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Abstract

There is much evidence that gliomas are caused by progressive ischemia, followed by increasing and prolonged
hypoxia very close to the subventricular zone. In this way, hypoxia on immature glial cells is the primary cause in
gliomas genesis. The ischemic process caused by atherosclerosis, anatomical variants of the arteries in the affected
area and associated with carcinogenic agents are the harmful factors. While cytotoxic hypoxia triggers a reactive
oxygen species (ROS) overproduction in the glial progenitor cells. Consequently, cellular impairment caused by
ROS alters the cell cycle phases and provokes genesis of low-grade glioma. Subsequently, its progression causes
angiogenesis and higher-grade cancer cells. Then, the vascular recanalization through aspirin is the indicated
therapy to reduce the ischemic process by increasing blood flow and oxygen in the affected zone. Therefore, we
must fight against the genesis of atherosclerosis and thus decrease the incidence of “neurodegenerative” diseases
and cancer.
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Introduction
Glial tumors are the most common group of primary central

nervous system (CNS) tumors (81% of all malignant brain tumors) and
include astrocytomas, oligodendrogliomas and ependymomas [1-4].
Based on the histological characteristics of astrocytomas, the World
Health Organization (WHO) established the following criteria [5-7]: 1)
low-grade astrocytomas (Grade I), 2) astrocytomas proper (grade II),
3) anaplastic astrocytomas (grade III), and 4) glioblastoma multiforme
(grade IV). The most common glial tumors are glioblastomas
mutiforme and anaplastic glioma comprising more than 50% and 10%
respectively of the total gliomas [1,2,8]. Low-grade astrocytomas
account for 40% to 60% of all tumors in the pediatric age [4,5,9], while
oligodendrogliomas account for aproximately 4% of all brain tumors
[10].

The exact cause of gliomas is not known, but it seems plausible that
the ischemia and hypoxia [11-13] associated with the influence of
environmental and genetic factors [7,11,12,14,15] are related with the
development of low-grade gliomas [1,16,17], similar to other tumors of
the body [13,18,19]. For this reasons, I decided to analyse the cause of
low-grade gliomas in the CNS. That is, because normal glial cells are
transformed into gliomas.

Cerebral Atherosclerosis and “Neurodegenerative”
Diseases

During the fetal life, as soon as the blood begins to flow through the
aorta and its branches, fatty streaks (atherosclerosis grade I to III) [20]
appears in different areas of the aorta artery. Pathological changes
which begins in the ascending aorta and aortic arch and then with age,
a centrifugal and progressive course continues in the rest of the aorta
and its branches [11,12,21]. In this way, fatty streaks or some

atheromas (atherosclerosis grade IV) can be found in supraclinoid
carotids and circle of Willis into the 30% of cases, in a pediatric
population between 1 to 17 years of age (average 4.5 years) [22].
Atheromatous plaques that are evident in individuals about 30 years or
more (atherosclerosis grade IV to VI), demonstrated in arteriographic
studies [23-25] and autopsy cases [21,26]; as well as in the origin of the
carotid and vertebral arteries at the level of the subclavian and
innominate arteries [24,26,27].

These atheromatous findings coincide fairly well with the decline in
cerebral blood flow, (CBF) (or arterial blood flow) and oxygen and
glucose consumption [28,29] in the vascular territory ahead of arterial
stenosis, especially in patients with anatomical variants of the arterial
tree [30-32], as well as secondary to adhesive arachnoiditis in the
chiasmatic cistern [33]. Normally the mitochondria consume the
greatest amount (some 85-90%) of oxygen in cells to allow oxidative
phosphorylation (OXPHOS), which is the primary metabolic pathway
for ATP production [34,35]. But, intracranial atherosclerosis associated
with anatomical variants at the circle of Willis [22,30-32], and branches
from the supraclinoid carotids and vertebrobasilar system [36-38]; they
all cause varying degrees of ischemia (mild, moderate or severe) and
little hypoxia (mild hypoxia) in the cerebrum, brainstem and
cerebellum [12,22,39-43]. That is, in the intraparenchymal territory of
the cortical perforating and lenticulostriate arteries originating from
the anterior, middle and posterior cerebral arteries; as well as in the
vascular territory of the collateral branches (recurrent arteries of
heubner, anterior and posterior choroidal arteries, posterior
communicating arteries, anterior cerebellar arteries, circumferential
arteries, posterior cerebellar arteries and antero-ventral spinal arteries)
and perforating branches originating from the circle of Willis,
supraclinoid carotids, basilar artery and vertebral arteries
[22,31-33,36-39,42,43]. The subventricular zone (SVZ) of the lateral
ventricles (region that contains adult neural stem cells) [44-47] is
vascularized by the distal end of the perforating and collaterals
branches originated from the cortical arteries, supraclinoid carotids
and circle of Willis. Therefore, adult SVZ and its immature cells
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(neurons and glial cells) in proliferation y migration are very
susceptible to damage by ischemia and hypoxia, especially in the walls
of the third ventricle in people around 30 years of age or older [48-50].
In this regard, there is doubt about the presence of neural stem cells in
the walls of the third ventricle, in people over 30 years of age.

