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Editorial Open Access

In a previous editorial in this journal, we reviewed the identification 
assumptions of the Survivor Average Causal Effect (SACE) [1]. In this 
editorial, we discuss the estimation and sensitivity analysis of the SACE 
under the monotonicity assumption.

In randomized trials in which the outcome requires considerable 
follow-up, participants may die before the trial is complete. In such 
cases, the outcome is undefined. This situation is sometimes referred to 
as “truncated by death” or “censored by death” [2,3]. In these settings, 
a crude comparison between the survivors of each treatment arm 
may give misleading results because the randomization is no longer 
preserved by conditioning on a post-treatment event (survival), and 
thus the crude comparison is not a comparison of the same population 
comparing different treatments but is a comparison of different 
populations [4].

A treatment comparison that makes sense in this setting is the 
SACE, which is a comparison of the outcome between treated and 
untreated individuals in the subpopulation that would have survived 
in either arm [1,5]. Because this subpopulation is essentially an 
underlying characteristic of the individual, the SACE can circumvent 
the problem with the crude comparison. However, unfortunately, this 
subpopulation of interest is not identified. Evaluating the SACE from 
the observed data is a challenging subject.

Using this notation, a crude comparison of the outcome, which 
compares the means of Y in each treatment arm among those who in 
fact survived, is formalized on a difference scale as E(Y | A=1, S=1)–E(Y 
| A=0, S=1), and the SACE is formalized as:

SACE≡E(Y1 | S1=S0=1)–E(Y0 | S1=S0=1).

To identify the SACE, we introduce the following two assumptions 
[1]:

Assumption 1: S1 ≥ S0 for all individuals.

Assumption 2: Y1   S0 | {S1, X}.

Assumption 1 is sometimes referred to as the monotonicity 
assumption and implies that there is no individual with S1=0 and S0=1; 
i.e., Pr(S1=0, S0=1)=0. Under this assumption,

E(Y0 | S1=S0=1)

= E(Y0 | S0=1)

= E(Y0 | S0=1, A=0)

=E(Y | A=0, S=1)      (1)

and

 1 1 0E( | 1)Y S S= =

1E( | 0, 1)Y A S= = =

1E( | 0, 1, )Pr( | 0, 1)
x

Y A S X x X x A S= = = = = = =∑               (2)

As this formula includes a potential outcome, the SACE cannot be 
identified under Assumption 1 only. However, by using Assumption 2, 
the following identification formula of E(Y1 | S1=S0=1) is derived:

 1 1 0E( | 1)Y S S= =

1 1 0E( | 1, )Pr( | 0, 1)
x

Y S S X x X x A S= = = = = = =∑

1 1E( | 1, )Pr( | 0, 1)
x

Y S X x X x A S= = = = = =∑
E( | 1, 1, )Pr( | 0, 1)

x
Y A S X x X x A S= = = = = = =∑      (3)

Thus, we can identify the SACE under Assumptions 1 and 2. Note 
that, as seen from (2) and (3), we can use the following assumption to 
identify the SACE [9] instead of Assumption 2:

Assumption 2*: Y1   A | {S, X}.

This alternative assumption holds if all factors affecting both S and 
Y are observed and they are conditioned. Therefore, under Assumption 
1, the SACE can be identified if all baseline covariates are observed.

Under Assumptions 1 and 2 (or 2*), the SACE can very simply be 
estimated because the identification formulas (1) and (3) commonly 
include S=1 in the conditions of expectations and probability. When 
we limit the analysis set to individuals with S=1 (i.e., survivors), 
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We use identical notation to past literature [1]. Suppose that A 
denotes the binary treatment variable (A=1 for the treatment arm, 
and A=0 for the control arm), Y denotes an outcome of interest that 
is measured after some follow-up period, and S denotes an indicator 
of whether the individual survives (S=1 if alive, and S=0 if dead). For 
individuals who died (S=0), