses the goodness-
of-fit.

(iv) Model Validation, comprising interval validation for reproducibility and
external validation for generalizability.

Among the four critical steps discussed above, the current issue often 

arises from the phase of model validation. Internal validation for reproducibility 
refers to the model's ability to replicate the results when applied to new data 
from the same population (e.g., data collected from the same medical center). 
External validation for generalizability refers to the extent to which the predictive 
model is applicable across different populations (e.g., different age groups or 
ethnic groups). Ideally, a comprehensive validation of a medical predictive 
model should include both internal and external validations. However, in 
practice, we find that most of the model's development only performs the 
internal validation. The process of external validation to assess the model's 
generalizability is often hindered by the unavailability or the prohibitive cost of 
acquiring the new population's data. In response to the issue in the model's 
validation, we propose several methods for estimating both the reproducibility 
and generalizability probability of a medical predictive model. The approaches 
for generalizability assessment are developed by adapting the reproducibility 
probability estimation methods, which effectively estimate the model’s 
generalizability to new populations.

The remaining parts of the paper are organized as follows. In the first 
section, we summarize the procedure for developing a medical predictive 
model and discuss the critical issue regarding the model's validation. 
Then we address this issue by proposing methods for reproducibility and 
generalizability assessment. Concluding remarks are given in the last section 
of this article.

Predictive model building and validation

Procedure for model development 
Usually, the procedure for developing a medical predictive model in 

practice involves the following four steps: predictor identification, collinearity 
testing, model building, and model validation, which are discussed in detail 
as follows. 

Predictor identification: The foundational step in building a medical 
predictive model is to identify the predictors (risk factors) to be included in 
the model. Potential predictors are obtained from demographics and patient 
characteristics information at baseline. To ascertain the relationship between 
a predictor and the clinical outcome, the Pearson correlation coefficient can be 
applied as a measure of correlation. A commonly used rule of thumb is that a 
correlation coefficient greater than 0.3 indicates a moderate correlation and 
we can consider including the predictor in the model. After collecting the set of 
correlated predictors, we need to further assess whether the inclusion of a pre-
dictor can improve the model's predictive ability. A subset of all the correlated 
predictors is obtained by sequential selection methods like forward, backward, 
or stepwise selection, which forms the final set of predictors in the model. 
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Collinearity testing: Particular attention should be paid to the collinearity 
among predictors. Even though the collinearity issue does not affect the overall 
predictive power of the model, it seriously impedes the model's interpretability 
by inflating the coefficient and confounding the corresponding t-statistics [2,3]. 
Also, the correlated predictors add unnecessary complexity to the model. 
By removing or combining these predictors, we can reduce the number of 
predictors in the model and thus improve the model's performance in fitting 
new, unseen data. 

In addition to the correlation coefficient that measures the collinearity 
between two predictors, the Variance Inflation Factor (VIF) is applied to 
quantify the correlation between one predictor and the collective of other 
predictors in the model. Furthermore, the Condition Number (CN) provides a 
measure of the overall multicollinearity level within the model [4]. Once a high 
level of collinearity within the predictors is detected, various techniques can 
be employed to address the collinearity. We suggest the use of a composite 
index approach proposed by Chow SC, et al. [5]. This method develops a 
composite index via ordinary least squares regression to combine multiple 
correlated predictors into a single predictor. This approach stands out among 
other collinearity resolution techniques like PCA because it accounts for the 
outcome variable and preserves the predictors’ correlation with the outcome. 

Model building: Previous steps yield the final set of predictors, with the 
collinearity issue being addressed. Statistical models utilized to build a medical 
predictive model are usually generalized linear models. A linear regression 
model is chosen for continuous clinical outcomes. Logistic regression is often 
utilized for binary outcomes. For time-to-event outcomes, Cox regression is 
applied. After fitting the data upon a specified model, the goodness-of-fit needs 
to be measured. For continuous outcomes, R2 or adjusted R2 is commonly 
applied to evaluate the model's performance in fitting the data. For categorical 
clinical outcomes, the evaluation of the model's performance involves two 
aspects: discrimination and calibration. Discrimination measures how well 
the model distinguishes between different outcome categories and calibration 
assesses how well the predicted probabilities match the observed frequencies. 

