Research Article Open Access

Estimations of s-Numbers of an Infinite Matrix Operator on H^1_{β} Spaces

Abd El Ghaffar H*

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Abstract

In this paper we study conditions that an infinite matrix $T = \left(\tau_{ij}\right)_{i=1}^{\infty}{}^{\infty}$ has to satisfy in order to define a linear bounded operator from any weighted H^1_{β} with a weight sequence \mathcal{B} ={ \mathcal{B}_{β} } of positive numbers into itself, and give upper and lower estimations of the approximation numbers of such an infinite matrix.

Keywords: Approximation numbers; Infinite matrix; Weighted sequence

Introduction

In [1-8] an exact estimation of approximation numbers of a multiplication operator $T = \left(\tau_i\right)_{i=1}^{\infty}$ on the space ℓ^p $(1 \le p < \infty)$ was given by the formula $\alpha_r(T) = \sup_{card\ F = r+1} \inf_{i \in F \subset N} |\tau_i|$, where F is any subset with (r+1) elements of the set of natural numbers N, and the same result was found true for any multiplication operator $T = \binom{1}{i}_{i \in I}$ defined on the space $\ell_v(I)$ of bounded families of real numbers.

In [3] upper and lower estimations of the approximation numbers of an infinite matrix $T = (\tau_{nk})_{n=1,k=1}^{\infty}$ on the space ℓ^1 were given by

$$\sup_{\lambda_{nk}} \sup_{card F = r+1} \inf_{n} \frac{1}{\sum_{k \in F} |\lambda_{nk}|} \leq \alpha_{r}(T) \leq \sup_{card F = r+1} \inf_{k \in F} \sum_{n=1}^{\infty} |\tau_{nk}|,$$

where, $\{\lambda = (\lambda_{nk}), \ k \in F\}$ is a biorthogonal family of functionals to the family $\{\tau_k = (\lambda_{kj}), \ k \in F\} \subseteq \ell^1$. In [5] the same result was found true for an infinite matrix $T = \left(\tau_{nk}\right)_{n=1}^{\infty} \sum_{k=1}^{\infty}$ on the space ℓ_{γ} .

The main objective of this paper is finding upper and lower estimations of the approximation numbers of an infinite matrix operator $T = \left(\tau_{nk}\right)_{n=1}^{\infty} {}^{\infty}_{k=1}$ from the weighted H^1_{β} space into itself [1-6].

Notations and Basic Definitions

- 1 By card (F) we denote the number of elements belonging to any subset F.
- 2 For any two Banach spaces X and Y we denote by L(X, Y) the Banach space of all continuous linear operators from X into Y equipped with the usual operator norm.
- 3 For a weight sequence $\beta = \{\beta_i\}$ of positive numbers, we denote by H^1_β , H^∞_β the weighted spaces,

$$H_{\beta}^{1} = \left\{ f(z) : f(z) = \sum_{i=1}^{\infty} a_{i} \frac{z^{i}}{\beta_{i}}, \sum_{i=1}^{\infty} \left| a_{i} \right| < \infty \right\}$$

$$H_{\beta}^{\infty} = \left\{ f(z) : f(z) = \sum_{i=1}^{\infty} a_i \frac{z^i}{\beta_i}, \sup_{i} |a_i| < \infty \right\}$$

Equipped with the following norms:

$$||f|| = \left(\sum_{i=1}^{\infty} |a_i|\right)$$
 and $||f|| = \sup_{i} |a_i|$ respectively.

Preliminary Lemmas and Propositions

In this section we mention some terminologies and state several auxiliary lemmas and propositions which we use.

Proposition

A map which assigns to every operator $T \in L(X,Y)$ a unique sequence $\{s_n(T)\}, n=0,1,2,\ldots$ is called an s-function if the following conditions are satisfied: (8.9)

1 -
$$s_{n+m}(U + V) \le s_n(U) + s_m(V)$$
 for $U, V \in L(X, Y)$.

2 -
$$|s(U) - s(V)| \le ||U - V||$$
 for $U, V \in L(X, Y)$.

3 - $s_{\cdot}(\lambda U)$ =| λ | $s_{\cdot}(U)$, for all real numbers λ and U∈L(X,Y).

4 - $s_u(U) \ge s_u(U^*)$. If U is compact operator then $s_u(U) \ge s_u(U^*)$.

