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Abstract
Estimations of species abundance are a common goal of wildlife monitoring surveys, but debate remains as to which 

methods are theoretically and practically most useful. Abundance-induced heterogeneity (AIH) models developed in the 
early 2000s allowed estimation of point abundance from repeated presence-absence data (e.g. occupancy models), and 
advanced estimation of point abundances of unmarked species. AIH models, however, do not provide an estimate of the 
effective detection area sampled. Therefore the absolute number of individuals in a survey area cannot be estimated 
directly. Recently, methods have become available to determine the effective detection area sampled by camera traps. 
Our objective was to present a novel method to estimate the absolute number of individuals of a species in an area 
from point abundance data using effective detection areas from camera traps. This would make AIH models available 
for population estimates. We applied this newly developed Species Area Abundance (SAA) model to a 3-month camera 
trapping data set of Bawean warty pigs (Sus blouchi) from Indonesia, and compared the result to an independent 
Random Encounter Model (REM) estimate from the same data. Population sizes and uncertainties estimated by the 
SAA and the REM model were comparable. Differences in density estimations between the REM and SAA model were 
not significant when mean group size was included in the REM. The less restrictive assumptions regarding camera trap 
placement of the SAA model compared to the REM might make it more practical to study cryptic and unmarked animal 
populations. Further studies are needed to determine the accuracy and practicality of the SAA model using a range of 
differrent sampling designs and focus species.
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Introduction
Estimation of population sizes has been one of the main goals 

in wildlife monitoring surveys [1]. Well into the second half of the 
previous century, survey methods were limited to capture-recapture 
and distance sampling studies using live traps, direct observations or 
indirect signs (i.e. feces), to estimate densities and population sizes  
[2-5]. The introduction of modern camera traps in the 1990’s provided 
new ways to estimate abundance and initiated a surge in new research 
[6]. Most camera trap studies between 2008 and 2013, however, still 
used capture-recapture methods to estimate densities [7,8], a method 
limited to species that are individually marked [9,10].

For unmarked animal populations, camera trap studies increasingly 
make use of relative abundance-indices to make inferences [8]. 
Unfortunately, relative abundance-indices are not comparable between 
sites, habitats, different points in time and species, as detection 
probability is not constant [11,12]. Additionally, relative abundance-
indices do not produce estimates of the absolute number of individuals 
that are required for management of endangered populations. 

Presently, two camera trapping methods estimate absolute numbers 
of individuals: the abundance-induced heterogeneity model [13] and 
the Random Encounter Model [14]. However, both models still have 
their drawbacks when estimating absolute numbers of individuals in an 
area (from here on referred to as ‘species area abundance’). 

Abundance-induced heterogeneity (AIH) models are based on an 
occupancy framework, in which binary survey data are gathered over 
repeated visits. The AIH model assumes that detection probability (r) 
is species specific and is related to its abundance Ni. Therefore variation 
in species detection probability at a sampled site, or point, can be used 

to estimate its abundance. In the AIH model, the mean abundance of a 
species across all sampled sites is expressed as Mean point abundance or 
Poisson parameter Lambda (λ).

Lambda is estimated by the maximum likelihood of the binomial 
probability of observing a certain detection history over a set of T repeat 
visits, multiplied by the Poisson probability of the local presence of K 
animals on the site [15]. The key assumption of the AIH model is that 
the spatial distribution of the animals across survey sites follows a prior 
distribution (Poisson) [13]. Initially, the AIH model was developed 
for point count surveys of migratory birds, but researchers have more 
recently applied it to camera trap surveys (e.g. Argus phaesants Argus 
argusianus [16], Siamese Firebacks Lophura diardi [17]).

The limitation of the AIH model lies in its inability to estimate the 
effective detection area sampled. Estimations of species area abundance 
have been limited to a summation of Lambda over sampled sites and 
effective detection area is substituted for species characteristics such 
as average home range size [17,18]. Substitution, however, does not 

mailto:mark1.rademaker@wur.nl


Citation: Rademaker M, Rode-Margono EJ, Weterings MJA (2017) Estimation of Species Area Abundance from Point Abundance Data, Using 
Effective Detection Areas from Camera Traps. J Biodivers Endanger Species 5: 200. doi: 10.4172/2332-2543.1000200

Page 2 of 6

J Biodivers Endanger Species, an open access journal
ISSN: 2332-2543

Volume 5 • Issue 4 • 1000200

account for potential overlapping home-ranges, nor does it guarantee 
that camera traps effectively sample the home-range of a species.

