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Abstract
The shear-lag effect refers to the non-uniform normal stress distribution on a box girder cross section induced by 

the shear flow at the flanges and the webs. It can be observed in all kinds of box girder structures especially the ones 
with a large width. The shear-lag effect has to be appropriately considered in bridge design, otherwise the servicability 
and reliability of a bridge will be reduced. In this paper, a semi-analytical method is proposed to estimate the shear-lag 
effect for composite box girder bridges with corrugated steel webs. Three generalized displacement functions are first 
introduced to represent the deformation patterns in different parts of a bridge cross section. Afterwards, the governing 
equations of the problem are derived based on the energy variance principle considering the feature of a composite 
box girder bridge with corurgated steel webs and then solved using the finite difference method. The shear-lag effect of 
a continuous girder bridge constructed in South China is investigated based on the proposed semi-analytical method 
and finite element simulation. The results show that the proposed semi-analytical method is able to well estimate the 
characteristics of the example bridge. Given the same bridge cross section, the magnitude of the shear-lag effect at 
different parts of the example bridge is inversely proportional to the effective span length.

Keywords: Energy-based semi-analytical method; Composite box 
girder bridges; Shear-lag effect; Corrugated steel webs

Introduction
The composite box girder with corrugated steel webs is a new type 

of composite bridge structure (Figure 1). It usually composes of top and 
bottom concrete slabs, corrugated steel webs and internal and external 
prestressing tendons. Compared to conrete box girders, this kind of 
structure has a smaller self-weight, a better seismic performance and 
a lower construction cost [1]. As the flexural stiffness of the webs can 
be neglected due to the so-called “accordion effect”, the bending of 
the girder is mainly resisted by the top and bottom concrete slabs. The 
corrugated steel webs, on the other hand, carry most of the shear force. 
Therefore, both the concrete and the steel can be utilized efficiently.

Similar to a concrete box girder, the shear-lag effect can also be 
observed in a composite box girder with corrugated steel webs, especially 
in that with wide flanges. The shear-lag effect refers to the non-uniform 
normal stress distribution on a box girder cross section induced by 
the shear flow at the flanges and the webs. Although extensive studies 
have been carried out for the mechanical performance such as the 
flexural, shearing and torsional behavior of composite box girders with 
corrugated steel webs [2-7], the research on the shear-lag effect is still 
limited [8-10].  As a promising analytical tool, the energy-based method 
has been used to analyze the shear-lag effect [9-11]. However, only one 
generalized displacement function was used in existing researches, 
which cannot represent the different deformation patterns at different 
parts of a cross section.

This paper aims to investigate the shear-lag effect of composite box 
girders with corrugated steel webs. The concept of the effective flange 
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width coefficient, which is an effective indicator of the shear-lag effect, 
will be first introduced. Then an energy-based semi-analytical method 
adopting three generalized displacement functions will be developed 
to estimate the effective flange width coefficient. A real bridge in 
South China will be investigated afterwards to verity the proposed 
semi-analytical method and preliminary analyze the characteristics of 
the shear-lag effect of a continuous composite box girder bridge with 
corrugated steel webs.

Research Methodhology
Effective flange width coefficient

In engineering practice, the shear-lag effect is often considered by 
adopting an “effective flange width” in the calculation based on the 
elementary beam theory [12-14].  The conventional definitions of the 
effective flange width adopted in existing design codes or research 
papers are only applicable for flanges with a uniform thickness, and 
the non-uniform distribution of the cross-sectional stress is usually 
neglected [15].

