

ETS2 Gene Dosage Effects in Trisomy 21: Implications for Heart and Immune System Development

Chimbo Kilian*

Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, Australia

Introduction

Trisomy 21, or Down syndrome, is a genetic disorder characterized by the presence of an extra copy of chromosome 21. This chromosomal imbalance leads to the overexpression of genes located on chromosome 21, contributing to the complex phenotype observed in individuals with the condition. One of the key genes of interest in this context is ETS2, a transcription factor located at 21q22, whose dosage-sensitive effects have been implicated in several aspects of Down syndrome pathology. In particular, the overexpression of ETS2 has been associated with developmental anomalies in the cardiovascular and immune systems, which are among the most common and clinically significant complications in individuals with trisomy 21 [1].

Description

ETS2 functions as a transcriptional regulator that influences gene networks involved in cell proliferation, differentiation, apoptosis, and inflammatory responses. Under normal diploid conditions, ETS2 is tightly regulated to ensure proper developmental signaling. However, in trisomy 21, the presence of a third copy of the ETS2 gene results in its overexpression, disrupting the delicate balance required for normal embryonic development. This gene dosage imbalance has a profound impact on key developmental pathways, particularly those involved in heart morphogenesis and immune system maturation [2]. Congenital Heart Defects (CHDs) are present in nearly half of individuals with Down syndrome, with atrioventricular septal defects being the most frequent. Research indicates that ETS2 overexpression contributes to these defects by altering the expression of genes involved in cardiac cell lineage specification and endocardial cushion formation. ETS2 interacts with signaling pathways such as Notch, BMP, and Wnt, which are critical in early cardiac development. Overactivation of ETS2 can disrupt the temporal and spatial expression of these pathways, leading to aberrant tissue remodeling and septation. Mouse models engineered to overexpress ETS2 have recapitulated many of the cardiac phenotypes observed in Down syndrome, further supporting its causal role [3].

In addition to its effects on cardiac development, ETS2 overexpression influences the immune system, which is often compromised in individuals with trisomy 21. These individuals exhibit a higher susceptibility to infections, altered T and B cell maturation, and an increased risk of autoimmune disorders. ETS2 is known to regulate genes involved in hematopoietic differentiation and inflammatory responses. In trisomy 21, heightened ETS2 activity skews hematopoietic progenitor differentiation and may contribute to the characteristic lymphopenia and altered cytokine profiles observed in affected individuals. Moreover, ETS2 has been shown to regulate the expression of interferon-

*Address for Correspondence: Chimbo Kilian, Department of Biochemistry & Pharmacology, The University of Melbourne, Melbourne, Australia; E-mail: kilian.chimbo@gmail.com

Copyright: © 2025 Kilian C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01 May, 2025, Manuscript No. jibdd-25-165612; **Editor assigned:** 03 May, 2025, Pre QC No. P-165612; **Reviewed:** 17 May, 2025, QC No. Q-165612; **Revised:** 22 May, 2025, Manuscript No. R-165612; **Published:** 29 May, 2025, DOI: 10.37421/2476-1958.2025.10.243

stimulated genes, which are consistently upregulated in the trisomic immune profile, suggesting a role in the chronic low-grade inflammation seen in Down syndrome. The impact of ETS2 overexpression extends beyond developmental stages and has long-term implications for health and disease susceptibility. For example, persistent immune dysregulation linked to ETS2 activity may contribute to the increased incidence of hematological malignancies such as Acute Megakaryoblastic Leukemia (AMKL) in children with Down syndrome. Furthermore, chronic inflammatory signaling driven by ETS2 may also underlie the accelerated aging of the immune system and increased prevalence of autoimmune diseases observed in these individuals [4].

Understanding the dosage-sensitive effects of ETS2 in trisomy 21 opens new avenues for therapeutic intervention. Strategies aimed at modulating ETS2 expression or downstream targets may hold promise for mitigating specific developmental abnormalities. However, such approaches must be undertaken with caution, given the pleiotropic nature of ETS2 and its involvement in a wide range of cellular processes. Targeted gene silencing techniques, such as RNA interference or CRISPR-mediated gene modulation, are being explored to achieve tissue-specific normalization of ETS2 expression in preclinical models [5].

Conclusion

In conclusion, the overexpression of ETS2 due to trisomy 21 has significant implications for the development and function of the heart and immune system. By perturbing key regulatory networks, ETS2 contributes to the pathogenesis of congenital heart defects and immune dysregulation characteristic of Down syndrome. Continued research into the mechanistic pathways regulated by ETS2 will be crucial for developing targeted interventions aimed at improving the quality of life and clinical outcomes for individuals affected by this chromosomal disorder.

Acknowledgment

None.

Conflict of Interest

None.

References

1. Olson, Lisa E., Joan T. Richtsmeier, J. Leszl and Roger H. Reeves. "A chromosome 21 critical region does not cause specific Down syndrome phenotypes." *Science* 306 (2004): 687-690.
2. Rozovski, U., A. Jonish-Grossman, A. Bar-Shira and Y. Ochshorn, et al. "Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype." *Hum Reprod* 22 (2007): 2538-2545.
3. Rovelet-Lecrux, Anne, Didier Hannequin, Gregory Raux and Nathalie Le Meur, et al. "APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy." *Nat Genet* 38 (2006): 24-26.

4. Cabrejo, Lucie, Lucie Guyant-Maréchal, Annie Laquerrière and Martine Vercelletto, et al. "Phenotype associated with APP duplication in five families." *Brain* 129 (2006): 2966-2976.
5. Park, Hee Jin, Hee Young Cho and Dong Hyun Cha. "The amniotic fluid cell-free transcriptome provides novel information about fetal development and placental cellular dynamics." *Int J Mol Sci* 22 (2021): 2612.

How to cite this article: Kilian, Chimbo. "ETS2 Gene Dosage Effects in Trisomy 21: Implications for Heart and Immune System Development." *J Inflamm Bowel Dis* 10 (2025): 243.