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Introduction
Evaluation and monitoring the precision of medical laboratory 

equipment are very important. Ignoring the monitoring and control of 
measurement errors in laboratory equipment may reduce the accuracy 
of experiment results. In addition, before calibrating the equipment, 
we must check the precision of measurements [1]. Measurement errors 
are divided in two parts: systematic and random. Precision depends 
only on the distribution of random errors [2]. According to ISO/IEC 
GUIDE 99, precision is the closeness of agreement between indications 
or measured quantity values obtained by replicate measurements on 
the same or similar objects under specified conditions and usually 
expressed numerically by measures of imprecision, such as standard 
deviation or coefficient of variation (CV) under the specified conditions 
of measurement [3]. Then, coefficient of variation has been widely used 
as a measure of precision of measurement equipment in particular for 
medical laboratories [2-4].

The coefficient of variation of a population is defined as the ratio 
of population standard deviation to the population mean, and then the 
coefficient of variation of X is given by:

σ
µ

k =

In order to draw inferences concerning the population CV, it is 
necessary to make assumptions on the shape of the distribution of the 
population and to have a prior knowledge of the distribution of the 
estimator of population CV. An exact method for inferences about the 
coefficient of variation from a normal population based on the non-
central t distribution is available, but it is computationally cumbersome 
[5]. The first published approximation method for the construction of 
a CI for normal coefficient of variation was by McKay and David [6,7]. 
Vangel [8] provided a modification to McKay’s method which was 
based on analysis of the distribution of a class of approximate pivotal 
quantities. Koopmans et al. [9] inferred the confidence intervals of the 
CV for normal and lognormal distributions. Sharma and Krishna [10] 
developed the asymptotic distribution of the reciprocal of CV, which 
is called ICV, without making any assumptions about the distribution. 
Wong and Wu [11] developed small sample asymptotic method to 
obtain approximate confidence intervals for the coefficient of variation 
for both normal and no normal distributions. Pang et al. [12] proposed 
a simulation based Bayesian approach for constructing the interval 
estimation of the CV for Weibull, lognormal and gamma distributions 

[12]. Forkman and Verrill [13] shown that McKay’s approximation is 
type II noncentral beta distributed. Liang [14] studied the empirical 
Bayes estimation for the coefficient of variation in shifted exponential 
distributions. Mahmoudvand and Hassani [15] introduce two new 
estimators for the population coefficient of variation, in a normal 
distribution. Banik and Kibria [16] attempt has been made to estimating 
the population coefficient of variation by confidence intervals. But, 
the statistical tests in the literature not reported inferences about the 
coefficient of variation in uniform distribution. Therefore, it is of 
practical and theoretical importance to develop procedures for interval 
estimation and hypothesis testing for the coefficient of variation based 
on independent uniform samples.

In this paper, we introduce an unbiased estimator for the population 
coefficient of variation, in a uniform distribution.

Estimators and Confidence Intervals for CV

Let X be a random variable having a uniform distribution with a 
probability density

( ) ( ) ( )1
| , 2 3 3 3µ σ σ µ σ µ σ

−
= − < < +p x I x   (1)

where µ∞ ∞ σ- < < , > 0, and I(A) is the indicator function of the 
event A. Given ) ) .(µ (µµ µσ σσ σ2

, ,( , ),E [X] = ,Var [X] =  Thus, the CV of a 
uniform distribution is γ ≡ γ (μ, σ) = σ/μ. Our goal is to estimate γ.

Let 1 nX ,...,X  be a sample of size n( 2)≥  taken from a uniform 
distribution.

Let (1)X  = min ( )1, , nX X  and (n) 1 nX = max(X ,...,X ). Then 1 n(Y ,Y ) is 
complete and sufficient for (μ,σ). Given (μ,σ), 

µ̂ (1) (1)= (X + X ) / 2  and σ̂ (n) (1)= (X + X ) / 2 3
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Abstract
 Coefficient of variation has been widely used as a measure of precision of measurement equipment in particular 

for medical laboratories. The objective of this paper is to Inference for the coefficient of variation in uniform distributions. 
By using the two approaches of central limit theorem and generalized variable, confidence interval for coefficient of 
variation are considered. The coverage properties of the proposed confidence intervals for proposed two methods 
are assessment by simulation. An example using data of the approved metrological company from Iran Standard and 
Industrial Researches Organization is provided.
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are the MLEs of μ and σ, respectively. Note that ˆ( )[ ]µ µ µσE , = , thus,

µ̂  is unbiased estimator of μ. But ˆµ σ σ σ( , )
n +1E [ ] = ,
n -1

 then σ̂  is biased 

estimator of σ. To generate a unbiased estimator from σ̂ , must use the 

statistic of  σ̂n+1 .
n -1

 Also, µ̂  and σ̂n+1
n -1

 are the UMVUEs of μ and σ, 

respectively.