Model validation: The final step is model validation which involves 
internal validation for reproducibility and external validation for generalizability. 
Reproducibility denotes the ability to replicate the results when the model is 
applied to new data from the same population (e.g., data collected from the 
same medical center). In contrast, generalizability refers to the extent to which 
the model's predictions are applicable across various populations [6]. 

Critical issue in model development
A critical issue in the predictive model development process is the 

absence of external validation. After a model is validated in one population, 
it is often of interest to evaluate whether the model is applicable across 
different populations (e.g., different age groups or different ethnic groups). 
Although researchers always aspire to broaden the model's applicability 
and theoretically an external validation should be performed to evaluate the 
model's generalizability, in practice, we find that most of the predictive model 
development efforts halt at the phase of internal validation. This premature 
termination in model development is often due to the unavailability or the 
prohibitive cost of acquiring the new population's data. To solve this issue, 
we first propose three methods for estimating the reproducibility probability 
of a predictive model. Subsequently, we adapt these reproducibility methods 
to enable the assessment of generalizability, which serves as a substitute 
sensitivity analysis when the data of other populations are not present. More 
details about the proposed methods are discussed in below section. 

Statistical methods for assessing repro-
ducibility and generalizability

Internal validation for reproducibility assesses whether results from 
one study are reproducible in another study where data are collected 
from the same population, whereas external validation for generalizability 
evaluates whether the model is applicable across various populations. We 

find most of the validation process for medical predictive models in practice 
focuses solely on the internal validation within the same medical centre and 
the external validation for generalizability is missing. This section aims to 
resolve this issue by proposing three approaches to estimating the model's 
generalizability probability. The organization of this section is as follows: 
In first, section estimation of reproducibility probability proposes three 
approaches to estimating the model's reproducibility probability. Building 
upon these reproducibility estimation methods, In second, section estimation 
of generalizability probability adjusts the approaches in section estimation of 
reproducibility probability to allow for generalizability probability estimation. 
The reproducibility or generalizability probability can be defined by either the 
relative difference or the absolute difference between the true clinical outcome 
and the predicted clinical outcome. That is,

ˆ -ˆ{| - | } or {| | }y yP y y P
y

δ δ< <  

Where 𝛿 is pre-determined, clinically negligible value. The following 
sections use ˆ{| - | }P y y δ<  as the reproducibility probability as ˆ -y y  follows 
a normal distribution, which yields more analytical results. Moreover, the 
methods proposed are in the context of a linear re gression model, where a 
closed-form solution for coefficients is utilized to estimate the probability.

Estimation of reproducibility probability 
This section provides three approaches to estimating reproducibility 

probability, which aims to establish a foundation for the generalizability 
estimation methods proposed in this section Shao J and Chow SC, et al. [7] 
proposed three methods for estimating reproducibility probability in clinical 
trials, the estimated power approach, the confidence bound approach, and the 
Bayesian approach, to assess the probability of replicating results of the first 
clinical trial in a subsequent trial with the same study protocol. The key ideas 
are as follows: the estimated power approach directly replaces the model's 
parameter in the second trial with its estimate obtained from the first trial; 
the confidence bound approach accounts for the variation in the estimated 
parameter and thus uses a lower confidence bound for more conservative 
estimation and the Bayesian approach calculates the reproducibility probability 
as a posterior mean. Although the methodologies in medical predictive models 
and clinical trials are completely different, these ideas can be referred to when 
estimating the reproducibility probability for predictive models by analogizing 
the model-building process to the first clinical trial and the validation phase to 
the second clinical trial.

Approach 1: Similar to the estimated power approach proposed in Shao, 
et al.'s paper, approach 1 substitutes the estimated regression coefficients
β̂  for the true regression coefficients 𝛽. Given an observation (𝑋∗, y∗) in the 
validation dataset, we have

( )* * * 1Ty X β= +ò

Where ϵ* ( )* 2 *, ,0, pN Xσ β∼ ∈ò and 𝑝 is the number of parameters in the model 
The estimated response ŷ* equals ˆTX β∗ . If we replace 𝛽 by the estimated 

coefficient β̂  in Eq. (1), the difference between the estimated response value 
ŷ∗ and observed response value 𝑦∗ would solely result from the error term 𝜖∗. 
Then the reproducibility probability 𝑝1 is:

( )2

2σ can be estimated by ( )( )2
2

1

ˆˆ 1 n
T

i i
i

y X
n p

σ β
=

= −
− ∑ , where ( ),i iX y  is the 𝑖th data 

point in the training set that has 𝑛 observations in total.