5 -
$$||T|| = s_0(T) ≥ s_1(T) ≥ s_2(T) ≥ ≥ 0$$
, for all T∈L(X,Y).

6 -
$$s_{u}(UTV) \le ||U|| s_{u}(T) |V||$$
 for $V \in L(X_{0}, X), T \in L(X, Y), U \in L(Y, Y_{0})$.

7 - $s_n(T)$ =0 if rank (T)≤n for $T \in L(X,Y)$.

$$8 - s_r(I_n) = \begin{cases} 1 & \text{for } r < n \\ 0 & \text{for } r \ge n \end{cases}$$

Where I_n is the identity operator on the Euclidean space l_2^n . We call $s_n(T)$ the n^{th} s-number of the operator T.

As examples of s-numbers, we mention approximation numbers $\alpha_r(T)$, Gelfand numbers $c_r(T)$, Kolmogorov numbers $d_r(T)$ and Tichomirov numbers $d_r^*(T)$ defined by:

i) Approximation numbers of operators,

For any arbitrary normed spaces X and Y, $A_r(X,Y)$ for r=0,1,2,... denotes the collection of all finite mappings $A \in L(X,Y)$ whose range is at most r-dimensional. For any arbitrary operator $T \in L(X,Y)$ the r-th approximation numbers of T is defined by

*Corresponding author: Abd El Ghaffar H, Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt, Tel: +20 2 26831474; E-mail: hanihanifos@yahoo.com

Received August 03, 2016; Accepted August 25, 2016; Published August 31, 2016

Citation: Abd EI Ghaffar H (2016) Estimations of s-Numbers of an Infinite Matrix Operator on H^1_{β} Spaces. J Appl Computat Math 5: 318. doi: 10.4172/2168-9679.1000318

Copyright: © 2016 Abd El Ghaffar H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

$$\alpha_r(T) = \inf \{ \|T - A\| : A \in A_r(X, Y) \} \ (r = 0, 1, 2, 3, ...).$$

ii) $c_r(T) = \alpha_r(J_Y T)$, where J_y is a metric injection (a metric injection is a one to one operator with closed range and with norm equal one)from the space Y into a higher space $I^p(I)$ for suitable index set I [7-9].

iii)
$$d_n(T) = \inf_{\dim Y \le n} \sup_{\Vert v \Vert \le 1} \inf_{v \in Y} \Vert Tx - v \Vert$$
 for $T \in L(X, Y)$.

iv)
$$d_x^*(T) = d_x(J_xT)$$
 for $T \in L(X,Y)$.

Lemma 1

Let $T = (\tau_{nk})_{n=1}^{\infty} \sum_{k=1}^{\infty}$ be an infinite matrix. If $\sup_{n} \sum_{k=1}^{\infty} |\tau_{nk}| \prec \infty$ then the expression $T(f(z)) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (\tau_{nk} a_k) \frac{z^n}{\beta_n}$, $\forall f(z) \in H_{\beta}^{\infty}$ defines a linear continuous operator T: $H_{\beta}^{\infty} \to H_{\beta}^{\infty}$ with $||T|| = \sup_{k=1}^{\infty} |\tau_{nk}|$.

Proof

For any element $f(z) \in H^{\infty}_{\beta}$ we get,

$$||T(f(z))|| = \left\| \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (\tau_{nk} a_k) \frac{z^n}{\beta_n} \right\|_{H^{\infty}} = \sup_{n} \left| \sum_{k=1}^{\infty} \tau_{nk} a_k \right|$$

$$\leq \sup_{n} |a_k| \cdot \sup_{n} \left| \sum_{k=1}^{\infty} \tau_{nk} \right|$$

Therefore,
$$||T|| \le \sup_{n} \sum_{k=1}^{\infty} |\tau_{nk}|$$
.

On the other hand, noting that f_n =($sign\ au_{n1}$, $sign\ au_{n2}$,...) is an element belonging to H^∞_β we get,

$$||T|| \ge \frac{||T(f_n)||_{H^{\infty}_{\beta}}}{||f_n||_{H^{\infty}}}. Hence ||T|| \ge \sup_{n} \sum_{k=1}^{\infty} |\tau_{nk}|.$$

Lemma 2

Let $T = \left(\tau_{nk}\right)_{n=1,\,k=1}^{\infty}$ be an infinite matrix. If $\sup_{k}\sum_{n=1}^{\infty}\left|\tau_{nk}\right| \prec \infty$ then the expression $T(f(z)) = \sum\limits_{n=1}^{\infty}\sum\limits_{k=1}^{\infty}\left(\tau_{nk}a_{k}\right)\frac{z^{n}}{\beta_{n}}, \ \forall \ f(z) \in H_{\beta}^{1}$ defines a linear continuous operator $T: H_{\beta}^{1} \to H_{\beta}^{1}$ with $\|T\| = \sup_{k}\sum_{n=1}^{\infty}\left|\tau_{nk}\right|$.