Let µ̂ (1) (n)T = = (X + X ) / 2  and σ̂ (n) (1)R = (2 3 ) = (X - X ).  Thus, given 
(μ,σ), (T, R), has a joint probability density

( ) n 2( 1), | ,
(2 3 )

µ σ
σ

−−
=

n

n np t r r

( 3 3 ) (0 2 3 )2 2µ σ µ σ σ− + < < + − < <r rI t I r 	               (2)

Note that 2 3( 2) −  
     

n T
n R

 is UMVUE of 1/ µγ σ=  [17].

Theorem 1: Let (1) 1min( ,..., ),= nX X X ( ) 1max( ,..., )=n nX X X  and 

1
/ .

=
=∑n

ii
X x n  Then

( ) (1)

2 3 (0,1)
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µ
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− →
−

d
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X n N
X X

 			                 (3)

Proof: Let ( )µ
σ
−

=n
n XZ , by central limit theorem, denote a 

standardized normal random variable. Then,
2

( , )σµ→
d
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n

where,
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Thus,
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Therefore, the 100(1-α)% confidence interval for τ based on 
Equation

1 1
2 2

( ) (1) ( ) (1)

2 3 X 2 3 Xα αµ
σ

− −
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− −n n
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			                  (4)

Theorem 2: Let µ̂ (1) (n)T = = (X + X ) / 2  and ( ) ( )( ) ( )ˆ2 3 σ −n nR = = X X
. Then

33 3
3

µ σ
σ σ

 − +
= − +  

 
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t R TR
r

			                    (5) 

Is generalized pivotal quantity for 1 µθ ψ σ= = . If 1
ψ

θ
=R R , then 

ψ ψ ψ= −T R  is the generalized test variable for testing 0 0:ψ ψ≥H  vs 
1 0:ψ ψ<H ,

Proof : 33 3
3θ

µ σ
σ σ
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where 1 ( 1, 2)−U ~ Beta n , and 2 3(1, ), ( ,1),U ~ Beta n U ~ Beta n  then Rθ has 
a distribution free of μ and σ. Obviously, the observed value of Rθ as T 
= t and R = risθ. Moreover, the distribution of Rθ does not depend on 
unknown parameters. Therefore, Rθ is a generalized pivot for θ. The 
generalized pivot for /ψ σ µ=  is 1/ψ θ=R R . Note that ψT satisfy the 
three conditions above: (1) For fixed t and r, the distribution of ψT is 
free of nuisance parameters; (2) tψ, the observed value of ψT is 0, and 
hence is free of any unknown parameters; and (3) ψT is stochastically 
decreasing in ψ.

Therefore, ψT  is bonafide generalized pivotal variable for con-
structing confidence interval of and its quantiles may be used to con-
struct confidence limits for σψ µ= .

For a given data set xi where i = 1,2,.,n,  the generalized confidence 
intervals and the generalized P-values can be computed by the following 
steps:

1.	 Compute t and r.  

2.	 Generate 1 ( 1, 2),−U ~ Beta n   
2 (1, )U ~ Beta n , 

3 ( ,1)U ~ Beta n , 
then compute Rψ.

3.	 Repeat Step 2 a total m times and obtain an array of Rψ’s.

4.	 Rank this array of Rψ’s from small to large.

The 100αth percentile of Rψ’s, ( )ψ αR  is an estimate of the lower 
bound of the one-sided

100(1 − α) percent a confidence interval and ( ) ( ); 12 2ψ ψ
α α−R R  

is a two-sided 100(1−α) per cent confidence interval. The percentage 

that Rψ’s are less than or equal to 0ψ  is a Monte Carlo estimate of the 
generalized P-value for testing 0ψ ψ=  vs 0ψ ψ< .

Comparison of the Methods
Two approximation methods for the construction of CI for k 

were highlighted in Sec. 2. If a CI for CV is to be constructed, there 
is no clear guidance as to which of these methods has to be used. In 
particular, there is no information regarding relative performance of 
the CI from central limit theorem and generalized variable methods 
introduced in this article. In view of this, there is a need to compare 
these approximation methods in order to assess their performance 
and select one which is appropriate. The two approximate methods are 
compared in the construction of a CI for CV using simulation and real 
data sets.