𝑝1 estimates the reproducibility probability for a given observation. Utilizing 
𝑝1, the overall reproducibility of the validation dataset can be evaluated. 
Assuming the validation dataset has 𝑛 observations, the count of reproducible 
observations follows a Binomial distribution 𝑀∼𝐵𝑖𝑛 (𝑛, 𝑝1). For large sample 
sizes, this approximates a normal distribution N(𝑛𝑝1,𝑛𝑝1(1−𝑝1)). For instance, 
to estimate the probability that at least 95% of the data points are reproducible, 
we use

ϵ
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1 1
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 − ≥ = − Φ
 − 

where 𝛷 denotes the cumulative distribution function of the standard 
normal distribution.

Approach 2: The reproducibility probability estimated by approach 1 
is rather optimistic, especially when the variance of β̂  is large. In contrast, 
approach 2 accounts for the variation of the estimated coefficient β̂  rather than 
directly substitute it for the true parameter. 

The notations are as follows: in the dataset used for model building, we 
have 𝑌 = 𝑋𝛽 + 𝜖, where 𝑌 ∈ ℝ𝑛 represents the response vector, 𝑋 ∈ ℝ𝑛×𝑝 is 
the design matrix for predictors, 𝛽 ∈ ℝ𝑝 is the coefficient vector, and 𝜖 ∈ ℝ𝑛 is 
the error term with each element 𝜖𝑖 following a normal distribution 𝑁(0,𝜎2). In 
the validation dataset, for a new observation ( )* *,X y , The model is

* * *Ty X β= +ò

Where 𝜖∗ ∼ N (0, 𝜎2) and 𝑋∗, 𝛽∈ℝ𝑝. The estimated coefficient vector is 
β̂  = (𝑋𝑇𝑋) −1𝑋𝑇𝑌. The same notations will be used throughout  this section. β̂  
is an unbiased estimator, the expected value of * *y y−  is 0. The variance of
the residual is given by 

( ) ( ) ( ) ( ) ( ) 1* * * * * 2 2 * * 2ˆ ˆT T T Tvar y y var X var X var X X X X Xβ β σ σ σ
−

− = + = + = +ò

Since both ŷ∗ and 𝑦∗ are normally distributed, we have

( )( )1* * 2 * * 20, .ˆ T Ty y N X X X Xσ σ
−

− ∼ +

Therefore, for approach 2, the reproducibility probability for an observation 
( )* *,X y  is 

{ }
( ) ( )

( )
* *

1
1

12 2 * * 2
1 1

1 2 ,
3

where  0T T

p P y y

X X X X

δδ
ζ

ζ σ σ ζ
−

 
= − < = − Φ − 

 

= + >

Approach 3 (Bayesian approach): Approach 3 utilizes Bayesian 
inference and prediction for reproducibility probability allows us to estimate 
calculation, which the uncertainty in the regression coefficients 𝛽.

Denote data points in the training set as 𝐷 and assume 𝜎2, the variance 
of the error term 𝜖, is known already. From the Bayesian perspective, the 
posterior distribution 𝜋 (𝛽|𝐷, 𝜎) is expressed as

( , , ), ( )
( , ) ( , , ) (4)

( , , ) ( )
p Y X

D X Y
p Y X P d

β σ π β σ
π β σ π β σ

β σ β σ β
= =

∫

The likelihood ( )| , ,P Y X β σ  is normal and ( )2| , , ,Y X N X Iβ σ β σ −∼ . The

posterior distribution will be normal if a conjugate normal prior is specified. 
Suppose our choice for the prior is ( ) ( )0 0| ,Nπ β σ µ= Σ .The posterior distribution 
𝜋 (𝛽|𝐷,σ ) can be derived subsequently, which is given in the form of

( )
1

1
02

1
0 02

| ,   ,

1where 

1                                          (5)          

β β

β

β β

β σ µ

σ

µ µ
σ

−
−

−

∼ Σ

 Σ = + Σ 
 

 = Σ + Σ 
 

T

T

D N

X X

X Y

Similarly, if we choose a non-informative prior of 𝑃 (𝛽|𝜎) ≡ 1, the posterior 

distribution will be  ( ) 2 2a, w 1dith 1 nT TN YX X Y
β

β ββ βµ µ
σ σ

= =Σ ∑ ∑ 
1

2 2

1 1 and T TX X X Yββ β
µ

σ σ

−
 = = 
 

∑ ∑ .

