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Abstract

This work consists in calculating values of thermal conductivity and the suitable thickness, of a thermal insulator called "thermisorel", by the coupling of the time
fractional diffusion equation and the genetic algorithm, taking into account the data and the objectives of the experiment in the article [1].
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Introduction

In [1], a heat transfer study was performed on a sample of low density wood
fiber board, called Thermisorel. This material is manufactured by STEICO
Casteljaloux in France. Thermisorel is used in construction because it prevents
heat loss in winter due to their low thermal conductivity, nearly 0.042 Wm™ K=,
It also protects the building from heat in summer due to their capacity high
thermal storage. In this study, a 22.2 mm thick thermisorel board was used. The
details of this study are described [1]. Only the data necessary for our problem
mentioned above, which we will recall. This work will be divided into two parts:

In section 2, we will detail the position of our problem, as well as the hypotheses
necessary for its resolution. In the third part, we will talk about the genetic
algorithm, as well as the time fractional diffusion equation and its discretization
in order to give the desired solution

Positioning of the problem

Our problem is to identify suitable optimal values of thermal conductivity and
thickness of a thermal insulator, if we vary from 15°C to 24.6°C the temperature
of one of the faces and the other will keep a constant temperature of 15°.

To solve this problem, we will use as hypotheses, the data used from the
experiment in [1]:

- The density of the insulation: p=170kg.m™

- Specific heat: ¢, =1280 J.kg.x™" (according to the measurement made by the
CSBT)

- Temperature and heat flux variations as a function of time, on both sides of the
thermal insulator plate (see tables below)
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From the graphs in [1], we extracted the values of the temperature and those
of the flux as a function of time, until the steady state was reached, for the hot
side. We have the following tables (Tables 1-3):

Additional assumptions are introduced:

- Since the temperature and the heat flux at any point of each face, at a
given time, are identical, then we can restrict the study to a straight segment
perpendicular to the two faces, one of the ends of which (noted O) on hot face
and the other (noted X) on the face where the temperature is constant

- Itis assumed that the variation of the flux, at a given moment, on this segment
is linear

The problem thus turns to the following question:

What are the optimal values suitable for thermal conductivity and segment
length [0, X]? If the temperature at point O varies according to Table 1-3 during
the transient period. And that the temperature of the X end is 15°C during the
two regimes, permanent and stationary.

The solution is therefore the values of these two parameters which can give at
point X the temperature value closest to 15°C. (If we use the means mentioned
at the beginning)

Table 1: Table representation of the temperature variation of the hot face during
the transient regime.

Time in seconds Temperature in °C

0 15
10 15
20 15.67
30 16.34
40 17.34
50 17.5
60 18
70 19
80 20
90 21

100 22.34
110 23.67
120 24.33
130 24 .66



Rasolomampiandry G, et al.

J Appl Computat Math, Volume 10:12, 2021

Table 2: Table representation of the variation of the flux of the hot face during
the transient regime.

Time in seconds Flux in W.m*?
0 0
10 0
20 18.34
30 20
40 30
50 33.33
60 33.34
70 38.34
80 41 .67
90 46 .67
100 43.34
110 38.34
120 31.67
130 18 .37

Table 3: Representation in table form of the variation of the flow of the face
where the temperature remains constant during the transient regime.

Time in seconds Flux in W.m?
0 0
10 0
20 0
30 0
40 0
50 0
60 0.77
70 1.54
80 231
90 4.62
100 4.62
110 7.69
120 9.23
130 10.77

Solution of the Problem by Coupling the
Genetic Algorithm and the Fractional
Diffusion Equation

The time fractional diffusion equation
In the case of this problem the time fractional diffusion equation is written:
Dy T(t,x)—aA T(t,x) = f(t,x) @

t

'[(t—r)’“T'(r,x)dr is the fractional derivative of
I'l-a)y

DET(t,x) =

Caputo of order o, 0 <t <1 of the variable t, t> 0 [2,3]
1e[0,7,] and x € [0,X] with 7, =130 and X is one of the parameters to

be determined and which corresponds to the thickness of the thermal insulator

k
a= . is the diffusivity coefficient. kis the other parameter to be determined
)4

T(z,x) is the temperature corresponding to the variables t and x
JS(2,x) is the flow corresponding to the variables t and x

For our discretization:
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Note that the transient regime stops at the 130th second. Then on the segment
[0.7;]

such that

And [0, X ], we respectively construct a finite sequence (f,),_..,

lzﬁ and % =il , a finite sequence (x/)o . such h:% that and
<j<13

13
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This relation is valid for 7 = O

For the Laplacian discretization we will use the advanced decentered
differentiation [4] and we have:

o* T(t,x

) =2T(t.,x
A T(tnx )__T(tn /) /+2) (!

j+1
hZ

)+ T(t;,x))

@)

The linearity assumption on f(¢,x) allows us to write:

f(ti’X)_f(tvO)

f(tﬂxj): b%

X+ f(6,0) (4)

Equation (1) has become:

T(,%,.0) = 2T(6,%,,) + T(0,x,
m— )Zmr P =T~ (p+ D )(p+ ) = o] - L) (;l;xf VT, ) o)

To simplify the writing, note T(t,x,)=T,

i;oand f(¢,x,)=f,;, hence
T(t, - plx;)=T_

I
r2- a)z( i-p

.y and the équation (5) has become:

27, 4T,
th I S =1,

T
T M2+ D7 = p |- a(=L2

We further assume thatfor j>13, 7, , =T,
For i=1 et 1< <13, (5)is written:

= =27,
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Specifically

Fori=1andj=12 we have
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It must be mentioned that:

for j=12:
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We deduce the following matrix forms:

For i=L11<; <13
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For j>3;1< /<13

We then have 13 matrix equations of the form
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Ifwe fix k, and X, the solution of these equations following the values of 1,gives
us a value of 7°(13,13), when i=13 and which the value of the temperature

at the point X . If7(13,13) =15°C then k_and X are the solutions of the
problem posed. Otherwise we change the value of k. and X. We only stop if
T(13,13)=15°C

To speed up the search of k. and X, we set the search intervals for the two

parameters and by means of the genetic algorithm, we can give optimal values,
which depends on the imposed acceptance

The genetic algorithm

For the classical method, to identify a parameter &, suitable for a given
problem, in a set A, we consider a finite sequence of elements of A and among
these elements we look for what respects the imposed conditions. If none
of these elements is valid, we change immediately until we have an optimal
solution. This process is long and can lead to a lot of wasted time in some
cases [5].

Regarding the genetic algorithm, the choice of @ is made directly in A, even if
A'is uncountable; everything is predefined to avoid wasting time

Optimal values of Xand K

If «=0.9 is the order of the fractional derivative. If we choose
k. €[0.03;0.045] and X €[0.02;0.03] , the computation with MATLAB,
by means of the genetic algorithm, gives us the optimal solution:

k., =0.032363%.m™" K" And X =0.029705m . There is a difference

between the values pronounced during the experiment and the values found by
means of the genetic algorithm. But if we use as a hypothesis these theoretical
values in [6] for example, we arrive at the same result.

Conclusion

In this article, we made an example of the coupling of a fractional differential
equation and the genetic algorithm to optimize certain physical parameters. In
future publications we will consider yet another fractional differential equation
suitable for another physical system and which we will couple with an algorithm,
such as what we used to optimize certain parameters.
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