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Introduction
There is no single statistic that can adequately represent the 

agreement between a diagnostic test and a reference standard. Many 
different statistics have a part to play in the analysis of such studies. This 
discriminative ability can be quantified by the measures of diagnostic 
accuracy: Sensitivity, Specificity, Receiver operating characteristic 
curve (ROC curve), Likelihood ratio (LR) for positive test, Likelihood 
ratio (LR) for negative test, Odds ratio (OR), Matthew’s correlation 
coefficients(MCC), False discovery rate(FDR), Positive predictive value 
(PPV), Youden’s index, Negative predictive value (NPV),Error rates and 
Confidence interval. Diagnostic accuracy of any diagnostic procedure 
or a test gives us an answer to the following question: “How well this test 
discriminates between certain two conditions of interest (health and 
disease; two stages of a disease etc.)?”. Different measures of diagnostic 
accuracy relate to the different aspects of diagnostic procedure. Some 
measures are used to assess the discriminative property of the test, 
others are used to assess its predictive ability [1]. While discriminative 
measures are mostly used by health policy decisions, predictive 
measures are most useful in predicting the probability of a disease in an 
individual [2]. Furthermore, it should be noted that measures of a test 
performance are not fixed indicators of a test quality and performance. 
Measures of diagnostic accuracy are very sensitive to the characteristics 
of the population in which the test accuracy is evaluated. Some measures 
largely depend on the disease prevalence, while others are highly 
sensitive to the spectrum of the disease in the studied population. It is 
therefore of utmost importance to know how to interpret them as well 
as when and under what conditions to use them.

Diagnostic Effectiveness 
Another global measure of diagnostic accuracy is so called diagnostic 

accuracy (effectiveness), expressed as a proportion of correctly classified 
subjects (TP+TN) among all subjects (TP+TN+FP+FN). Diagnostic 
accuracy is affected by the disease prevalence. With the same sensitivity 

and specificity, diagnostic accuracy of a particular test increases as the 
disease prevalence decreases. This data, however, should be handled 
with care. In fact, this does not mean that the test is better if we apply 
it in a population with low disease prevalence. It only means that in 
absolute number the test gives more correctly classified subjects. This 
percentage of correctly classified subjects should always be weighed 
considering other measures of diagnostic accuracy, especially predictive 
values. Only then a complete assessment of the test contribution and 
validity could be made.

Consider table 1 below which indicates the test status and disease 
condition of patient from where some common indicators of test 
performance will be derived. Some of these indicators are the sensitivity 
of the test, its specificity, the positive and negative predictive values, 
Odds ratio, error rates and the positive and negative likelihood ratios 
[3].

A frequent application of Bayes’ theorem is in evaluating the 
performance of a diagnostic test intended for use in a screening 
program. From table 1 above, let B denote the event that a person has 
the disease in question; B  the event that he does not have the disease; 
let A be the event that he gives a positive response to the test; and A   the 
event that he gives a negative response. Let P be the Prevalence of the 
disease. Prevalence is the number of cases of a disease that are present in 
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Abstract
Diagnostic accuracy relates to the ability of a test to discriminate between the target condition and health. This 

discriminative potential can be quantified by the measures of diagnostic accuracy such as sensitivity and specificity, 
predictive values, likelihood ratios, error rates, the area under the ROC curve, Youden’s index and diagnostic odds ratio. 
Different measures of diagnostic accuracy relate to the different aspects of diagnostic procedure: while some measures 
are used to assess the discriminative property of the test, others are used to assess its predictive ability. Measures of 
diagnostic accuracy are not fixed indicators of a test performance, some are very sensitive to the disease prevalence, 
while others to the spectrum and definition of the disease. Furthermore, measures of diagnostic accuracy are extremely 
sensitive to the design of the study. Studies not meeting strict methodological standards usually over- or under-estimate 
the indicators of test performance as well as they limit the applicability of the results of the study. STARD initiative was 
a very important step toward the improvement of the quality of reporting of studies of diagnostic accuracy. STARD 
statement should be included into the Instructions to authors by scientific journals and authors should be encouraged 
to use the checklist whenever reporting their studies on diagnostic accuracy. Such efforts could make a substantial 
difference in the quality of reporting of studies of diagnostic accuracy and serve to provide the best possible evidence 
to the best for the patient care. This brief review outlines some basic definitions, formulas and characteristics of the 
measures of diagnostic accuracy.
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a particular population at a given time [4]. Based on the above table, it 
is given by P=mean (pi) while Q is the level of the test given by Q=mean 
(qi). But  P′=1-P and Q′ =1-Q. From this Table 1, TP is true positive, 
FN is false positive, TN is true negative and FP is false positive while 
N is the total number of patients/subject considered. The first step in 
the calculation of sensitivity and specificity is to make a 2x2 table with 
groups of subjects divided according to a gold standard or (reference 
method) in columns, and categories according to test in rows as seen 
in Table 1 above.

Sensitivity and Specificity
The first step in the calculation of sensitivity and specificity is to 

make a 2x2 table with groups of subjects divided according to a gold 
standard or (reference method) in columns, and categories according 
to test in rows (Table 1).

Let π and θ be sensitivity and specificity of the tests respectively. The 
results of this trial of the screening test may be represented by the two 
conditional probabilities ( )P A B  and ( )P A B . Sensitivity is expressed 
in percentage and defines the proportion of true positive subjects with 
the disease in a total group of subjects with the disease (TP/TP+FN). 
Actually, sensitivity is defined as the probability of getting a positive 
test result in subjects with the disease (T+|B+). Hence, it relates to the 
potential of a test to recognize subjects with the disease. The sensitivity 
(π) given as ( )P A B  is the conditional probability of a positive response 
given that the person has the disease; the larger is ( )P A B , the more 
sensitive is the test. From table 1, conditional probability in terms of 
sensitivity is also given by 

( 1 1) Pr( ) TPP T D T D
TP FN

= = = + + =
+

                  (1)

While ( )P A B  is the conditional probability of a negative response 

given that the person is free of the disease; the smaller is ( )P A B , the 
more specific is the test. We can also define that 1-π = P(T=0|D=1). 
Specificity is a measure of a diagnostic test accuracy, complementary 
to sensitivity. It is defined as a proportion of subjects without the 
disease with negative test result in total of subjects without disease 
(TN/TN+FP). In other words, specificity represents the probability of 
a negative test result in a subject without the disease (T-|B-). Therefore, 
we can postulate that specificity relates to the aspect of diagnostic 
accuracy that describes the test ability to recognize subjects without 
the disease, i.e. to exclude the condition of interest. From table 1 also, 
specificity is given by 

( 0 0) Pr( ) TNP T D T D
FP TN

= = = − − =
+

                 (2)