As an improvement to the concept of effective flange width, Jiang et 
al. [15] suggested that the effective flange width be calculated by:
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where bei and bi are the effective and the atcural flange width of Ai 
corresponding to Ai in Figure 2, respectively;  tai is the average thickness 
defined as tai = Ai/bi; and ybi is the y-coordinate of the intersection point 
between the concrete slab and the web; ( ) xiσ is the normal stress at the 
location corresponding to the coordinates given in the bracket at the 
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Figure 1: A composite box girder with corrugated steel webs.
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where M(x) is the internal bending moment induced by external 
loadings; E and G are the elastic shear modulus of concrete, respectively; 
Ii(x) is the moment of inertia of Ai. A variable with an apostrophe (’) 
represents its derivative along the longitudinal direction (d/dx). The first 
term on the right-hand-side of Eq. (4) is the potential energy induced by 
external loadings. The second term is the sum of the compressional and 
shearing energy at Ai. The strain energy of the webs is not considered as 
the flexural rigidity of the webs is neglible due to the so-called “accordion 
effect”. Take the variance of Eq. (4):
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According to the principle of minimum potential energy, let δΠ = 0, 
and then Eq. (6) can be obtained after some algebraic operation:
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Eq. (7) is valid for any given δw’’, δU1, δU2 and δU3, thus the 
following equations can be obtained:
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Equations (7) and (8) are the governing differential equations for 
the deflection and the generalized displacements, while Eq. (9) is the 
boundary condition that has to be satisfied at the interval (x1, x2).

The governing equations can be solved using finite difference 
method. First the investigated girder is discretized using finite difference 
nodes. The 1st- and 2nd-order derivatives of Ui at the jth node can be 
represented by the nodal values U:
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where a is the interval between the finite difference nodes; the 
subscripts j-1, j and j+1 are the number of nodes. Meanwhile, according 
to Equation (7), the 2nd-order derivative of w can be written as
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With the substitution of Eqs. (10)~(12) into Eqs. (7) and (8), 
the finite difference equations of the problem can be obtained. The 

area Ai; dA and ds are the infinitesimal area and segment, respectively. 
The integration at the numerator is carried out over Ai, while the 
integration at the denominator is carried out along the vertical line 
y=ybi  . x, y and z directions are the longitudinal, transverse and vertical 
directions, respectively.

The definition of the effective flange width in Eq. (1) is superior 
to the conventional definitions. With the use of the stress integration 
in the numerator, the non-uniform distribution of the cross-sectional 
normal stress can be considered. The average thickness is adotpted in 
the denominator, so it is applicable to cross sections with thickness-
varying flanges.

With the definition of the effective flange width in Eq.(1), the 
effective flange width coefficient can be defined as ρi = bei/ bi. ρi  is able 
to represent the characteristics of the shear-lag effect. When ρi is smaller 
than 1.0, the shear-lag effect can be regarded as positive. In this case, the 
effective flange width is lager than the actural flange width because the 
cross-sectional normal stress at the intersection between the flange and 
the web is larger than that at other locations. On the other hand, when 
ρi is larger than 1.0, the shear-lag effect can be regarded as negative. The 
magnitude of the shear-lag effect can also be indicated by ρi. When the 
magnitude of the shear-lag effect gets stronger, the value of ρi will get 
farther away from 1.0. Therefore, in this research, the effective flange 
width coefficient defined according to Eq. (1) is used as an indicator of 
the shear-lag effect.

Energy-based semi-analytical calculation method

According to the elasticity theory, the cross-sectional normal stress 
σxi is related to the corresponding longitudinal displacement ui  at each 
of the area Ai:
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Assume ui can be expressed by
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where w = w(x) is the deflection of the beam; Ui is the generalized 
displacement function at Ai , which is the maximum differences of the 
shear rotation angle at each part of the cross section. U1, U2 and U3 are 
different functions representing the deformation patterns of different 
parts of a cross section.

Then the global potential energy, Π, of a composite box girder with 
corrugated steel webs can be written as follows:
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Figure 2: Typical cross section of a composite box girder bridge with corrugated 
steel webs and schematic diaphragm of normal stress distribution.
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generalized displacements U1, U2 and U3 can be solved from the finite 
difference equations in a iterative manner, and afterwards the effective 
flange width coefficients can be calcualted accordingly.

Results and Discussion
The shear-lag effect of a continuous girder bridge with 
corrugated steel webs

To validate the proposed energy-based method and to preliminary 
study the shear-lag effect of a composite box girder bridge with 
corrugated steel webs, a real bridge constructed in South China (termed 
as “the example brige” in the following parts) is studied in this paper. It 
is a 88 + 156 + 88 m three-span continuous girder bridge. Figure 3 shows 
its typical cross section. The widths of the top and bottom concrete slabs 
are 16.25 and 8.7 m, respectively. A thickness-varying cross section is 
adopted for the top concrete slab. Figure 4 shows a corrugation of the 
webs in the example bridge.

