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Abstract
The general case of a material belonging to an unknown class of constitutive behavior is the focus of our recently developed EUCLID method for 
unsupervised automated discovery of material laws. To this end, we influence the hypothesis of summed up standard materials, which envelops a 
plenty of significant constitutive classes including flexibility, thickness, versatility and erratic blends thereof. That's what we show, dependent just 
upon full-field kinematic estimations and net response powers, EUCLID can naturally find the two scalar thermodynamic possibilities, to be specific, 
the Helmholtz free energy and the dissemination potential, which totally characterize the way of behaving of summed up standard materials.

Keywords: Inverse limit • Natural extension • Hénon family • Lozi family • Strange attractor

Mini Review
Volume 17:3, 2023

Introduction
Construction stability and thermodynamic consistency of the discovered 

model are guaranteed by the a priori enforced constraint of convexity on these 
potentials; In place of the availability of labeled pairs for stress and strain, 
the balance of linear momentum serves as a fundamental constraint; sparsity 
advancing regularization empowers the programmed determination of a little 
subset from a conceivably enormous number of up-and-comer model elements 
and subsequently prompts a miserly, i.e., straightforward and interpretable, 
model. Importantly, sparse regression automatically induces a sparse selection 
of the few internal variables required for an accurate but straightforward 
description of the material behavior because model features are associated with 
the correspondingly active internal variables. In order to achieve a user-defined 
balance between model accuracy and simplicity, the hyperparameter controlling 
the weight of the sparsity promoting regularization term is selected through a 
procedure that is completely automated. We show that EUCLID can automatically 
identify the true hidden material model from a wide range of constitutive classes, 
including elasticity, viscoelasticity, elastoplasticity, viscoplasticity, isotropic and 
kinematic hardening, by testing the method on synthetic data with artificial noise [1].

Literature Review
In solid mechanics, the traditional method of mathematically describing a 

material's response is to select an a priori material model based on a limited 
number of tunable parameters and calibrate these parameters using experimental 
data. The calibrated material model can then be used in numerical (for example, 
finite element) simulations to predict the mechanical response of material 
components of any shape to external influences by describing the relationship 
between stresses and strains and possibly other material state variables [2].

The most fragile part of this system lies in the deduced choice of a reasonable 
model, which is to a great extent founded on experience. Failure to identify a 
set of material parameters that enable the model to accurately represent the 
experimental data is inevitable when an inappropriate initial choice is made; In 

such a scenario, the initial choice must be altered and the procedure must be 
repeated, possibly multiple times, resulting in an iterative process that is both 
time-consuming and prone to error. Data-driven approaches, frequently based 
on machine learning tools, are increasingly being investigated for applications 
in solid mechanics, particularly material modeling, facilitated by the enormous 
amount of data made available by recent advances in experimental mechanics 
[3,4].

Choosing a parametric material model ansatz that is as general as possible, 
i.e., with a large number of tunable parameters, is a common method for mitigating 
the negative effects of an inappropriate a priori model selection. Splines, neural 
ordinary differential equations and neural processes are all examples. These 
kinds of model ansatz are less likely to fail to accurately interpret the observed 
data because they have a greater number of trainable parameters and functions 
that describe the material response. The performance of the resulting material 
models can be further enhanced by combining traditional and machine learning 
components. The recent trend of adding physics-based constraints to machine 
learning models is motivated by the recognition that constitutive models should 
not violate any well-known physical requirements. These are implemented either 
by development or from a frail perspective by acquainting extra regularization 
terms with the misfortune capability that punish the infringement of actual 
regulations. Convexity or polyconvexity in hyperelasticity, as well as the second 
law of thermodynamics for dissipative materials, are examples of constraints [5].

The referenced works show that the authorization of material science 
limitations enjoys the extra benefit of further developing the extrapolation force 
of AI based models. So-called (material) model-free data-driven approaches 
aim to solve boundary value problems by replacing the material model with 
experimental data, thereby avoiding the fitting of a parametric material model 
entirely. Here the displaying parts are restricted to the energy balance condition 
and the expected kinematics and hence are diminished to a base. See how an 
inverse formulation of the same problem can be used to recover stress fields from 
kinematic measurements [6].

Discussion
The current study opens the door to a number of intriguing new applications. 

The thermodynamic potentials model library could be expanded to include 
additional phenomena like anisotropy, heterogeneity, softening (which would need 
to take into account gradient terms), coupled thermo- or electromechanical effects 
and so on. This would be an important step in the right direction. Consider a self-
adaptive library that automatically adds more features to the two thermodynamic 
potentials as long as the fitting accuracy is insufficient in order to automate the 
augmentation of the model library within the framework of generalized standard 
materials. As the inverse problem's constitutive equations become more complex 
with an increasing number of unknown parameters, improving computational 
efficiency is another important goal for the future. Using automatic differentiation 
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would be helpful in easing the implementation of the constitutive equation solver 
for a large library of thermodynamic potentials.

Conclusion
However, as this paper explains, automatic differentiation currently implies 

a decrease in overall computational efficiency and necessitates regularization 
of the potentials. This issue could be addressed in the future. Last but not least, 
one important goal for the future would be to test EUCLID on experimental data.
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