Also 1-θ = P(T=1|D=0). Neither sensitivity nor specificity is not 
influenced by the disease prevalence, meaning that results from one 
study could easily be transferred to some other setting with a different 
prevalence of the disease in the population. Nonetheless, sensitivity and 
specificity can vary greatly depending on the spectrum of the disease in 
the studied group. Worthy of note also is the predictive values which 
includes the positive predictive values (PPV) and negative predictive 
values (NPV). Positive predictive value (PPV) defines the probability 
of having the state/disease of interest in a subject with positive result 

(B+|T+). Therefore PPV represents a proportion of patients with 
positive test result in total of subjects with positive result (TP/TP+FP). 
PPV is defined as the probability of a positive diagnosis when the test 
is positive. Therefore, PPV represents a proportion of patients with 
positive test result in total of subjects with positive result. It is also 
seen as the ratio of the number of true positives to the total number of 
positive tests [5]. In terms of Bayes formula, it is given by 

( ) ( )
( ) ( . ) / /

( )
P T D P D

PPV P D T SE P Q TP Q
P T

+ + +
= + + = = =

+
                (3)

where Q=TP+FP=level of the test. Negative predictive value (NPV) 
describes the probability of not having a disease in a subject with a 
negative test result (B-|T-). NPV is defined as a proportion of subjects 
without the disease with a negative test result in total of subjects with 
negative test results (TN/TN+FN). Also the NPV in terms of Bayes 
formula is the probability of negative diagnosis when the test is negative 
or the proportion of subjects without the disease with a negative test 
result in total of subjects with negative test results and it is given by 

 ( ) ( )
( )

( )
P T D P D

NPV P D T
P T

− − −
= − − =

−
                

( . ) / /SP P Q TN Q where Q TN FN′ ′ ′ ′= = = +                     (4)

According to the  table 1 above for conditional probability, the 
predictive values are defined mathematically as:

( ) ( )TPPPV P D T or P T D
TP FP

= = + + + +
+

                                (5)

( ) ( )TNAlso NPV P D T or P T D
FN TN

= = − − − −
+

                              (6)

Also, the two can be defined as PPV = Pr(D=1|T=1) and NPV = 
Pr(D=0|T=0). Unlike sensitivity and specificity, predictive values are 
largely dependent on disease prevalence in examined population. Unlike 
sensitivity and specificity, predictive values are largely dependent on 
disease prevalence in examined population. Therefore, predictive values 
from one study should not be transferred to some other setting with a 
different prevalence of the disease in the population. Prevalence affects 
PPV and NPV differently. PPV is increasing, while NPV decreases with 
the increase of the prevalence of the disease in a population. Whereas 
the change in PPV is more substantial, NPV is somewhat weaker 
influenced by the disease prevalence. Therefore, predictive values 
from one study should not be transferred to some other setting with a 
different prevalence of the disease in the population. Prevalence affects 
PPV and NPV differently. PPV is increasing, while NPV decreases with 
the increase of the prevalence of the disease in a population. Whereas 
the change in PPV is more substantial, NPV is somewhat weaker 
influenced by the disease prevalence. It is important to say that there 
exist error rates to be expected if the test is actually used in a screening 
program. If a positive result is taken to indicate the presence of the 
disease, then the false positive rate (FPR) or say PF+ is the proportion of 
people, among those responding positive, who are actually free of the 
disease. It can also be denoted as ( )P B A . According to Bayes’ theorem 
and based on the Table 1,

( ) ( 1 0) 1FP P B A P T D θ+ = = = = = − =

( ) ( ) ( )(1 ( ))
( ) ( )

P A B P B P A B P B
P A P A

−
=                     (7)

( ) 1 ( ).Since P B P B= −

The false negative rate (FNR) or say PF-, is the proportion of people, 
among those responding negative on the test, who nevertheless have 
the disease, or  ( )P B A . Again by Bayes’ theorem,

Hypothesis Accept Reject Total
Null true U V m0

Alternative true T S m1

W R m

Table 1: Outcomes when testing m hypothesis.
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( ) ( ) (1 ( )) ( )
( ) 1 ( 0 1)

( ) 1 ( )F

P A B P B P A B P B
P P B A P T D

P A P A
π−

−
= = − = = = = =

−
                          (8)

( ) 1 ( ) ( ) 1 ( ).Since P A B P A B and P A P A= − = −

Looking at the mathematical definitions of FPR and FNR above, 
one discovers that P (A) and P(B) has to be clearly defined so as to make 
the formulas complete.

Derivation of the Error Rates Formulas
A perfect diagnostic procedure has the potential to completely 

discriminate subjects with and without disease. Values of a perfect test 
which are above the cut-off are always indicating the disease, while the 
values below the cut-off are always excluding the disease. Unfortunately, 
such perfect test does not exist in real life and therefore diagnostic 
procedures can make only partial distinction between subjects with and 
without disease. Values above the cut-off are not always indicative of a 
disease since subjects without disease can also sometimes have elevated 
values. Such elevated values of certain parameter of interest are called 
false positive values (FP). On the other hand, values below the cut-off 
are mainly found in subjects without disease. However, some subjects 
with the disease can have them too. Those values are false negative 
values (FN). Therefore, the cut-off divides the population of examined 
subjects with and without disease in four subgroups considering 
parameter values of interest. According to table 1 above, we define as 
follows the following terms:

1. True positive (TP) –subjects with the disease with the value of a 
parameter of interest above the cut-off

2. False positive (FP) –subjects without the disease with the value of 
a parameter of interest above the cut-off

3. True negative (TN) –subjects without the disease with the value 
of a parameter of interest below the cut-off

4. False negative (FN) –subjects with the disease with the value of a 
parameter of interest below the cut-off

Let us consider P(A) and P(B) for this evaluation based on table 1 
above. If      

( ) ABA AB AB ABN N NN NP A
N N N N

+
= = = +                     (9)

and NA indicates the total number of people who test positive, then 
NAB denotes the number of people who have the disease and respond 
positive while NAB denotes the number of people who are free of the 
disease and respond positive. Multiplying and dividing the first of 
the two terms on the right-hand side of the above equation by NB, the 
number of people with the disease, we find that    

( ) ( ).AB AB B

B

N N N P A B P B
N N N

= =                  (10)

Similarly, by multiplying and dividing the second term by NB, the 
number of people without the disease, we find that

( ) ( )AB AB B

B

N N N
P A B P B

N N N
= = .                (11)

Substituting the expressions from the above last three equations in 
P(A) defined above, we find that

( ) ( ) ( ) ( ) ( ).P A P A B P B P A B P B= +                 (12)
This equation is a special case of the familiar result that an overall 

rate-P(A) is a weighted average of specific rates- ( ) ( )P A B and P A B  -with 
the weights being the proportions of people in the specific categories 

( ) ( )P B and P B . Since ( ) 1 ( )P B P B= − , then the above equation becomes

( ) ( ) ( ) ( )(1 ( ))P A P A B P B P A B P B= + −

 ( ) ( )( ( ) ( )).P A B P B P A B P A B= + −                 (13)

Substituting this equation in the equation of PF+ above yields an 
expression for the FPR thus,

( )(1 ( )

( ) ( )( ( ) ( ))
F

P A B P B
P

P A B P B P A B P A B
+

−
=

+ −
.                (14)

Also substituting for P(A) in the equation of FP − above yields the 
expression for the FNR or   

(1 ( )) ( )
.