The Random Encounter Model (REM) [14] was the first method to 
estimate the density and abundance of unmarked populations by taking 
detection probability of camera traps into account. This potentially 
provides a robust way to estimate species area abundance [19]. Further 
adjustments to the REM in 2011 allowed researchers to estimate the 
effective detection area of a camera trap for different species [20]. 
However, as the method is based on an ideal gas model, cameras must 
be placed randomly in relation to the movement of the target species. 
This restricts the sampling designs suitable for REM [21], and limits its 
use for cryptic species with low detection probability, that often require 
non-random sampling designs in order to generate sufficient captures.

Our objective is to present a novel method to estimate species area 
abundance of unmarked species that combines the advantages of the 
AIH- and REM models and that is suitable for a variety of sampling 

designs. Specifically, our model combines the AIH model with 
estimating the effective detection area from camera traps.

Materials and Methods
A model for species area abundance estimation from point 
abundance data

Conceptually, our newly proposed species area abundance (SAA) 
model consists of 5 basic steps (Figure 1). (1) The effective detection 
area of the camera traps for the target species is determined, providing 
the area sampled by each trap. (2) Using presence-absence data from 
repeat surveys in an AIH model, the mean point abundance, i.e. the 
mean abundance of a species across all sampled sites, is estimated. (3) 
This estimate is extrapolated to species area abundance by multiplying 
the mean point abundance with the total number of sampling sites if 
the entire survey area was monitored by camera traps without overlap 

Figure 1: Schematic representation of the SAA model (a) a population is sampled using camera traps, with the effective area sampled by the camera traps indicated 
by the orange cones (Sx) (b) based on detection histories, mean point abundance across sampling sites is estimated (λ) (c) the estimate is extrapolated to area 
abundance by multiplying λ with the total number of sampling sites as if the entire survey area was monitored by camera traps (Tx) (d) the estimate is corrected for 
the total number of sites occupied, i.e. occupancy (ψx) (e) finally, the estimate is corrected for animal activity and movement by multiplying the camera operating time 
by the proportion of time spent active by the target species and dividing this by the average time the species spends at each occupied locality, equal to the average 
length of each detection event. The result is the maximum number of detection events (Dx max). The estimate in (d) is divided by Dx max to provide the number of animals 
in the area at any given time, i.e. species area abundance.
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between traps. (4) The extrapolated value is then corrected for the total 
number of sites occupied and (5) The resulting value is divided by the 
the maximum number of detections. The final estimate represents the 
number of individuals in the area at any given time, i.e. species area 
abundance. We will now explain the model in more detail.

Effective detection area

The effective detection area of a camera trap is related to both 
species body size and behaviour [20]. For species x, the effective 
detection area (Sx) of a camera trap is equal to the segment of a circle 
that is the product of the species-specific effective detection radius (rx) 
and the species-specific effective detection angle (θx) [20]. 

( )2   (1)
2

x
x xS r in radiansθ θ=                                     (1)

At the effective detection radius and angle, the expected number of 
detections for a species is equal to the expected number of detections 
missed [22]. Effective detection radius and angle are estimated from the 
detection radius and angle of an animal at first capture, using functions 
for fitting standard linear covariate detection models [20]. The 
threshold values at which the number of detections equals the number 
of detections missed can be computed using a line transect model for 
angle and a point transect model for radius in distance [20,23]. 

Within a single species, large differences between body size (e.g., 
between sex or life-stages) should be taken into account by estimating 
the radius and angle of detection for each sex or life-stage.

Furthermore, when using a combination of different camera trap 
models in the same survey or project, the effective detection area has to 
be (i.e. effective detection radius and angle) estimated for each camera 
trap model. The effective detection area should then be weighted based 
on the contribution of each camera trap model to the total number of 
traps used.

The maximum number of sampling sites without overlap (Tx)  for 
a species equals the size of the survey area (A) divided by the effective 
detection area.

(2)x
x
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Mean point abundance: Mean point abundance ( )xψ  can be 
estimated from the Royle-Nichols abundance-induced heterogeneity 
model [13]. 

Species area abundance: Species area abundance (Nx) can be 
calculated by multiplying the mean point abundance by the proportion 
of sites occupied ( )xψ and the maximum number of local sampling 
sites.

(3)x x x xN Tλψ=                   (3)

Equation 3 overestimates species abundance in an area, as it assumes 
a species to be present 24 h a day in each local sampling site. The result of 
equation 3, therefore, needs to be corrected for the maximum number 
of times a camera could detect an individual of a species.