Proof

$$||T(f(z))|| = \left| \left| \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (\tau_{nk} a_k) \frac{z^n}{\beta_n} \right| \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} |\tau_{nk} a_k|$$
$$= \sum_{n=1}^{\infty} |a_k| \cdot \sum_{k=1}^{\infty} |\tau_{nk}| \le \sum_{n=1}^{\infty} |a_k| \cdot \sup_{k=1}^{\infty} |\tau_{nk}|$$

Therefore,
$$||T|| \le \sup_{n=1}^{\infty} |\tau_{nk}|$$

On the other hand writing $\beta^{-1} = \left| \beta_n^{-1} \right|$ and noting that the point

$$f_{n} = (\operatorname{sign} \tau_{n1}, \operatorname{sign} \tau_{n2}, \dots) \in H_{\beta-1}^{\infty} \text{ with } \|f_{n}\|_{H^{\infty}} = 1 \text{ we get,}$$

$$\|T : H_{\beta}^{1} \to H_{\beta}^{1}\| = \|T^{*} : H_{\beta-1}^{\infty} \to H_{\beta-1}^{\infty}\| \geq \|T^{*}f_{n}\|_{H^{\infty}_{\beta-1}} \geq \sup_{k} \sum_{i=1}^{n} |r_{ik}|$$

Lemma 3

For
$$f = (a_i) \in H_\beta^\infty$$
 we get

$$\sup_{\operatorname{card} F = n+1} \inf_{i \in F} |a_i| = \inf_{\operatorname{card} F = n} \sup_{i \notin F} |a_i|.$$

Main Theorems

Theorem 1

Let $T = (\tau_{nk})_{n=1,k=1}^{\infty}$ be an infinite matrix with linearly independent rows and columns satisfying the conditions of Lemmas (1), (2), (3) and considering T as an operator such that:

 $T: H^1_{\beta} \longrightarrow H^1_{\beta}$ then we get the following inequality

$$\sup_{cardF=r+1}\inf_{n}\left(\frac{1}{\sum\limits_{k=1}^{\infty}|\gamma_{nk}|}\right)\leq \alpha_{r}(T)\leq \sup_{cardF=r+1}\inf_{k\in F}\sum_{n=1}^{\infty}|\tau_{nk}|.$$

Where F is any subset of natural numbers with (r+1) elements and $(\gamma_{ij})_{i=1}^{\infty}$ is the biortogonal function to $(\tau_{nk})_{k=1}^{\infty}$.

Proof

For any set E of indices with card E=r we define an operator $A_E: H^1_{\beta} \longrightarrow H^1_{\beta}$ with rank $(A_E) \le r$ by:

$$A_E = (a_{nk}), \ a_{nk} = \begin{cases} 0 &, \ k \notin E \\ \tau_{nk} &, \ k \in E \end{cases}$$

From the definition of approximation numbers and using Lemmas (1),(2),(3) we get

$$\alpha_r(T) \le \inf_{card\ E=r} \left\| T - A_E \right\| \le \left\| T - A_E \right\| = \sup_{k \in E} \sum_{n=1}^{\infty} |\tau_{nk}|$$

$$\leq \sup_{cardF-r+1} \inf_{k \in E} \sum_{n=1}^{\infty} |\tau_{nk}|$$

To prove the other side, let $F=\{n_1, n_2, ..., n_{r+1}\} \subset N$ be a set of indices with (r+1)-elements and define a projection $P_F \in L\left(H^\infty_{1/\beta}, H^\infty_{1/\beta}\right)$ as follows:

$$P_F(f_i(z)) = y_i, \ y_i = \begin{cases} f_i(z), \ i \in F \\ 0, & i \notin F \end{cases}$$

Clearly the range of P_E is the subspace

$$Y_{i} = \{ (f_i(z)) : f_i(z) = 0 \forall i \notin F \}.$$

The set $\{\tau_n = \left(\tau_{nk}\right)_{k=1}^{\infty} \in H^1_{\beta}, \ n \in F\}$ is a subset of linearly independent elements in H^1_{β} then using Hahn-Banach Theorem there exist linear continuous functionals [10] $g_k = \left(\gamma_{nk}\right)_{n=1}^{\infty} \in H^\infty_{1/\beta}$, kEF satisfying, $g_k(\tau_n) = \sum_{i=1}^{\infty} \tau_{ni} \gamma_{ik} = \delta_{nk}$.