1 ( ) ( )( ( ) ( ))
F

P A B P B
P

P A B P B P A B P A B
−

−
=

− − −
                  (15)

In conclusion, the two error rates are functions of the proportions 
( ) ( )P A B and P A B which may be estimated from the results of a trial 

of the screening test; and of the overall case rate P(B), for which an 
accurate estimate is rarely available.

Likelihood Ratios
Likelihood ratio is a very useful measure of diagnostic accuracy. 

It is defined as the ratio of expected test result in subjects with a 
certain state/disease to the subjects without the disease. From a clinical 
standpoint, a diagnostic test should give a sense of how more or less 
likely the disease being tested for is present or not, i.e., does the result 
of the diagnostic test change probability of the disease being present 
or not?. Likelihood ratios can quantify the change in the probability 
of disease given the results of a diagnostic test. Likelihood ratios are 
alternative statistics for summarizing diagnostic accuracy, which have 
several particularly powerful properties that make them more useful 
clinically than other statistics [6]. Each test result has its own likelihood 
ratio, which summarizes how many times more (or less) likely patients 
with the disease are to have that particular result than patients without 
the disease. More formally, it is the ratio of the probability of the 
specific test result in people who do have the disease to the probability 
in people who do not. A likelihood ratio greater than 1 indicates that 
the test result is associated with the presence of the disease, whereas 
a likelihood ratio less than 1 indicates that the test result is associated 
with the absence of disease. The further likelihood ratios are from 1 the 
stronger the evidence for the presence or absence of disease. Likelihood 
ratios above 10 and below 0.1 are considered to provide strong evidence 
to rule in or rule out diagnoses respectively in most circumstances [7]. 
In other words, it indicates large, often clinically significant differences. 
A likelihood ratio of 1 implies that there will be no difference between 
pretest and posttest probabilities. In other words, the two ratios are 
equal, such that the test is of no value. Likelihood ratios between 1 and 
2 and between 0.5 and 1 indicate small differences (rarely clinically 
significant). When tests report results as being either positive or 
negative the two likelihood ratios are called the positive likelihood 
ratio and the negative likelihood ratio. It is vital to note that sensitivity 
and specificity are combined into one to have the likelihood ratio (LR). 
The likelihood ratio is defined as: “The probability of a subject with the 
disease having the test result divided by the probability of the subject 
without the disease having that same test result”. From table 1 above

Pr
Pr

obability of result in diseased personsLR
obability of result in nondiseased persons

=                 (16)

When test results are dichotomized, every test has two likelihood 
ratios, one corresponding to a positive test and that of negative test. 
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Positive test likelihood ratio (LR+) tells us how much more likely the 
positive test result is to occur in subjects with the disease compared 
to those without the disease. It is usually higher than 1 because it is 
more likely that the positive test result will occur in subjects with the 
disease than in subject without the disease. LR+ is the best indicator 
for ruling-in diagnosis. The higher the LR+ the test is more indicative 
of a disease. Good diagnostic tests have LR+ > 10 and their positive 
result has a significant contribution to the diagnosis. LR+ can be simply 
calculated according to the following formulas:

 

Pr
Pr

Pr( ) /
1 Pr( ) /

obability that test is positive in diseased personsLP
obability that test is positive in non diseased persons

T DSensitivity TP TP FNLP
Specificity T D FP FP TN

+ =
−

+ + +
+ = = =

− + − +

              (17)

Likelihood ratio for negative test result (LR-) represents the ratio 
of the probability that a negative result will occur in subjects with the 
disease to the probability that the same result will occur in subjects 
without the disease. Therefore, LR- tells us how much less likely the 
negative test result is to occur in a patient than in a subject without 
disease. LR- is usually less than 1 because it is less likely that negative 
test result occurs in subjects with than in subjects without disease. LR- 
is calculated according to the following formulas:

Pr
Pr

Pr( )1 /
Pr( ) /

obability that test is negative in diseased personsLP
obability that test is negative in non diseased persons

T DSensitivity FN TP FN
Specificity T D TN FP TN

− =
−

− +− +
= = =

− − +

      (18)

LR- is a good indicator for ruling-out the diagnosis. Good diagnostic 
tests have LR- < 0,1. The lower the LR- the more significant contribution 
of the test is in ruling-out, i.e. in lowering the posterior probability of 
the subject having the disease. Since both specificity and sensitivity are 
used to calculate the likelihood ratio, it is clear that neither LR+ nor LR- 
depend on the disease prevalence in examined groups. Consequently, 
the likelihood ratios from one study are applicable to some other clinical 
setting, as long as the definition of the disease is not changed. If the 
way of defining the disease varies, none of the calculated measures will 
apply in some other clinical context. Meanwhile, it is also important to 
define mathematically the following terms as it relates to table 1 above.

PrPr (Pr )
1 Pr

etest probability TP FNetest probability evalence
etest probability TP FP TN FN

+
= =

− + + +
(19)

PrPr
1 Pr

evalence TP FNetest Odds
evalence FP TN

+
= =

− +
                (20)

1
Post test OddsPosttest probability

post test odds
=

+
                  (21)

PrPosttest Odds etest Odds Likelihood ratio= ×                   (22)

LR directly links the pre-test and post-test probability of a disease 
in a specific patient [8]. Simplified, LR tells us how many times more 
likely particular test result is in subjects with the disease than in those 
without disease. Likelihood ratios provide an estimation of whether 
there will be significant change in pretest to posttest probability of 
a disease given the test result, and thus can be used to make quick 
estimates of the usefulness of contemplated diagnostic tests in particular 
situations. The simplest method for calculating posttest probability 
from pretest probability and likelihood ratios is to use a nomogram. 
The clinician places a straightedge through the points that represent the 
pretest probability and the likelihood ratio and then reads the posttest 
probability where the straightedge crosses the posttest probability 

line. A more formal way of calculating posttest probabilities uses the 
likelihood ratio as follows: Pretest odds × Likelihood ratio = Posttest 
odds.