In the adult encephalon, especially in the brainstem, the slow and
progressive ischemic process or for short periods of time [51,52] causes
the onset of so-called “neurodegenerative” diseases [12,39-42,48,49].
Because the neuronal and glial injury by ischemia, ischemic penumbra
and hypoxia (mild degree), triggers a pathophysiological cascade of
events as 1) increased glycolysis and reduced prolyl hydroxylase (PHD)
activity, 2) inhibition of the Krebs cycle, 3) accumulation of glutamate
and aspartate in the extracellular space, 4) generation of free radicals
family, constituted by various forms of active oxygen (reactive oxygen
species, ROS) or nitrogen (reactive nitrogen species, RNS), 5 ) followed
by oxidative stress, due to the imbalance between ROS (or RNS) and
antioxidant defence mechanisms that leads to modifications in
intracellular molecules as nucleic acids, lipids and proteins. The brain
is one of the major organs affected by ROS, 6) neurodegeneration and
7) finally, neuronal death and atrophy [39,41,51,53-58]. In addition to
this, the ischemic process also causes a reduction in the synthesis of
endogenous antioxidants as superoxide dismutase (SOD), glutathione
peroxidase (GSH), catalase, and coenzyme Q10, among others [57,58].
In humans, the copper/zinc SOD is present in the cytosol, while
manganese SOD is present in the mitochondria [58].

On the contrary, the vascular recanalization by means of aspirin can
increase arterial blood flow in the ischemic zone in mild to severe
degree [12,13] and so, more nutrients, oxygen and exogenous
antioxidants (beta carotene, flavonoids, Vit-C, Vit-E and resveratrol,
among others) [57,58] can enter to recover the function of ischemic
parenchyma. In other words, aspirin and/or some non-steroidal anti-
inflammatory drugs (NSAIDs) can prevent the onset of
“neurodegenerative” diseases, and through the omental tissue, improve
or cure such diseases [39,42,43,49,50,59,60]. Because the omentum
produces revascularization in the ischemic area and adjacent zones,
and on the other hand, it provides mesenchymal stem cells
[33,39,40,50,59,60]. However, to achieve both therapeutic successes,
the patient must have a level of hemoglobin in the bloodstream above
13 gr%, in populations at sea level. Besides, it is very important to have
good brain activity (intellectual work), associated with moderate and
frequent physical exercises.

Genesis of Gliomas in the Encephalon
The etiology of most adult brain and spinal cord gliomas is not well

known [1,2,7,17]. But I believe that similar to tumors outside the CNS,
[13,61,62] progressive ischemia in moderate to severe degree [12] and
by contrast, increasing and prolonged hypoxia (moderate hypoxia to
anoxia) [13,35], associated to environmental carcinogens are the cause
of gliomas. So, prolonged hypoxia in small areas of the encephalon,
both in the white matter and in the SVZ [45,46,63-67] is the primary
cause in low-grade gliomas genesis. Astrocytomas and
oligodendrogliomas are located in the frontal lobes in 40% of cases and
temporal lobes in 29% of cases [68,69], while the ependymomas are
usually located along, within or adjacent to the ventricular system,
often in the posterior fossa or in the spinal cord. In adults, 60% of the
ependymomas are found in the spinal cord, while in children, 90% of
these tumors are found in the encephalon, with the majority located in
the posterior fossa [7,70].