Simulation study

Simulation studies are done to compare the length of the 95% CI 
for CV obtained from central limit theorem and generalized variable 
methods. Data were generated from Uniform distribution with CV= 
0.1, 0.3, 0.6, 1 and 3, and sample size n = 10, 25, 50 and 100. All 
simulations were performed using programs written in the R statistical 
software [13-15] with the number of simulation runs M = 10,000 at 
level of significance α= 0.05 and 0.01.Given the role that m (repeat 
frequent) in function of constructed confidence intervals by generalized 
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variable method, Comparisons are done between confidence interval 
from central limit theorem method and confidence intervals from 
generalized variable methods with m = 5, 10, 30, 50, 100.The simulation 
results are shown in Tables 1-2, in which the following information, viz. 
The estimated coverage percentages of the confidence intervals from 
central limit theorem and generalized variable methods for a Uniform 
distribution at α= 0.05 and 0.01, is presented respectively.

As can be seen the Tables 1 and 2, all of the confidence intervals, for 
95% confidence level only for two location that constructed confidence 
interval by central limit theorem method and eighteen location that 
constructed confidence interval by generalized variable method, have 
the most of coverage percentage. Also, for 99% confidence level only 
for five location that constructed confidence interval by central limit 
theorem method and five teen location that constructed confidence 
interval by generalized variable method, have the most of coverage 
percentage.

Effect of coefficient of variation value on confidence intervals: 
With a brief look at the results that can be made to the weakness of 
confidence interval by central limit theorem method for small values of 
the coefficient of variation. So that in both confidence level for the first 
three values of parameters of coefficient of variation (0.1, 0.3 and 0.6), 
the highest of cover percentage to has been the confidence intervals 
constructed by generalized variable method with m=100. However, 
increasing the parameter of coefficient of variation, performance of 
confidence intervals of constructed to central limit theorem method 
is improved. But in general, performance of confidence intervals of 
constructed to central limit theorem method for small values of the 
coefficient of variation parameter is not suitable. But for larger values 
and confidence intervals of constructed to generalized variable method, 
its performance is improved.

Effect of sample size on confidence intervals: Note that the central 
limit theorem support of confidence intervals of constructed to central 
limit theorem method, Not unexpected that the confidence intervals 
in the high size of samples to show better performance. This issue 
carefully in both tables (1) and (2) can be clearly seen. So that for the 

five-coefficient of variations parameter value with increasing sample 
size clearly increase to coverage percentages of confidence interval 
of constructed to central limit theorem method. But it problem for 
confidence interval of constructed to generalized variable method is 
not seen. Then, does not appear to increase the sample size may have 
an effect on the performance improvement. Thus it appears that in 
practice the use of confidence interval of generalized variable method 
for a small sample size is much more reasonable.

Efficiency of repeat frequent on constructed confidence 
intervals by generalized variable method: With attention to results 
of simulation study the important role of this agent in the performance 
of confidence intervals is clearly visible. In all positions with increasing 
m, coverage percentages of confidence interval of constructed to 
generalized variable method significantly increased.

A real example

The approved metrological company from Iran Standard 
and Industrial Researches Organization has conducted the study 
for the purpose of evaluation of precision for medical laboratory 
micropipettes according to NCCLS EP5-A2 and ISO 8655-6. CV is 
commonly presented in the report of the measurements. Samples 
were collect for three kinds of micropipettes which are common in 
medical diagnosis labs are used and are shown by A, B and C. A lab 
unit technician sampled the distilled water in a standard lab condition 
at the beginning of the work time and repeated the sampling two hours 
later. Overall, there were 40 runs in 28 consecutive days, and in every 
measurement 10 times sampling was conducted for each three kinds 
of micropipettes. The summary statistics of data collected from the 
three kinds of micropipettes of A, B and Care for every run given in 
Table 3. Initial review of 10 times of sampling in every run for any 
micropipette by Kolmogorov-Smirnov test shows that data follow a 
uniform distribution (Table 3). Therefore, we are interested in making 
inference about the coefficient of variation of every run based data of 
three kinds of micropipettes. Take 0.006 as a hypothetical value for 
the criteria of good precision for the measurements of micropipette 
according to ISO 8655-6. Upper limit of 95% confidence interval for 40 

CV σ
µ

 
 
 