Odds Ratio
The Odds ratio or diagnostic odds ratio is the probability of the 

presence of a disease of a specific disease divided by the probability 
of its absence. Diagnostic odds ratio is also one global measure for 
diagnostic accuracy, used for general estimation of discriminative 
power of diagnostic procedures and also for the comparison of 
diagnostic accuracies between two or more diagnostic tests. DOR of a 
test is the ratio of the odds of positivity in subjects with disease relative 
to the odds in subjects without disease [9]. It is calculated according 
to the formula: DOR = (TP/FN)/(FP/TN). DOR depends significantly 
on the sensitivity and specificity of a test. A test with high specificity 
and sensitivity with low rate of false positives and false negatives has 
high DOR. With the same sensitivity of the test, DOR increases with 
the increase of the test specificity. For example, a test with sensitivity > 
90% and specificity of 99% has a DOR greater than 500. The Odds ratio 
reflects the prevalence of the disease in a population. For example, the 
odds are 1:4 for finding a disease in a population with a 20% probability 
of occurrence (prevalence). Also odds of 3:1 in favor of the first outcome 
means that the first outcome occurs 3 times for each single occurrence 
of the second outcome. Similarly, odds of 5:2 means that the first 
outcome occurs 5 times for each 2 occurrences of the second outcome. 
To use this formulation above, probabilities must be converted to odds, 
where the odds of having a disease are expressed as the chance of having 
the disease divided by the chance of not having the disease. 

Recall that Odd = Pr
1 Pr

obability
obability−

,                      (23)

 APr and Probability =
1 A+B

Oddsobability
odds

=
+

                   (24)

when odds are expressed as a:b. To estimate the potential benefit of a 
diagnostic test, the clinician first estimates the pretest odds of disease 
given all available clinical information and then multiplies the pretest 
odds by the positive and negative likelihood ratios. The results are the 
posttest odds, or the odds that the patient has the disease if the test 
is positive or negative. To obtain the posttest probability, the odds are 
converted to a probability as seen above. Meanwhile, odds ratio is a 
measure of effect size, describing the strength of association or non 
independence between two binary data values [10,11,12]. It is used as a 
descriptive statistic, and plays an important role in logistic regression. 
Unlike other measures of association for paired binary data such as the 
relative risk, the odds ratio treats the two variables being compared 
symmetrically, and can be estimated using some types of non-random 
samples. 

Derivation of Odds Ratio Formular for AD/BC 
From table 1 above where we have the test result status and disease 

status categorized/classified into A,B,C and D. We shall have the 
following: 

Odds of exp osure in those with the disease =

Pr exp
1 Pr exp in t

obability of osure in those with disease
obability of osure hose with disease−

             (25)

But, Pr ob of exposure in those with the disease =  
A

A C+
Therefore, the Odds of exposure in those with the disease = 
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/1 /A A A C A
A C A C A C A C C

− = =
+ + + +                         (26)

 Similarly, Odds of exposure in those without the disease = 

Pr exp
1 Pr exp in t

obability of osure in those without disease
obability of osure hose without disease−

                (27)

But, Pr obability of exposure in those without disease = 
B

B D+

So odds of exposure in those without the disease =   

/1 /B B B D B
B D B D B D B D D

− = =
+ + + +

                 (28)

,1 B B D B DSince
B D B D B D

+ −
− = =

+ + +
, Based on the above contingency 

table, the odds ratio is interpreted as 
Odds of test result with diseaseOdds ratio

Odds of same result without disease
=                                 (29)

Or  exp in t
exp

Odds of osure hose with the diseaseOdds ratio
Odds of osure in those without the disease

=

Pr ( )( )
1 Pr ( )

obability DOdds D
obability D

+
+ =

− +
                (30)

where ( )Pr( )
1 ( )

Odds DD
Odds D

+
+ =

+ +
                 (31)

( / )In general, Odds ratio /
( / )
A C AD BC
B D

= =                  (32)

Definition of Odds Ratio in Terms of Group-Wise Odds
The odds ratio is the ratio of the odds of an event occurring in one 

group to the odds of it occurring in another group. The term is also used 
to refer to sample-based estimates of this ratio. This group in case of this 
study is a dichotomous classification. If the probabilities of the event in 

each of the groups are p1 (first group) and p2 (second group), then the 

odds ratio is: 1 1 1 1 1 2

2 2 2 2

11 12 11 22

21 22 1 2 21 12

/ (1 ) /
/ (1 ) //

/p p p q p q
p p p q p q

n n n n
n n n n

== = =
−
−

                (33), 

where qx = 1 – px. This is the odds ratio for comparing two proportions. 
According to Glas et al [9], OR is based on likelihood and it is given by 

Diagnostic odds ratio likelihood ratio
likelihood ratio ratio

+
=

−
                    (34)

It is vital to note the following points about OR. OR ranges from 
0 to infinity with higher values indicating better discriminating test 
performance. A value of 1 means that a test does not discriminate 
between patients with the disorder and those without it. That is it 
shows no difference in risk of group 1 compared to 2. In other words, 
an odds ratio of 1 indicates that the condition or event under study is 
equally likely to occur in both groups. The DOR does not depend on 
the prevalence of the disease [9]. It tends to be skewed (not symmetric). 
If OR >1, it indicates an increased risk of group 1 compared to 2. This 
means that an odds ratio greater than 1 indicates that the condition or 
event is more likely to occur in the first group. If OR is less than 1 it 
indicates that the condition or event is less likely to occur in the first 
group meaning that it shows lower risk(“protective”) in risk of group 1 
compared to 2. The odds ratio must be nonnegative if it is defined. It is 
undefined if p2q1 equals zero.

Confidence Intervals
The p values the authors often cite when reporting their results 

gives a sense of how likely the results reported are due to chance. 

However, p values do not allow us to make inferences about the 
precision of the estimates, which is extremely important in evaluating 
test characteristics. Reporting a range of plausible results, also known 
as confidence intervals, is more useful. Confidence intervals (CIs) are a 
measure of how precise an estimate is. The range or width of a confidence 
interval is primarily determined by two parameters; the number of 
observations in the study and how widely spread the data are (usually 
expressed as the standard deviation). The fewer the observations or 
the greater the data spread, the wider the confidence interval and the 
greater the uncertainty about the precision of the reported estimate.

Performance Measures
Once a data set is obtained, the problem arises of defining a 

measure for the quality of a particular prediction. Here, four different 
parameters are used to measure the performance of prediction method.