Based on the posterior distribution 𝑁 (𝜇𝛽, 𝛴𝛽), the posterior predictive 
distribution for a new observation (𝑋∗, 𝑦∗) in the validation dataset can be 
derived. Given 𝑦∗ = 𝑋∗𝑇𝛽+𝜖∗, with 𝛽|𝜎, 𝐷 ∼  N (𝜇𝛽, 𝛴𝛽) and 𝜖∗∼N(0, 𝜎2), the 
posterior predictive distribution 𝑃 (𝑦∗|𝑋∗, 𝐷, 𝜎) is then expressed as

( ) ( )* * * * * 2| , , , 6T Ty X D N X X Xβ βσ µ σ∼ Σ +  

Our estimation *y  for the response value ŷ is the mean of posterior

predictive distribution, which is * *Ty X βµ= Consequently, the distribution of 
* *y y− should be ( )* * 20, TN X Xβ σΣ + . And the reproducibility probability 𝑝1 is

given by

{ }
( )

( )
* *

1
2

2 * * 2
2 2

1 2 ,
7

where  0T

p P y y

X Xβ

δδ
ζ

ζ σ ζ

 
= − < = − Φ − 

 
= Σ + >

For a more realistic case in practice where 𝜎2 is unknown, we need to 
specify a prior for the error term variance. Now the prior distribution is 

( ) ( ) ( ) ( )2 2 2, | 8π β σ π β σ π σ= ×

A conjugate prior that leads to an analytical posterior distribution would be 
the Normal-Inverse-Gamma distribution, where

( )
( ) ( )

2 2
0 0

2
0 0

| ,

    Inv-Gamma , 9

β σ µ σ

σ

∼ Σ

∼

N

a b

Given the conjugate prior, the posterior distribution 

( ) ( ) ( )2 2 2, | , | , , | ,X Y X Y X Yπ β σ π β σ π σ= × can be derived. The result is

expressed as 

( )
( )

2 2

2

| , , ,

| ,    Inv-Gamma , (10)
β β

σ σ

β σ µ σ

σ

∼ Σ

∼

X Y N

X Y a b 	

Where, 
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( )
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0

1
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0
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0 0 0 0

, (11)
2
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2

T

T

T T T

X X

X Y

na a

b b Y Y

β

β β

σ

σ β β β

µ µ

µ µ µ µ

−−

−

− −

Σ = Σ +

= Σ Σ +

= +

= + + Σ − Σ

Subsequently, for a new observation 𝑦∗=𝑋∗𝑇𝛽+𝜖∗, the posterior predictive 
distribution p (𝑦∗|𝑋∗, 𝐷) is 

p ( ) ( ) ( ) ( ) ( )* * 2 * * 2 2 2| , | , | , , | , , 12y X D p X Y p y X p X Y d dσ β σ β σ β σ = ∫ ∫ 

Integrating both the uncertainty in 𝛽 and 𝜎2, the posterior predictive 
distribution would follow a Student's t distribution, which is given by

( )
* *

* * *
2| , , 13

T
T

a

b b X X
y X D t X

aσ

σ σ β
β

σ

µ
 + Σ

∼   
 

where 𝑋∗𝜇𝛽 is the location parameter and 
**Tb b X X

a
σ σ β

σ

+ ∑  is the 

scale parameter. We take 𝑋∗𝑇𝜇𝛽, the mean of the posterior distribution 

as our prediction for 𝑦∗. The difference ŷ∗−y∗ would follow a t-distribution 

of 
*

2

*
0,

T

a

b b X X
t

aσ

σ σ β

σ

 +
 
 
 

∑ . The reproducibility probability can be 

subsequently estimated by transforming the random variable into a standard 
t-distribution, which is expressed as

{ }
( )

( )

* *
1 2

3

* *
2
3 3

1 2* ,
14

where  0

a

T

p P y y T

b b X X
a

σ

σ σ β

σ

δδ
ζ

ζ ζ

 
= − < = − − 

 
+ Σ

= >

2aT
σ denotes the cumulative distribution function of a standard 

t-distribution with 2𝑎𝜎 degrees of freedom.

Approach 3 presents the estimation of reproducibility probability by
employing conjugate priors for scenarios with known and unknown error term
variance. In addition, in cases where a non-conjugate prior is selected, we
can apply computational methods like Markov Chain Monte Carlo (MCMC)

ϵ

ϵ

dβ
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to sample from the posterior distributions and approximate the posterior 
predictive distribution for new observations.