Proportion of sites occupied: The proportion of sites occupied 
( )xψ  can be estimated using single season occupancy models. Site 
covariates deemed important on the basis of the ecology of the target 
species should be included and several models compared. The total 
number of sites occupied is estimated as the sum of the mean of the 

posterior distribution of occupancy at each site and then divided by the 
total number of sites sampled [24]. 

Maximum number of detections

The maximum number of times a camera can detect an individual 
of a species depends on the average time the camera traps are operated 
(t), the time a species spends at a local sampling site, and its level of 
activity throughout the day. If activity is defined as an animal being 
in movement [25], then the total amount of time in which detections 
could occur is equal to the total time the camera traps are operated, 
multiplied by the proportion of time spent active by the animal (vx). 
A flexible circular distribution to time-of-detection from camera trap 
data can be used to estimate the proportion of time spent active [25]. 
This method has two assumptions: the level of activity is the only 
determinant of the rate at which the camera detects animals i.e., the 
camera operating times and animal activity times are independent of 
one another, and all individuals in the sampled population are active at 
the peak of the daily activity cycle. If these assumptions are met, trap 
rate is proportional to the level of activity and the total amount of time 
spent active proportional to the area under the trap rate curve.

The proportion of time spent active multiplied by the average time 
the cameras are operated gives the maximum operating time ( )xv t  
available to detect a species. This maximum operating time, however, 
does not provide information on how many detection events could 
have occurred.

To calculate the maximum number of detection events, we must 
first assume that the presence of the camera traps does not alter the 
natural behaviour of the species. Secondly, we must assume that the 
local sites sampled are a representative sample of the habitats available 
in the area. If these assumptions are met, then the maximum number 
of detection events (Dx max) equals the maximum operating time divided 
by the average time a species spent at each local sampling site per 
detection event ( ) xR  

 (4)x
x max

x

v tD
R

=                   (4)

The use of equation 4 requires that the camera sensors are setup to 
allow continuous detection, either through the use of video recordings 
or the use of photo recordings without intervals. To identify gaps in 
time when camera traps do not function during the research period, 
camera traps should be set to take a picture every day at midnight.

Species area abundance can now be formulated as the product of 
the mean point abundance, the proportion of sites occupied and the 
maximum number of local sampling sites divided by the maximum 
number of detection events.

Species area abundance (SAA) model: 
 

(5)x x x
x

x max

TN
D
λψ

=

Dividing the extrapolated abundance estimates by the maximum 
number of detection events thus provides a ‘snapshot’ or ‘frozen-in-
time’ view of the number of animals in the area, similar to Distance 
sampling methods [26].

The SAA model assumes that all sampled local sites are accessible, 
animals are distributed homogenously over the habitat that they use, 
and abundance is constant for the duration of the survey. We recognize 
that this assumption might not be met in all cases. Stratified sampling 
within an animal’s habitat can be an option if animals are clearly using 
specific parts of their habitat. Additionally, more cameras at random 
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locations are required to estimate density of species that are more 
aggregated or systematically distributed over their habitat. Next to this, 
abundance is assumed constant during the survey period. Therefore, 
repeated surveys need to be conducted in a sufficiently short time-
period to ensure population closure.

Case study bawean warty pigs

We applied the SAA model to a camera-trapping dataset of Bawean 
warty pigs (Sus blouchi) from Bawean Island, Indonesia. Details of 
the random sampling design, population size estimates using REM 
modelling and an estimate of occupancy from these data can be 
found in Rademaker et al. [27]. Point abundance (n=102) ( )xλ was 
computed in PRESENCE from the Royle-Nichols model [28]. We used 
a Chi-Square (χ2) Goodness-Of-Fit test to assess whether the Poisson 
distribution fitted the dataset at the 0.05 significance level [29]. Each 24 
hour period of a single operating camera represented a repeated survey. 
Each camera trap operated for 7 days, resulting in 7 repeated surveys. 
Data on detection radius and angles were collected in the field using a 
video viewer, compass and measuring tape. Camera trap videos were 
played on the video viewer and a field assistant positioned him/herself 
at the first detection point. A compass was then laid on the center of 
the camera trap to measure the angle of detection. This procedure was 
then repeated using a measuring tape to estimate detection radius. 
Effective detection radius and angle were estimated by DISTANCE 6.0 
using a point-transect model for radius, and a line-transect model for 
angle data [23]. Propagation of error approach was used to estimate the 
uncertainty of species area abundance [30]. Uncertainty of the species 
area abundance estimate Nx is equal to the square root of the squared 
sums of the uncertainty of the parameters λx, Tx  and Dx max, times the 
partial derivatives of these parameters 