The predictive performance of a method is expressed by following 
four parameters: 

1. Q total, the percentage of correctly classified residues, is defined as 

 100%p nQ total
t
+

= ×

where, p is the number of correctly classified beta-turn residues, n is 
the number of correctly classified non-beta-turn residues and t is the 
total number of residues in a protein. Q total, also known as ‘prediction 
accuracy’ may be defined simply as the total percentage of correct 
prediction. One difficulty with this measure is that it does not take 
into account disparities in the number of beta-turns (around 25%) and 
non-turns. Hence, it is possible to get a Q total score of about 75% by 
the trivial strategy of predicting all residues to be non-turn residues. 
Therefore, there is a risk of losing the information because of the 
dominance of non-turn residues. The Matthews Correlation Coefficient 
remedies this problem, which is defined as 

2. MCC, the Matthews Correlation Coefficient, defined as 

( )( )( )( )
pn oumcc

p o p n n o n u
−

=
+ + + +

 

where, p is the number of correctly classified beta-turn residues, n is the 
number of correctly classified non-beta-turn residues, o is the number 
of non-beta-turn residues incorrectly classified as beta-turn residues 
and u is the number of beta-turn residues incorrectly classified as non-
beta-turn residues. It is a measure that accounts for both over- and 
under-predictions. 

3. Q predicted, defined as 

 100%pQ predicted
p o

= ×
+

 

Q predicted is the percentage of beta-turn predictions that are 
correct. Otherwise known as specificity, is the proportion of true 
negatives or the proportion of non-turn residues that have been 
correctly predicted as non turns. 

4. Q observed, defined as  

100%pQ observed
p u

= ×
+

  

Q observed is the percentage of observed beta-turns that are 
correctly predicted. Otherwise, known as sensitivity, is the proportion 
of true positives or the proportion of beta-turn residues that have been 
correctly predicted as beta-turns. 
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False Discovery Rates
Benjamini and Hochberg [13] introduced a multiple-hypothesis 

testing error measure called the false discovery rate FDR. This quantity 
is the expected proportion of false positive findings among all the 
rejected hypotheses. When testing multiple hypotheses, the situation 
becomes much more complicated. Now each test has type I and type II 
errors, and it becomes unclear how we should measure the overall error 
rate. Meanwhile, Multiple-hypothesis testing involves guarding against 
much more complicated errors than single-hypothesis testing. Whereas 
we typically control the type I error rate for a single-hypothesis test, 
a compound error rate is controlled for multiple-hypothesis tests. The 
first measure to be suggested was the family wise error rate FWER, 
which is the probability of making one or more type I errors among all 
the hypotheses. Instead of controlling the probability of a type I error 
at level α for each test, the overall FWER is controlled at level α. None-
the-less, α is chosen so that FWER ≤ α and then a rejection region Γ 
is found that maintains level α FWER but also yields good power. We 
assume for simplicity that each test has the same rejection region, such 
as would be the case when using the p-values as the statistic. In many 
situations, FWER is much too strict, especially when the number of tests 
is large. Therefore, FDR is a more liberal, yet more powerful, quantity 
to control. In Storey [15], we introduced the positive false discovery 
rate pFDR. This is a modified, but arguably more appropriate, error 
measure to use. Benjamini and Hochberg [13] provided a sequential 
p-value method to control FDR. This is really what an FDR controlling 
p-value method accomplishes: using the observed data, it estimates 
the rejection region so that on average FDR ≤ α for some prechosen α. 
The product of a sequential p-value method is an estimate k̂  that tells 
us to reject ˆ(1), (2),..., ( )k

p p p , where P(1) ≤ P(2) ≤ …≤ P(m) are the ordered 
observed p-values. What can we say about k̂ . Is there any natural way 
to provide an error measure on this random variable? It is a false sense 
of security in multiple-hypothesis testing to think that we have a 100% 
guaranteed upper bound on the error. The reality is that this process 
involves estimation. The more variable the estimate of k̂  is, the worse 
the procedure will work in practice. Therefore, the expected value may 
be that FDR ≤ α, but we do not know how reliable the methods are case 
by case. If point estimation only involved finding unbiased estimators, 
then the field would not be so successful. Therefore, the reliability of k̂   
case by case does matter even though it has not been explored. Another 
weakness of the current approach to false discovery rates is that the 
error rate is controlled for all values of m0 (the number of true null 
hypotheses) simultaneously without using any information in the data 
about m0. Surely there is information about m0 in the observed p-values. 
Here, we use this information, which yields a less stringent procedure 
and more power, while maintaining strong control. Often, the power of 
the multiple hypothesis testing method decreases with increasing m. 
This should not be so, especially when the tests are independent. The 
larger the m, the more information we have about m0, and this should 
be used. In this paper, we propose a new approach to false discovery 
rates. We attempt to use more traditional and straightforward statistical 
ideas to control pFDR and FDR. Instead of fixing α and then estimating 
k (i.e. estimating the rejection region), we fix the rejection region and 
then estimate α. Fixing the rejection region may seem counter-intuitive 
in the context of traditional multiple-hypothesis testing. This can be 
seen to make sense in the context of false discovery rates. A natural 
objection to our proposed approach is that it does not offer ‘control’ 
of FDR. Actually, control is offered in the same sense as the former 
approach-our methodology provides a conservative bias in expectation. 
Moreover, since in taking this new approach we are in the more familiar 
point estimation situation, we can use the data to estimate m0, obtain 

confidence intervals on pFDR and FDR, and gain flexibility in the 
definition of the error measure. We show that our proposed approach 
is more effective, flexible and powerful. The multiple hypothesis testing 
methods that we shall describe take advantage of more information in 
the data, and they are conceptually simpler. 

The Positive False Discovery Rate and Fixed Rejection 
Regions

As mentioned in earlier, two error measures are commonly used in 
multiple-hypothesis testing: FWER and FDR. FWER is the traditional 
measure used; Benjamini and Hochberg [13] recently introduced FDR. 
Table 1 summarizes the various outcomes that occur when testing m 
hypotheses. V is the number of type I errors (or false positive results). 
Therefore, FWER is defined to be Pr(V ≥ 1). Controlling this quantity 
offers a very strict error measure. In general, as the number of tests 
increases, the power decreases when controlling FWER. FDR is defined 
to be

0 Pr( 0)VFDR E R R
R

 = > > 
 

i.e., the expected proportion of false positive findings among all rejected 
hypotheses times the probability of making at least one rejection. 
Benjamini and Hochberg [13] and Benjamini and Liu [14] provided 
sequential p-value methods to control this quantity. FDR offers a much 
less strict multiple-testing criterion over FWER and therefore leads to 
an increase in power. In Storey [15], we define a new false discovery 

rate, pFDR. Definition 1. 0VpFDR E R
R

 = > 
 

. The term ‘positive’ has 

been added to reflect the fact that we are conditioning on the event 
that positive findings have occurred. When controlling FDR at level 
α, and positive findings have occurred, then FDR has really only been 
controlled at level α/Pr (R > 0). This can be quite dangerous, and it 
is not the case for pFDR. See Storey [15] for a thorough motivation 
of pFDR over FDR. Benjamini and Hochberg (1995) precisely define 
FDR to be expression (1) because this quantity can be controlled by 
a sequential p-value method. (Note, however, that weak control of 
FWER is implicitly embedded in this definition, i.e. FWER is controlled 
when all null hypotheses are true) pFDR is identically 1 when all null 
hypotheses are true (m=m0), so the usual sequential p-value approach 
cannot be applied to this quantity. Therefore, to control pFDR, it must 
be estimated for a particular rejection region.