Sample Size (n)
Coverage Percentage

Method (I) 
Method (II)

m=5 m=10 m=30 m=50 m=100

0.1

10 0.1267 0.6512 0.7906 0.9030 0.9205 0.9427
25 0.2493 0.6482 0.7962 0.9031 0.9247 0.9428
50 0.3820 0.6514 0.7939 0.9051 0.9212 0.9427
100 0.5309 0.6466 0.8005 0.9096 0.9294 0.9480

0.3

10 0.4726 0.6664 0.8187 0.9296 0.9462 0.9650
25 0.6820 0.6638 0.8262 0.9299 0.9446 0.9575
50 0.7907 0.6699 0.8231 0.9330 0.9461 0.9590
100 0.8697 0.6761 0.8300 0.9329 0.9475 0.9611

0.6

10 0.7256 0.6683 0.8242 0.9351 0.9445 0.9560
25 0.8427 0.6690 0.8270 0.9316 0.9431 0.9514
50 0.8977 0.6684 0.8323 0.9354 0.9434 0.9506
100 0.9257 0.6742 0.8360 0.9351 0.9436 0.9535

1

10 0.8166 0.6468 0.7991 0.9132 0.9263 0.9447
25 0.8921 0.6538 0.8020 0.9146 0.9243 0.9388
50 0.9209 0.6576 0.8185 0.9175 0.9304 0.9434
100 0.9395 0.6630 0.8197 0.9200 0.9342 0.9461

3

10 0.8636 0.7420 0.8594 0.9215 0.9263 0.9383
25 0.9206 0.6650 0.8083 0.9232 0.9328 0.9485
50 0.9332 0.6445 0.7941 0.9000 0.9122 0.9318
100 0.9458 0.6498 0.8033 0.9005 0.9143 0.9331

Table 1: Coverage Percentage of 95% confidence Intervals from central limit theorem and generalized variable methods for a Uniform distribution.
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CV σ
µ

 
 
 

Sample Size (n)
Coverage Percentage

Method (I) 
Method (II)

m=5 m=10 m=30 m=50 m=100

0.1

10 0.1823 0.6693 0.8135 0.9357 0.9639 0.9816
25 0.3452 0.6649 0.8210 0.9348 0.9618 0.9802
50 0.5051 0.6711 0.8152 0.9403 0.9603 0.9794
100 0.6747 0.6695 0.8230 0.9418 0.9637 0.9818

0.3

10 0.6013 0.6781 0.8442 0.9499 0.9728 0.9832
25 0.8002 0.6829 0.8462 0.9559 0.9706 0.9839
50 0.9001 0.6903 0.8439 0.9566 0.9732 0.9840
100 0.9484 0.6862 0.8413 0.9527 0.9703 0.9804

0.6

10 0.8245 0.6756 0.8381 0.9506 0.9688 0.9784
25 0.9293 0.6892 0.8457 0.9547 0.9654 0.9760
50 0.9646 0.6836 0.8525 0.9524 0.9663 0.9762
100 0.9796 0.6856 0.8457 0.9476 0.9634 0.9733

1

10 0.9009 0.6645 0.8188 0.9389 0.9571 0.9735
25 0.9583 0.6747 0.8328 0.9401 0.9579 0.9705
50 0.9789 0.6828 0.8419 0.9503 0.9626 0.9755
100 0.9864 0.6788 .8338 0.9436 0.9604 0.9738

3

10 0.9400 0.7501 0.8734 0.9391 0.9522 0.9681
25 0.9754 0.6814 0.8314 0.9507 0.9668 0.9800
50 0.9841 0.6608 0.8209 0.9297 0.9521 0.9722
100 0.9870 0.6668 0.8192 0.9287 0.9524 0.9722

Table 2: Coverage Percentage of 99% confidence Intervals from central limit theorem and generalized variable methods for a Uniform distribution.

RUN Micropipette A Micropipette B Micropipette C
Minimum Maximum P-Value Minimum Maximum P-Value Minimum Maximum P-Value