Let us construct the operator

$$S_F = \left(\delta_{ij}\right)_{i=1, j=1}^{\infty} \in L\left(Y_F, H_{1/\beta}^{\infty}\right) \text{ such that } \delta_{ij} = \begin{cases} 0 & , j \notin F \\ \gamma_{ii} & , j \in F \end{cases}$$

Therefore we get the following diagram

$$Y_F \xrightarrow{S_F} H_{1/\beta}^{\infty} \xrightarrow{T^*} H_{1/\beta}^{\infty} \xrightarrow{P_F} Y_F$$

Since $P_F T^* S_F = I_{Y_F}$ is the identity on the (r+1)-dimensional subspace Y_F then $1 = \alpha_r (I_{Y_F}) = \alpha_r (P_F T^* S_F) \leq \alpha_r (T^*) ||S_F||$.

Hence,
$$\alpha_r(T) \ge \alpha_r(T^*) \ge \frac{1}{\|S_F\|} \ge \left(\sup_{n} \sum_{k=1}^{\infty} |\gamma_{nk}|\right)^{-1} = \sup_{cardF = r+1} \inf_{n} \left(\frac{1}{\sum_{k=1}^{\infty} |\gamma_{nk}|}\right)$$
Theorem 2

Let $T = (\tau_{nk})_{n=1, k=1}^{\infty}$ be an infinite matrix with linearly independent

rows and columns satisfying the conditions of Lemmas (1),(2),(3) and considering T as an operator such that

$$T: H^1_{\beta} {\longrightarrow} H^1_{\beta} \ \text{ whose dual } \ T^*: H^{\infty}_{\beta^{-1}} \to H^{\infty}_{\beta^{-1}} \ \text{we get}$$

$$\sup_{cardF=r+1}\inf_{k}\left(\frac{1}{\sum_{n=1}^{\infty}|\gamma_{nk}|}\right) \leq \alpha_{r}(T^{*}) \leq \sup_{cardF=r+1}\inf_{n\in F}\sum_{k=1}^{\infty}|\tau_{nk}|$$

Where F is any subset of natural numbers with (r+1) elements and $(\gamma_{ii})_{i=1}^{\infty} is$ the biortogonal functional to $(\tau_{nk})_{k=1}^{\infty}$.

Proof:

The proof of the theorem is similar to theorem 1.

Acknowledgements

The author would like to thank professor Nashat Faried (professor of Functional Analysis in the department of Mathematics) for his useful suggestions.

References

- 1. Choudhary B (1989) Functional Analysis with applications. New Delhi , India.
- 2. Faried N, Abd El Ghaffar H (2012) Approximation numbers of an infinite matrix

- operator from any Banach space with Schauder basis into itself. Int Journal of contemp.math 7: 1831-1838.
- Faried N, Abd El-Kader Z (1993) Approximation numbers and Tichomirov numbers of an infinite matrix operators on the space ℓ¹. Proc Math Phys Soc Egypt 68: 41-47.
- Faried N, Abd El-Kader Z, Mehanna A (1993) s-Numbers of polynomials of shift operators on ℓ^p spaces, 1 ≤ p < ∞. Journal of the Egyptian Mathematical Society p: 1.
- Faried N, Abd El-Kader Z (1995) Estimations of δ-numbers and entropy numbers of an uncountable infinite matrix. Italian Rivista di Mathematica Pura ed Application 5: 16.
- 7. Pietsch A (1972) Nuclear locally convex spaces. Akademie-Verlag Berlin.
- Pietsch A (1980) Operator ideals. North-Holland Publishing Company, Amsterdan, New York, Oxford, (1980).
- Pietsch A (1987) Eigenvalues and s-Numbers. Akademische verlagesellschaft Geest. Porting K-G. Leipzig.
- Lusternik LA, Sobolev VJ (1974) Elements of functional analysis-3rd English translation. Hindustan Publ. India.