A sequential p-value method allows us to fix the error rate 
beforehand and to estimate the rejection region, which is what has 
traditionally been done in multiple-hypothesis testing. In the context 
of FWER this makes sense. Because FEWR measures the probability of 
making one or more type I error, which is essentially a ‘0–1’ event, we 
can set the rate α priori at which this should occur. False discovery rates, 
in contrast, are more of an exploratory tool. For example, suppose that 
we are testing 1000 hypotheses and decide beforehand to control FDR 
at level 5%.Whether this was an appropriate choice largely depends 
on the number of hypotheses that are rejected. If 100 hypotheses are 
rejected, then clearly this was a good choice. If only two hypotheses are 
rejected, then clearly this was a less useful choice. Therefore fixing the 
rejection region beforehand can be more appropriate when using pFDR 
or FDR. For example, when performing many hypothesis tests, it can 
make sense to reject all p-values that are less than 0.05 or 0.01. Also, 
expert knowledge in a particular field may allow us to decide which 
rejection regions should be used. It will also be seen that this approach 
allows us to control pFDR, which we find to be a more appropriate error 
measure. Probably the most important reason for fixing the rejecting 
region is that it allows us to take a conceptually simpler approach to 
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complicated compound error measures such as pFDR and FDR. The 
q-value is the pFDR analogue of the p-value and allows the rejection 
regions to be determined by the observed p-values. This is more 
appropriate over either fixing the rejection region or fixing the error 
rate. But, by first fixing the rejection region in our approach, we can 
formulate the q-values quite easily.

Estimation and Inference for the Positive False 
Discovery Rate and False Discovery Rate

In this section, we apply the proposed approach to both pFDR 
and FDR.We first present a few simple facts about pFDR under 
independence to motivate our estimates. Suppose that we are testing 
m identical hypothesis tests H1;H2,…,Hm with independent statistics 
T1; T2,…,Tm. We let Hi = 0 when null hypothesis i is true, and Hi = 1 
otherwise. We assume that the null Ti|Hi = 0 and the alternative Ti|Hi = 
1 are identically distributed. We assume that the same rejection region 
is used for each test, which make the tests ‘identical’. Finally, we assume 
that the Hi are independent Bernoulli random variables with Pr(Hi = 0) 
= π0 and Pr(Hi = 1) = π1. Let Γ be the common rejection region for each 
hypothesis test. The following is theorem 1 from Storey [15]. It allows 
us to write pFDR in a very simple form that does not depend on m. For 
this theorem to hold we must assume that the Hi are random; however, 
for large m this assumption makes little difference.

Theorem 1

Suppose that m identical hypothesis tests are performed with the 
independent statistics T1,….,Tm and rejection region Γ. Also suppose 
that a null hypothesis is true with a priori probability π0. Then 

0

0 1

Pr( 0)
( )

Pr( )
Pr( 0 )

Pr( ) Pr( 0) Pr( 1)

T H
pFDR

T
H T

where T T H T H

π

π π

∈Γ =
Γ =

∈Γ

= = ∈Γ

∈Γ = ∈Γ = + ∈Γ =

 

This paper will be limited to the case where we reject on the basis 
of independent p-values. See Storey and Tibshirani [15] for a treatment 
of more general situations. For the remainder of the paper, instead of 
denoting rejection regions by the more abstract Γ, we denote them by γ, 
which refers to the interval [0; γ].

In terms of p-values we can write the result of theorem 1 as 

0 0Pr( 0)
( )

Pr( ) Pr( )
T H

pFDR
T T

π γ π γγ
γ γ

≤ =
= =

≤ ≤
  

where P is the random p-value resulting from any test. Under 
independence the p-values are exchangeable in that each comes from 
the null distribution (i.e. uniform [0,1]) with probability π0 and from the 
alternative distribution with probability π1. It is easiest to think about 
this in terms of simple versus simple hypothesis tests, but the theory 
also works for composite alternative hypotheses with a random effect 
[15]. Since π0m of the p-values are expected to be null, then the largest 
p-values are most likely to come from the null, uniformly distributed 
p-values. Hence, a conservative estimate of π0 is

Receiver Operating Characteristic Curve
ROC (Receiver Operating Characteristic) analysis is being used as 

a method for evaluation and comparison of classifiers [16]. The ROC 
gives complete description of classification accuracy as given by the area 
under the ROC curve. The ROC curve originates from signal detection 
theory [17]; the curve shows how the receiver operates the existence of 
signal in the presence of noise. The ROC curve plots the probability of 