So that, unlike the conclusions of other researchers
[17,64-67,71-76], I believe that the etiopathogenesis of low-grade
gliomas is related with decreasing arterial blood flow (mild to severe
ischemia) and by contrast, increasing and prolonged hypoxia (hypoxic
microenvironment) associated with environmental carcinogens of
endogenous and exogenous origin [12,14,41,54,62,77,78]. We currently
know that there is a tendency toward a higher incidence of gliomas in
highly industrialized countries, where they use ionizing radiation and
are exposed to chemicals [78] and moreover, that the female sex
hormones play a role in the development of gliomas in women [15].
Then, the immature glial cells originated from the SVZ, in its process
of proliferation and migration to the cerebral cortex and gray nuclei
[16,17,46,64-67,79] and in a state of prolonged hypoxia [17,35,80], they
emit different biochemical responses in order to minimize the
progressive damage caused cytotoxic hypoxia. First, ROS generation by
the mitochondrial electron transport chain, leading to activation of
hypoxia-inducible factor-1 (HIF-1) and HIF-2 through PHD
inhibition; [72,80] Second, from a molecular point view, two
transcription factors namely HIF-1 alpha and nuclear factor of kappa-
light-chain-enhancer of active B cells (NF-kB), are considered as
master regulators of tumor cell adaptation to ROS, [34,56-58,81] and
Third, weeks or months later, prolonged hypoxia induce chromosomal
abnormalities in the endothelial cells and circulating phagocytes
through the induction of ROS [73,75,82] and promotes angiogenesis in
the tumor microenvironment; [34,76,83,84] observed in tomographic
and magnetic resonance studies in gliomas of grade III to IV. I report
two clinical cases operated by presenting low-grade astrocytomas [85].
Case 1: A 36 years old man was admitted to the hospital in December
3, 1980. Two months before he presented indifference, hearing very
distant voices followed by 4 predominat left tonic-clonic seizures. Left
central facial paresis and left hemiparesis (grade 2/5). CT scans and
right carotid angiography was normal. With clinical diagnosis of right
fronto-temporal irritative lesión, the patient was operated. During
surgery we found cerebral edema and abnormal tissue in area 42 and
43. The histological study showed protoplasmatic astrocytoma in grade
I-II (Figure 1).

Figure 1: Histological image at medium magnification showing low-
grade astrocytoma characterized by astrocyte proliferation, nuclear
hyperchromatism and abundant intercellular fibrils [85].

After surgery he received diphenylhydantoin and carbamazepine for
one year. The epileptic seizures disappeared. The patient had a 10 years
follow-up. Case 2: A 27 years old man was admitted in December 18,
1980. One week before he presented frontal headache, followed by
right Jacksonian seizures and then predominant right tonic-clonic
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seizures. Right central facial paresis and right hemiparesis. CT scans
was normal and left carotid angiography revealed doubtful
hypervascularization at the Sylvian triangle. During surgery we found
abnormal tissue in area 43 and 44 of Brodmann. Transoperative biopsy
was taken in area 43 and then, left prefrontal lobectomy was
performed. Histological study showed astrocytoma grade II-III. He
received anti-epileptic therapy for 2 years, because the seizures
disappeared. The patient had a 8 years follow-up.

On these reported cases, the diagnosis was clinical, because the
tomographic and angiographic studies were of little help. Histologically
low-grade astrocytomas were characterized by hypercellularity, nuclear
hyperchromatism and abundant intercellular fibrils. In some cerebral
areas in case 2, there was a marked reaction of endothelium in the
blood vessels [85]. For this reason, I agree with other authors that low-
grade astrocytomas debut with epileptic seizures and they can be cured
with surgery [4,7,10,17,85,86]. For example, according to Suarez et al.
[4], in 24 of 30 children operated on by low-grade brain gliomas, they
debuted with epilepsy and in 12 patients the tumor was located in the
temporal lobe. The genetic studies in all these patients showed no
abnormalities.

ROS overproduction is a feature of cancer cells and plays several
roles how to react with nucleic acids, lipids, carbohydrates, proteins
and the resulting products inducing an imbalance in redox
homeostasis [41,57,58,72]. The main linking substances able to relate
inflammation to tumorigenesis through the oxidative/nitrosative
stress, are prostaglandins and cytokines [61,83]. Therefore, long-term
lack of oxygen on immature glial cells is the primary cause in the
genesis of gliomas; that is of the uncontrollable growth of glioma cells,
expressed as astrocyte proliferation (Figure 1). It is likely that in
moderate hypoxia to anoxia, the glycolysis and OXPHOS are reduced
until disappear [35,80].