Estimation of generalizability probability
An application of the reproducibility estimating approach is to assess 

the model's generalizability. In practice, following the evaluation of a medical 
predictive model's reproducibility through internal validation, there is commonly 
an interest in assessing the model's generalizability to a similar but distinct 
population (for example, varying age groups or ethnic groups). For these 
populations, variations in regression coefficients are anticipated. Based on 
these variations, we adapt the reproducibility estimating approaches to assess 
generalizability.

Adjusted approach 1 for generalizability: Approach 1 estimates the 
reproducibility probability from the frequentist perspective, where regression 
coefficients 𝛽 is viewed as a set of fixed, unknown values. We use 𝜆 to denote 
the deviation of coefficients when the medical predictive model is applied 
to a new population. The coefficient vector for the new population will be 

'β β λ= +  , where the 𝑖th element of 𝜆, 𝜆𝑖, is the difference between the 𝑖th 
regression coefficient between the two populations. For the first approach, the 
reproducibility probability 𝑝1 is given by

{ } ( ){ }* * * *
1

ˆ ˆ ˆˆ T Tp P y y P X Xδ β β β δ= − < = − + <ò

Considering the deviation of coefficients, the generalizability probability 𝑝2 
can be estimated by

{ }
( )( ){ }

{ }

* *
2

* *

*

ˆ

ˆ ˆT T

T

P P y y

P X X

P X

δ β

β β λ δ

λ δ

= − <

= − + + <

= + <

ò

ò

( )* * 2,T TX N Xλ λ σ+ ∼ò , the generalizability probability is

( )
* *

2 15
T TX Xp δ λ δ λ

σ σ
   − − −

= Φ − Φ   
   

Where 𝜎2 can be estimated by 

( )( )2
2

1

ˆˆ 1 n
T

i i
i

y X
n p

σ β
=

= −
− ∑

Adjusted approach 2 for generalizability: Similar to approach 1, 

for approach 2, we replace 𝑦∗ = 𝑋∗𝑇𝛽 + 𝜖 in Eq. (1) by 𝑦∗ = 𝑋∗T (𝛽+𝜆) + 𝜖. 

Then the expectation 𝐸 [𝑦̂∗−𝑦∗] equates to * * *ˆ[ ( ( ) )]T T TE X X Xββ λ λ− + + ∈ =

The variance ( )* *var y y− remains the same as it is in Eq. (3), given that the

added term 𝑋∗𝑇𝜆 is a constant. Therefore, the distribution of * *y y− becomes 

( )( )1* 2 * * 2,T T TN X X X X Xλ σ σ
−

+ and the generalizability probability 𝑝2 is given by

{ }
( ) ( )

( )

* *
* *

2
1 1

12 2 * * 2
1 1

,
16

where  0

T T

T T

X Xp P y y

X X X X

δ λ δ λδ
ζ ζ

ζ σ σ ζ
−

   − − −
= − < = Φ − Φ   

   

= + >

( )( )
n 2

2 2 T
i i

i 1

1can be estimated by y X
p

ˆ
n

ˆ .σ σ β
=

= −
− ∑

Adjusted approach 3 for generalizability: For approach 3, the Bayesian 
method, the coefficients 𝛽 are not fixed values but random variables assigned 
to a probability distribution. Suppose the transition of regression coefficients 
from the original population to a new population is characterized by a shift 
of mean, denoted by 𝜆 and a recalibration of variance, denoted by 𝑐2 (𝑐 > 0). 
In other words, ( )2,

i i
N β βµ σ  the distribution of the 𝑖th coefficient 𝛽𝑖 is replaced 

by ( )2 2,
i ii iN cβ βµ λ σ+ . Consequently, the covariance between 𝛽𝑖 and 𝛽𝑗 will 

be scaled to ( )cov ,i j i jc c β β .Now we can construct a diagonal matrix 𝐶, 

where the diagonal elements 𝐶𝑖𝑖 = 𝑐𝑖 and non-diagonal elements are 0. The 

covariance matrix 𝛴𝛽 is then transformed into 𝐶𝛴𝛽𝐶 for a new, generalized 
population.