2 2 2
2 2 2

 
 

   (6)x x x
x x x x max

x x x max

N N NN Ts D
T D

σ σλ σ σ
λ

     ∂ ∂ ∂
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Uncertainty of the parameters Tx and Dx max  were themselves 
functions of uncertainty of the parameters θx, rx and t and Rx (eqn 8) 
respectively. 
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We used a two-sample t-test for equal means [29], to determine 
whether there was a significant difference between abundance estimates 
of the SAA-and REM model.

Results
Species area abundance (SAA) Model

Bawean warty pigs were detected at 45 out of 102 sites with an 
average of ( ) SEx ±  0.73 ± 1.04 detection events per site over the repeat 
surveys. Mean point abundance was estimated at 1.06 ± 0.32 pigs. Chi-
square Goodness-Of-Fit test showed no significant difference between 
observed and expected values, indicating model fit (Table 1). Mean 
parameter estimates to calculate species area abundance can be found 

in Table 2. Species area abundance of Bawean warty pigs on Bawean 
Island was estimated to be 436 ± 141 individual pigs ( ) SEx ±  or 9.4 ± 
3.0 pigs per km2. Uncertainty of the SAA model estimate was 32.34%. 

Random encounter model (REM)

Rademaker et al. [27] estimated density and total abundance 
of Bawean warty pigs with the same dataset, although using a REM. 
Density and total abundance were estimated in two ways: one estimate 
with mean group size as an upper limit estimate, and one estimate 
without group size as a lower limit estimate. The lower limit estimate 
equalled 3.7 ± 0.9 pigs/km2 or 172 ± 42 pigs on the whole island. The 
upper limit estimate was 8.1 ± 1.9 pigs/km2 or 377 ± 92 pigs on the whole 
island. The uncertainty in the total abundance estimate by the REM was 

Parameters

Survey No. No. of. 
Detections

No. of 
Observed

No. of 
Expected Chi-square*

1 0 96 91.4178 0.2297
1 6 10.0132 1.6085

>1 0 0.5734 0.0000
2 0 89 91.4178 0.0639

1 13 10.0132 0.8909
>1 0 0.5734 0.0000

3 0 92 91.4178 0.0037
1 10 10.0132 0.0000

>1 0 0.5734 0.0000
4 0 88 91.4178 0.1278

1 14 10.0132 1.5874
>1 0 0.5734 0.0000

5 0 93 91.4178 0.0274
1 9 10.0132 0.1025

>1 0 0.5734 0.0000
6 0 91 91.4178 0.0019

1 11 10.0132 0.0972
>1 0 0.5734 0.0000

7 0 91 91.4178 0.0019
1 11 10.0132 0.0972

>1 0 0.5734 0.0000
Survey total 714 714.0308 4.84

pooled 0 0.569 0.569
*df=15, p=0.99, Critical χ2=7.26

Table 1: Goodness-Of-Fit test results for mean point abundance in presence.

Parameter Mean N S.E. S.E.%
λx 1.06 102 0.32 30.28
ψx 0.58 92
Tx 15631461 0.35 0.00
A 46.6
r 0.0039 63 0.00029 7.44
θ 22.46 62 0.033 0.15

Dx max 22093 2507.28 11.35
t 596908 92 6539 1.10
R 15.67 57 1.77 11.30
v 0.58

Table 2: Mean parameter estimates and standard error of mean point abundance 
(λx), proportion of sites occupied (ψx), maximum number of local sampling sites 
(Tx), survey area in km2 (A), effective detection radius (r), effective detection angle 
(θ) maximum number of detection events (Dx max), average camera operating time 
in seconds ( t ), average time per detection event in seconds ( R ) and activity level 
(v). Mean parameter estimates and standard error of r, θ, ψ and v were obtained 
from Rademaker et al. 
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comparable to that obtained by the SAA model, however, slightly lower 
with 24.32%. The density estimate per km2 obtained through the SAA 
model is significantly (t (116.48)=-1.82, p=0.036) different to that of the 
lower limit estimate by the REM, but not significantly (t (170.96)=-0.36, 
p=0.359) different to that of the upper limit estimate by the REM. 