1 0.04951 0.05001 0.508 0.04922 0.04978 0.200 0.04751 0.04800 0.533
2 0.04960 0.05017 0.592 0.04932 0.05029 0.671 0.04706 0.04793 0.089
3 0.04968 0.05018 0.198 0.04942 0.05006 0.422 0.04818 0.04858 0.436
4 0.04983 0.05032 0.855 0.04938 0.05034 0.188 0.04813 0.04873 0.944
5 0.04918 0.05025 0.017 0.04958 0.05008 0.042 0.04711 0.04794 0.472
6 0.04930 0.05030 0.960 0.04963 0.05051 0.347 0.04740 0.04853 0.419
7 0.04986 0.05018 0.919 0.04921 0.05056 0.227 0.04816 0.04979 0.965
8 0.04933 0.05007 0.329 0.04951 0.05007 0.002 0.04909 0.04951 0.311
9 0.04961 0.05012 0.886 0.04953 0.05023 0.230 0.04716 0.04860 0.288
10 0.04955 0.05025 0.597 0.04910 0.04990 0.013 0.04808 0.04922 0.685
11 0.04905 0.05004 0.060 0.04905 0.04985 0.496 0.04805 0.04938 0.213
12 0.04983 0.05048 0.427 0.04910 0.05026 0.448 0.04821 0.04892 0.268
13 0.04943 0.04988 0.115 0.04918 0.04975 0.893 0.04666 0.04765 0.920
14 0.04961 0.05021 0.819 0.04920 0.05036 0.000 0.04794 0.04862 0.949
15 0.04982 0.05017 0.065 0.04944 0.05070 0.690 0.04600 0.04774 0.155
16 0.04978 0.05012 0.949 0.04933 0.05009 0.455 0.04726 0.04810 0.178
17 0.04949 0.05003 0.897 0.04913 0.05003 0.097 0.04744 0.04881 0.012
18 0.04985 0.05091 0.095 0.04891 0.05027 0.919 0.04999 0.05034 0.819
19 0.04925 0.05018 0.267 0.04933 0.05016 0.710 0.04825 0.04924 0.396
20 0.04918 0.04996 0.360 0.04914 0.05040 0.017 0.04810 0.04878 0.832
21 0.04967 0.05033 0.130 0.04943 0.05014 0.998 0.04747 0.04863 0.329
22 0.04975 0.05040 0.661 0.04918 0.05041 0.238 0.04844 0.04992 0.855
23 0.04978 0.05055 0.044 0.04931 0.04972 0.917 0.04819 0.04923 0.530
24 0.04935 0.05017 0.841 0.04934 0.05028 0.253 0.04869 0.04967 0.896
25 0.04999 0.05063 0.709 0.04918 0.05013 0.010 0.04819 0.04991 0.433
26 0.04925 0.05028 0.680 0.04936 0.05087 0.019 0.04819 0.04926 0.056
27 0.04950 0.05004 0.022 0.04924 0.05032 0.143 0.04884 0.04957 0.500
28 0.04947 0.05003 0.958 0.04924 0.04994 0.748 0.04649 0.04920 0.582
29 0.04941 0.05025 0.999 0.04934 0.05136 0.000 0.04779 0.04850 0.431
30 0.04988 0.05058 0.597 0.04911 0.05023 0.396 0.04730 0.04834 0.314
31 0.04947 0.05010 0.673 0.04928 0.04973 0.707 0.04839 0.04908 0.243
32 0.04971 0.05019 0.736 0.04911 0.04979 0.341 0.04715 0.04864 0.173
33 0.04982 0.05025 0.022 0.04935 0.04990 0.536 0.04714 0.04802 0.975
34 0.04970 0.05010 0.172 0.04914 0.05003 0.126 0.04731 0.04821 0.250
35 0.04996 0.05033 0.041 0.04936 0.04984 0.193 0.04846 0.04934 0.786
36 0.04954 0.05001 0.798 0.04940 0.04998 0.131 0.04868 0.04923 0.184
37 0.04961 0.05011 0.413 0.04928 0.05025 0.020 0.04650 0.04854 0.001
38 0.04963 0.04997 0.514 0.04935 0.04993 0.096 0.04902 0.04991 0.456
39 0.04986 0.05056 0.673 0.04968 0.05009 0.044 0.04868 0.04938 0.748
40 0.04989 0.05018 0.947 0.04959 0.05004 0.819 0.04786 0.04832 0.225

Table 3: Summary statistics and P-value of Kolmogorov-Smirnov test for data collected from the three kinds of micropipettes of A, B and C are for every run.
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runs in three kinds of micropipettes by using two statistical methods 
are shown in Table 4.

Conclusion
In this paper, we propose two approaches for making inferences 

about the coefficient of variation in uniform distribution. These 
approaches utilize the concepts of generalized variables and central 
limit theorem. The performance of generalized variable method, 
alongside central limit theorem method, was assessed using simulation 
and real data. A comparison indicates that the coverage percentage of 
the proposed confidence interval of the generalized variable method 
is generally satisfactory, but it is computationally time consuming. 
Moreover, central limit theorem method takes a shorter time to 
calculate.
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