detecting true signal (sensitivity) and false signal (1 – specificity) for 
an entire range of possible cut points. The sensitivity and specificity 
of a classifier also depend on the definition of the cut-off point for 
the probability of predicted classes. A ROC curve demonstrates the 
trade-off between true positive rate and false positive rate in binary 
classification problems. To draw a ROC curve, the true positive rate 
(TPR) and the false positive rate (FPR) are needed. TPR determines 
the performance of a classifier or a diagnostic test in classifying positive 
cases correctly among all positive samples available during the test. 
FPR, on the other hand, defines how many incorrect positive results, 
which are actually negative, there are among all negative samples 
available during the test. Because TPR is equivalent to sensitivity and 
FPR is equal to (1 –specificity), the ROC graph is sometimes called 
the sensitivity vs. (1 - specificity) plot. The area under the ROC curve 
has become a particularly important measure for evaluating classifiers’ 
performance because it is the average sensitivity over all possible 
specificities [18]. The larger the area, the better the classifier performs. 
If the area is 1.0, the classifier achieves both 100% sensitivity and 100% 
specificity. If the area is 0.5, then we have 50% sensitivity and 50% 
specificity, which is no better than flipping a coin. This single criterion 
can be compared for measuring the performance of different classifiers 
analyzing a dataset [19,20]. After a classifier has been made, it is also 
useful to measure its calibration. Calibration evaluates the degree 
of correspondence between the estimated probabilities of a specific 
outcome resulting from a classifier and the outcomes predicted by 
domain experts. This can then be tested using goodness-of-fit statistics. 
This test examines the difference between the observed frequency 
and the expected frequency for groups of patients and can be used to 
determine if the classifier provides a good fit for the data. If the p-value 
is large, then the classifier is well calibrated and fits the data well. If 
the p-value is small, then the classifier is not well calibrated. There is a 
pair of diagnostic sensitivity and specificity values for every individual 
cut-off. To construct a ROC graph, we plot these pairs of values on the 
graph with the 1-specificity on the x-axis and sensitivity on the y-axis. 
Receiver operating characteristic curve analysis is often used to help 
determine the cut-off point to optimize sensitivity and specificity. An 
ROC curve is a graphical representation of the trade off between the 
false negative and false positive rates for every possible cut-off value 
[21]. Alternatively, the ROC curve is the representation of the trade off 
between sensitivity and specificity. In other words, the ability of a test 
using a specific analytic concentration, to discriminate disease from 
non-disease can be graphically portrayed by use of ROC curve analysis. 
A graph can be generated in which the sensitivity and specificity are 
determined for each data point obtained in the study. These are graphed 
with sensitivity of each data point on the y-axis and the corresponding 
1-specificity for each data point on the x-axis. Precisely, we plot these 
pairs of values on the graph with the 1-specificity on the x-axis and 
sensitivity on the y-axis. (Note: the ratio of the y-axis/x-axis is the 
likelihood ratio positive or the graph of true positives and false 
positives respectively).For the ideal test, the plot would rise from 0 
and go straight up to 1.00 and then a horizontal line along the 1.00 
sensitivity line. This would be where there is no overlap in the data 
points and sensitivity and specificity would both be 100% in the left 
hand corner [21]. This rarely occurs and more commonly a curvilinear 
plot is observed. The greater the area under the curve, the more 
discriminatory (the ability of the test to correctly classify those with and 
without the disease) the test is, ideally, the area under a curve of 1.00 is 
a perfectly discriminatory test and a curve that follows the diagonal line 
in the graph has an area under the curve 0.5 which corresponds to the 
test being no better than flipping a coin [21]. The shape of a ROC curve 
and the area under the curve (AUC) helps us estimate how high is the 
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discriminative power of a test. The closer the curve is located to upper-
left hand corner and the larger the area under the curve, the better the 
test is at discriminating between diseased and non-diseased. The area 
under the curve can have any value between 0 and 1 and it is a good 
indicator of the goodness of the test. A perfect diagnostic test has an 
AUC 1.0. whereas a non-discrimination test has an area 0.5.The larger 
the area under the curve, the better the diagnostic test in discriminating 
those with and without disease [21]. Many statistical programs can 
generate a table of the values in the graph and calculate sensitivity, 
specificity, LP+,LP-,and proportion or percent correctly identified for 
each data point. Cut-off points are not necessarily chosen to optimize 
the number of patients correctly categorized. One can select different 
cut-off points to optimize sensitivity or specificity. For example, when 
a screening test is used to look for a serious disease that if missed could 
result in serious harm to the patient, the sensitivity of that test should be 
optimized. Conversely, in situations where therapy could be extremely 
harmful if given to a patient without the disease, one would choose a 
cut-off point that optimizes specificity. In general, when optimizing 
one test characteristic, the other gets worse and vice versa. For example, 
when improving sensitivity, specificity decreases and when improving 
specificity, sensitivity decreases. The area under the ROC curve can also 
be used statistically to compare the discriminating ability between two 
diagnostic tests [21]. We can say that the relationship between the area 
under the ROC curve(AUC) and diagnostic accuracy can be seen in the 
Table 2.1 below :

AUC is a global measure of diagnostic accuracy. It tells us nothing 
about individual parameters, such as sensitivity and specificity. Out 
of two tests with identical or similar AUC, one can have significantly 
higher sensitivity, whereas the other significantly higher specificity. 
Furthermore, data on AUC state nothing about predicative vales 
and about the contribution of the test in ruling-in and ruling-out a 
diagnosis. Global measures are there for general assessment and for 
comparison of two or more diagnostic tests. By the comparison of areas 
under the two ROC curves we can estimate which one of two tests is 
more suitable for distinguishing health from disease or any other two 
conditions of interest. It should be pointed that this comparison should 
not be based on visual nor intuitive evaluation [22]. For this purpose we 
use statistic tests which evaluate the statistical significance of estimated 
difference between two AUC, with previously defined level of statistical 
significance (P).

Youden’s Index
Youden’s index is one of the oldest measures for diagnostic 

accuracy [23]. It is also a global measure of a test performance, used 

for the evaluation of overall discriminative power of a diagnostic 
procedure and for comparison of this test with other tests. Youden’s 
index is calculated by deducting 1 from the sum of test’s sensitivity and 
specificity expressed not as percentage but as a part of a whole number: 
(sensitivity + specificity) – 1. For a test with poor diagnostic accuracy, 
Youden’s index equals 0, and in a perfect test Youden’s index equals 
1. Youden’s index is not sensitive for differences in the sensitivity and 
specificity of the test, which is its main disadvantage. Namely, a test with 
sensitivity 0,9 and specificity 0,4 has the same Youden’s index (0,3) as a 
test with sensitivity 0,6 and specificity 0,7. It is absolutely clear that those 
tests are not of comparable diagnostic accuracy. If one is to assess the 
discriminative power of a test solely based on Youden’s index it could be 
mistakenly concluded that these two tests are equally effective. Youden’s 
index is not affected by the disease prevalence, but it is affected by the 
spectrum of the disease, as are also sensitivity specificity, likelihood 
ratios and DOR.

Design of Diagnostic Accuracy Studies
Measures of diagnostic accuracy are extremely sensitive to the 

design of the study. Studies suffering from some major methodological 
shortcomings can severely over- or under-estimate the indicators of test 
performance as well as they can severely limit the possible applicability 
of the results of the study. The effect of the design of the study to the bias 
and variation in the estimates of diagnostic accuracy can be quantified 
[24]. STARD initiative published in 2003 was a very important step 
toward the improvement of the quality of reporting of studies of 
diagnostic accuracy [25,26]. According to some authors, the quality of 
reporting of diagnostic accuracy studies did not significantly improve 
after the publication of the STARD statement [27,28], whereas some 
others hold that the overall quality of reporting has at least slightly 
improved [24], but there is still some room for potential improvement 
[29,30]. Editors of scientific journals are encouraged to include the 
STARD statement into the Journal Instructions to authors and to 
oblige their authors to use the checklist when reporting their studies 
on diagnostic accuracy. This way the quality of reporting could be 
significantly improved, providing the best possible evidence for health 
care providers, clinicians and laboratory professionals; to the best for 
the patient care.