At present, recent research suggest that aspirin use for 6 months or
greater is associated with 33% lower gliomas risk compared to those
who never took aspirin, probably due to vascular recanalization by
aspirin [12]. Because aspirin and NSAIDs inhibit the synthesis of
prostaglandin-G2 through the inactivation of cyclo-oxygenase-1
(COX-1) and cyclo-oxygenase-2 (COX-2) enzymes, [12,87] and low-
dose aspirin is as effective as high-dose aspirin [8,9,87,88]. Besides this,
because aspirin is a potent anti-tumoral agent that exerts its anti-
neoplastic action by inhibition of the beta-catenin/T cell transcription
factor (TcF) signaling pathway in glioma cells; [77] but for this, it is
necessary an increase in arterial blood flow [12] in the hypoxic zone,
for entrance of aspirin and can exert its action in the hypoxic
microenvironment. Therefore, in this way, aspirin reduces or prevents
the risk of gliomas genesis, from mature or immature glial cells. In my
opinion, in addition to aspirin and NSAIDs, the patient must have a
high level of hemoglobin, as well as can be supplemented with
hyperbaric oxygenation [89] and/or ozone therapy; because the cancer
cells are anaerobic (do not breathe oxygen) and cannot survive in
presence of high levels of oxygen [58,76,90,91]. Finally, from the
neurosurgical point of view, epileptic seizures caused by ischemia or by
low-grade astrocytomas can be reduced or aborted; after
revascularization of the epileptogenic focus [33,86,92,93] or removal of
the low-grade astrocytoma [4,10,85,94].

Syringomyelia and Ependymomas
The ependymal duct of the spinal cord is covered with simple cubic

or cylindrical epithelium with microvelocities and cilia. The cause of

the dilatation of this ependymal conduct or syringomyelia, is not well
known [70,95]; but we know that syringomyelia is the development of
a fluid-filled cavity or syrinx within the spinal cord. However, based on
its anatomical location in the spinal cord and cerebrospinal fluid (CSF)
circulation, syringomyelia can be due to 1) syringomyelia with fourth
ventricle communication (about 10% of cases); 2) syringomyelia
without fourth ventricle communication (about 50% of cases); 3)
syringomyelia due to spinal cord trauma (about 10% of cases ); 4)
syringomyelia associated with spinal dysraphism , 5) syringomyelia due
to intramedullary tumors, and 6) idiopathic syringomyelia [69,95,96].

The association between syringomyelia and ependymoma is
frequent [89] and however to date, the cause of ependymoma
appearance is not fully understood [70,97]. But there are anatomical
[98-100] and pathological [101-104] findings that could explain the
genesis of syringomyelia such as: 1) location of the ependymal duct
within the spinal cord; 2) vascularization of peri-ependymal
parenchyma by arterioles and capillaries [99,100]; 3) anatomical
variants of spinal cord vascularization [98,99], and 4) degree of
dilatation of syringomyelia. Therefore on the basis of the above-
mentioned data, I believe that in the zones of greater dilatation there
are peri-ependymal zones with varying degrees of ischemia and
hypoxia. Thus, hypoxic ependymal cells in moderate to severe degree
within the medulla oblongata and spinal cord; they emit response
similar to the above-mentioned data for genesis of gliomas. These
ependymomas can initially be small, but then grow longitudinally in
the ependymal duct, both upward and downward as we show in Figure
2.

Figure 2: Preoperative sagittal T1 MRI scan with contrast showing
syringobulbia and solid ependymoma (C4 to C6) and soft
ependymoma (C6 toT5) [102].
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Therefore, peri-ependymal ischemia is the primary cause of
syringomyelia and syringobulbia, while hypoxia in moderate to severe
degree causes ependymomas. Both pathologies related to localized
atheromatous plaques at the mouths of the vertebral arteries
[21,24,27,43], trauma in the spinal cord [96] and anatomical variants
of the antero-ventral spinal arteries, postero-lateral spinal arteries,
radicular arteries and anterior spinal artery [36,98-100] as well as of
circulating environmental chemicals in the bloodstream
[11,12,62,82-84].

Conclusion
Consequently, based on the above-mentioned data, ischemia is

primary cause of syringomyelia and “neurodegenerative” diseases,
while prolonged hypoxia (moderate to severe degree) is responsible of
CNS gliomas. First, because hypoxia triggers ROS generation by the
mitochondrial electron transport chain, leading to activation of
hypoxia-inducible factor-1 (HIF-1) and HIF-2. Second, ROS
overproduction causes an imbalance between ROS and endogenous
antioxidants leads to modifications in the intracellular molecules and
third, this ROS overproduction is a feature of cancer cells and plays
several roles during the natural course of malignant tumor. In addition
to this, there are exogenous and endogenous risk factors that favor the
development of gliomas.

Therefore, the hypoxic microenvironment must be corrected to
reduce the risk of generating low-grade gliomas. The increase in
arterial blood flow to the hypoxic zone is the indicated procedure. In
this regard, several authors report that aspirin and some NSAIDs are
the drugs of choice against cell proliferation, because aspirin causes
vascular recanalization and thus favors the entry of nutrients, oxygen
and inhibits the synthesis of prostaglandins in glial cells. But also, we
must avoid being exposed to environmental pollutants to reduce the
genesis of atherosclerosis and the entry of carcinogenic agents.
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