Discussion
Model uncertainty

We estimated species area abundance of Bawean warty pigs on 
Bawean Island by using mean point abundance from an abundance-
induced heterogeinity model and effective camera trap detection areas. 
The result is credible, although the uncertainty in the estimation by the 
SAA model is high, with mean point abundance ( )xλ , as the highest 
contributing parameter. Neither Royle and Nichols [13] nor O’Brien 
and Kinnaird [16] explicitly mention the uncertainty of mean point 
abundance for species assessed, although, the latter graphically report 
95% CI of the estimates. Suwanrat et al. [17], report point abundance 
estimates of 0.49 ± 0.13 individuals ±( SE)x , equal to an uncertainty 
of 26.53%. 

When looking at uncertainties in REM estimates there is large 
variation in the literature. A study on Baird’s tapir (Tapirus bairdii) 
yielded an average uncertainty of 54% [31] and an average uncertainty 
of 39% was reported for Harvey’s duiker (Cephalophus harveiyi) based 
on six differrent locations [32]. On the contrary an uncertainty of 
only 8% was reported in a study on European wildcats (Felis silvestris 
silvestri) [33] and an average uncertainty of 15% in a study of female 
African lionesses (Panthera leo spp.) in four habitats [34]. This shows 
the difficulty in defining an acceptable level of uncertainty in estimating 
abundance of unmarked species from camera trap data.

Model comparison

The abundance-induced heterogeneity model uses a Poisson 
distribution, and thus assumes that the spatial distribution of animals is 
homogeneous over the habitats [15]. In order to meet this assumptionthe 
number of animals inhabiting one sampling point should not be 
spatially correlated to the number of animals at other sampling points. 
This can be achieved by placing traps at a distance greater than the home 
range diameter of the focal species when using non-random sampling 
designs. Additionally, the abundance-induced heterogeneity model 
assumes that in order to accurately estimate the maximum number 
of detection events, sampled points are a representative sample of the 
habitats available in the area. These assumptions allow for non-random 
and random sampling designs.

The REM is derived from an ideal gas model in which particles are 
assumed to move randomly in relation to one another and the number 
of collissions or density of particles in the gas can be calculated based 
on this assumption. The key requirement for calculating animal density 
using the REM model is thus that the placement of the camera traps must 
be random in relation to the movement of the animals. Within habitats 
sampled by the researcher (e.g., secondary forest), landscape features 
that are used or avoided by the target species more than proportionally 
(e.g., trails, places with scratchmarks or feces), must therefore only be 
sampled in proportion to their coverage in the landscape to prevent 
violation of model assumptions [21]. Random (stratified) or systematic-
interval sampling designs can meet this assumption [35,36]. Use of 
random or systematic sampling design makes the use of the REM 
limited for cryptic species whose detection probability is low and who 
disproportionally use certain landscape features. In that case, locally 
preferrential placement is the only option to obtain any detection event 

or to get a sufficient amount of observations to accurately estimate 
abundance as well as effective detection parameters.

The abundance induced heterogeneity model and the SAA model 
described in this paper do not have this limitation as they do not rely on 
trapping rate, but presence-absence data. An additional capture within 
a repeat survey resulting from a non-random movement of the target 
species in relation to a camera trap’s position does not directly influence 
the abundance estimate as the number of presence detections during 
the survey is still 1. Available habitats must be sampled representatively, 
but at these sampling sites locally optimal locations within a certain 
radius (e.g., 100 m), such as trails, places with tracks, feces or other 
signs of recent activity, can be sampled and representative estimates of 
abundance can still be obtained [16]. This makes these models more 
suitable to estimate species area abundance of more rare or cryptic 
species. Repeated surveys do need to be conducted in a sufficiently short 
time-period to meet the assumption of population closure. Further 
studies are needed to determine the level of accuraccy and practicality 
of the SAA model for different species and sampling designs.

Conclusion
We used the newly developed Species Area Abundance (SAA) 

model to estimate the abundance of Bawean warty pigs on Bawean. The 
standard error of estimated abundance on Bawean was slightly greater 
than the standard error of abundance estimated by an REM model used 
for comparison, but lay within the range of uncertainties of a number 
of other REM studies. An advantage of the SAA model in studying 
abundances of rare or cryptic species in an area are the less restrictive 
assumptions in terms of sampling design. Further studies are needed 
to determine the accuracy and practicality of species area abundance 
estimations under different sampling designs.
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