Illustration of Some Statistics of Diagnostic Test Studies

To illustrate these, for our first example we shall use data from a 
study of diabetic eye tests [31]. This was a cross-sectional study in which 
diabetic patients being screening for eye problems were examined 
using direct opthalmoscopy (the test) and slit lamp stereoscopic 
biomicroscopy (the reference standard). A single sample of subjects all 
received both the diagnostic test and the reference standard test. The 
following table shows the results for all eye problems combined:

From this Table 2 we can calculate all diagnostic test statistics 
other than a ROC curve: sensitivity = 40/45 = 0.89 = 89%, specificity 
= 237/275 = 0.86 = 86%, LR (+ve test) = 0.89/(1 – 0.86) = 6.4, LR (-ve 
test) = 0.86/(1 – 0.89) = 7.8, OR = 40×237/(38×5) = 49.9, PPV = 40/78 
= 51%, NPV = 237/242 = 98%. We shall now look at what these mean 
and how they were calculated. Sensitivity = the proportion of reference 
positive cases who are positive on the test =proportion of true cases that 
the test correctly identifies. Specificity = the proportion of reference 
negative cases who are negative on the test =proportion of true non-
cases that the test correctly identifies. For eye disease in diabetics, there 
were 45 reference standard positive cases of whom 40 were positive 
on the test, 275 reference standard negative non-cases of whom 237 

Area Diagnostic Accuracy
0.9-1.0 Excellent
0.8-0.9 Very good
0.7-0.8 Good
0.6-0.7 Sufficient
0.5-0.6 Bad
< 0.5 Test not useful

Table 2.1: Relationship between the area under the ROC curve (AUC) and diag-
nostic accuracy.

+Ve –Ve Total
+Ve 40 38 78
–Ve 5 237 242
Total 42 275 320

Table 2: Reference standard.
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were negative on the test. Sensitivity = 40/45 = 0.89 = 89%, Specificity 
= 237/275 = 0.86 = 86%. A good test will have high sensitivity and high 
specificity. We are looking for values exceeding 80%, preferably 90% 
or 95%. Odds = number of positives divided by number of negatives. 
Odds ratio (OR) = odds in one group divided by odds in another. For 
eye disease in diabetics: Odds test +ve for those reference +ve = 40/5 = 
8.0, OR = (40/5)/(38/237) = 40×237/(38×5) = 49.9. As the test and the 
reference standard should have a strong positive relationship, we expect 
the odds ratio to be much greater than 1.0. The likelihood ratio (LR) 
for a positive test = sensitivity/(1 – specificity). We use this as follows. 
If we start with the probability that a subject has the disease, which 
is the prevalence of the disease, we can convert this to odds: odds = 
prevalence/(1 – prevalence). Then if we test a subject from a population 
with this prevalence, we can estimate the odds of having the disease if 
the test is positive: odds of disease if test positive = odds of disease × 
likelihood ratio. For eye disease in diabetics:

Likelihood ratio for a positive test = 0.89/(1 – 0.86) = 6.4. Suppose 
the prevalence of eye problem in the local diabetic population is 10% 
= 0.10. The odds of eye problems is 0.10/0.90 = 0.11. If a subject has a 
positive test, the odds of eye disease will be increased: odds of disease 
if test positive = 0.11 × 6.4 = 0.70. This corresponds to a probability 
of eye disease = 0.41. (Probability = odds/(1 + odds)). Similarly, the 
likelihood ratio for a negative test = specificity/(1 – sensitivity). As 
before, if we start with the probability that the subject does not have 
the disease = 1 – prevalence of disease and convert to odds = (1 – 
prevalence)/prevalence, we can look at the effect on the odds of not 
having the disease if the test is negative: odds of not disease if test 
negative = odds of not disease × likelihood ratio Likelihood ratio for 
a negative test = 0.86/(1 – 0.89) = 7.8. Suppose the prevalence of eye 
problem in the local diabetic population is 10% = 0.10. The odds of 
no eye problems is 0.90/0.10 = 9.0. If a subject has a negative test, the 
odds of no eye disease will be increased: odds of disease if test negative 
= 9.0 × 7.8 = 70.2. This corresponds to a probability of no eye disease 
= 0.986. The positive predictive value (PPV) is the proportion of test 
positives who are reference positive. The negative predictive value 
(NPV) is the proportion of test negatives who are reference negative. 
For eye disease in diabetics, there were 78 test positives of whom 40 
were positive on the reference standard, 242 test negatives of whom 237 
were negative on the reference standard. PPV = 40/78 = 51%., NPV = 
237/242 = 98%. Hence if a subject is positive on the test, the probability 
that eye disease will be found using the reference standard is 51%. If 
a subject negative on the test, the probability that no eye disease will 
be found using the reference standard is 98%. For a receiver operating 
characteristic (ROC) curve, we need a different example. Sanchini et 
al. [32] looked at the early detection of bladder cancer using a test of 
elevated urine telomerase, an enzyme involved in cell proliferation. The 
reference standard was histologically confirmed bladder cancer. This 
was a case-control study conducted in 218 men: 84 healthy individuals 
and 134 patients at first diagnosis of histologically confirmed bladder 
cancer. Urine telomerase is a measurement taking a range of possible 
values rather the presence or absence of a sign. If we change the 
value of telomerase which we classify as elevated, this will change the 
sensitivity and specificity. We can do this and plot the sensitivity against 
the specificity to see how they vary together. For obscure historical 

reasons, it is usual to plot sensitivity against one minus specificity, also 
called the false positive rate. This is the ROC curve, a plot of sensitivity 
against 1 – specificity. (The name comes from telecommunications. As 
far as we are concerned, it is just a name.) This is the ROC curve of 
Sanchini et al. [32]: They have drawn two separate ROC curves, one 
for their whole sample and the other for men aged 75 years or older. 
Sensitivity increases as one minus specificity increase, i.e. as specificity 
decreases. We make our test more sensitive at the expense of making it 
less specific. We are looking for a compromise cut-off which will give 
both high sensitivity and high specificity. Sanchini et al. [32] chose 50 
as being a reasonable compromise between a test which is sensitive, so 
finding most cases with the disease, and specific, so does not pick up 
a lot of people who do not have the disease. The diagnostic tests on a 
ROC curve do not have to determined by a continuous measurement, 
though they often are. All we need to plot the curve is more than one 
test. Sanchini et al. [32] also show a different, non-numerical test: urine 
cytology, not sensitive but fairly specific. For the detection of bladder 
cancer using as a test that urine telomerase > 50 against a reference 
standard of histologically confirmed bladder cancer, the 2 by 2 table is:

We can calculate most of the statistics as before: sensitivity = 
120/134 = 0.90 = 90%, specificity = 74/84 = 0.88 = 88%. LR (+ve test) = 
0.90/(1–0.88) = 7.5. LR (-ve test) = 0.88/(1–0.90) = 8.8. OR = 120×74/
(10×14) = 63.4

However, the row totals would be meaningless and they are not 
shown in the table. This is because we took two separate groups of 
subjects. The row totals will depend on what ratio of cases to controls 
we used. They do not tell us anything about how many people would be 
test positive or test negative. As a result, PPV and NPV cannot be found 
in this study. We cannot estimate PPV and NPV in a case-control study. 
Their values depend on the prevalence of the disease in the population 
being tested. See Bland [33] for more information.
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