Therefore, under the premise that 𝜎2  is known, the posterior distribution, 

initially ( ),N β βµ Σ undergoes a transition to

( )2| , ,D N C Cβ ββ σ µ λ∼ + Σ

In the scenario that 𝜎2 is unknown, the posterior distribution for 𝛽, initially 

N (𝜇𝛽, σ2𝛴𝛽), is modified to

( )2 2| , ,D N C Cβ ββ σ µ λ σ∼ + Σ
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1

2

1 2 3

0 0
0 0

, , ..

W

.,  and 
0
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T

p

p

c
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C
c
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 
 
 
 = =
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 
  





   



Consequently, when 𝜎2 is known, the posterior predictive distribution for a 
similar but distinct population is given by substituting 𝜇𝛽+𝜆 and 𝐶𝛴𝛽𝐶 respectively 
for 𝜇𝛽 and 𝛴𝛽 in Eq. (6), which results in ( )( )* * * 2,T TN X X C CXβ βµ λ σ+ Σ + .Thus,

the distribution for * *ˆy y− changes to ( )* * * 2,T TN X X C CXβλ σΣ +

Then the generalizability probability 𝑝2 is estimated by 

{ }

( )

( )

* *
* *

2
2 2

2 * * 2
2 2

,
' '
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where '  ' 0

T T

T

X Xp P y y

X C CXβ

δ λ δ λδ
ζ ζ

ζ σ ζ

   − − −
= − < = Φ − Φ   

   

= Σ + >

Similarly, for the cases when 𝜎2 is unknown, replace 𝜇𝛽 and 𝛴𝛽 with 𝜇𝛽+𝜆 
and 𝐶𝛴𝛽𝐶 respectively and the posterior predictive distribution in Eq. (13) 
becomes

( )
* *

* * *
2| , ,

T
T

a

b b X C CX
y X D t X

aσ

σ σ β
β

σ

µ λ
 + Σ

∼ +  
 

The generalizability probability 𝑝2 is estimated by

{ }
( )

( )

* *
* *

2 2 2
3 3

* *
2

3 3

,
' '
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where '  ' 0

T T

a a

T

X Xp P y y T T

b b X C CX
a

σ σ

σ σ β

σ

δ λ δ λδ
ζ ζ

ζ ζ

   − − −
= − < = −   

   
+ Σ

= >

In practice, when 𝜆 and 𝐶 (or 𝜆 in approaches 1 and 2) are unknown, the 
generalizability of the medical predictive model can be estimated by performing 
a sensitivity analysis that calculates 𝑝2 based on a range of potential 𝜆 and 𝐶 
(or 𝜆) values. For example, if we want to assess the model's generalizability 
when each regression coefficient may deviate by up to 10 percent from its 
original value, we can take values of 𝜆𝑖 from the range  ( )0.1* ,0.1*i iβ β−  
.These selected 𝜆𝑖 values are then used to construct a set of 𝜆 vectors. Using 
these 𝜆 vectors, we compute a series of 𝑝2 values to evaluate the model's 
capability in generalizing to data from new populations. The results of the 
sensitivity analysis provide valuable insights into the model's applicability to 
new patients, who come from populations distinct from the one upon which the 
model was developed.

Conclusion
In this paper, we have summarized the procedure for developing a 

medical predictive model. Within the outline development process, we identify 
one critical issue that most of the medical predictive development in practice 
halts at the internal validation phase. Due to the lack of available data from new 
populations, there is a notable gap in external validation and assessment of the 
model's generalizability. To address this challenge, we propose methods for 

ϵ

ϵ

ϵ

ϵ
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estimating the reproducibility and generalizability of medical predictive models. 
We first design three approaches to estimating the model’s reproducibility. 
Subsequently, methods for generalizability estimation are established by 
adjusting the three proposed methods. When the data of the new population 
is not accessible, our approaches allow for a sensitivity analysis that provides 
valuable insight into whether the model can be applied to patients from different 
populations. Under a validated medical predictive model, we are able to 
determine an optimal dose based on the risk factors included in the model for 
achieving the best clinical outcome for disease management. Such a model, 
one rigorously established and validated, can assist disease management 
from various aspects, including disease prevention, diagnosis, treatment, and 
clinical decision-making. Regarding future work, our approaches are proposed 
in the context of a linear regression model, where a closed-form solution for 
regression coefficients is utilized. Future opportunities to extend this research 
could aim to propose generalizability probability estimation methods for more 
complex modelling scenarios like logistic regression where a closed-form 
solution is not present.
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