In this research, the case that the example bridge is subjected to 
a uniformly distributed loading is considered. The effective flange 
coefficients in this case were first calculated using the proposed semi-
analytical method. Meanwhile, finite element simulation was carried 
out to obtain the cross-sectional stresses of the example bridge. Then 
the effective flange width coefficients are calculated using the stresses 
obtained from the finite element simulaton. The finite element method 
is a computational technique used to obtain approximate solutions of 
boundary value problems in engineering. The main difference between 
the finite difference method and the finite element method is that 
the former is based on the approximation of higher-order terms of a 
derivative using lower-order terms, while the latter is developed with 
the interpolation of variable values in a computational domain or a 
numerical model.

In this research, the finite element simulation was performed using 
ANSYS [16], which is a universal finite element platform widely used 
in various areas such as civil engineering, mechanical engineering, 

electronic engineering and so on. The basic procedures of finite element 
simulation using ANSYS include specifying material properties, 
developing a numerical model, discretizing the model using nodes and 
finite elements, applying boundary and loading conditions, solving and 
post-processing, which are shown in Figure 5. In the finite element 
model in this research, the top and bottom concrete slabs were modeled 
using solid elements, while the webs were modeled using shell elements. 
All the materials were modeled as linear elastic materials with the 
material parameters obtained from laboratory tests.

Figure 6 shows the effective flange width coefficients for the example 
bridge under a uniformly distributed loading obtained using two 
different methods. The two kinds of results agree well with each other, 
indicating that the proposed semi-analytical method can well estimate 
the shear-lag effect of a composite box girder brige. Figure 6a also shows 
the schematic diagram of the bending moment of the example bridge, 
and the two dashed lines in each figure demonstrates the locations 
where the bending moment is zero (“zero bending moment point”). At 
these locations, the normal stress at the bridge cross section is close to 
zero, thus singular values of the effective flange width coefficients may 
occur following the proposed definition in Eq. (1). As a result, the two 
kinds of results may differ from each other at these locations. However, 
the overall characteristics of the shear-lag effect can still be revealed by 
the curves in Figure 6 as the influence of the singular values is limited 
within a small area.

According to the curves in Figure 6, for the example bridge in this 
paper, the strongest shear-lag effect is observed at the positive bending 
moment zone at the side span, where the values ρ1, ρ2 and ρ3 are smaller 
that those at other locations. At the negative bending moment zone 
near the intermediate support, the shear-lag effect can be neglected as 
the values of the effective flange widths are close to 1.0. This is because 
the length of the positive bending moment zone at the side span is far 
smaller than the length of the negative bending moment zone next 
to the intermediate support. Wu et al. [8] has shown that for a simply 
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Figure 6: Coefficients of effective flange width under a uniformly distributed loading of the example bridge.

supported gider, the magnitude of the shear-lag effect will increase 
as the length of a span dicreases while the width of the girder is kept 
unchanged. For the example bridge here, the positive bending moment 
zone at the side span and the negative bending moment zone near the 
intermediate support can be viewed as a short and a relatively long 
simply supported girder, respectively. Each positive or negative bendong 
moment zone can be defined as an “effective span” of a bridge. Then the 
legnth between the zero bending moment points can be regarded as the 
“effective span length”. It can be concluded from the calculation results 
that in a continuous girder bridge, the magnitude of the shear-lag effect 
increases with the decreases of the effective span length.

Conclusion
In this paper, an energy-based semi-analytical method is developed 

to estimate the shear-lag effect of composite box girder with corrugated 
steel webs. Three different generalized displacement functions are used 
in the proposed method, which can well take into account the different 
deformation patterns at different parts of a cross section. A real bridge 
constructed in South China is investigated as an example. For this 
example bridge, the effective flange width coefficients obtained from the 
proposed semi-analytical method agree well with those obtained from 
finite element simulation. The strongest shear-lag effect is observed at 
the positive bending moement zone at the side span because of its short 
effective span length. On the contrary, with a long effective span length, 
the negative bending moment zone near the intermediate experience 
weak shear-lag effect.
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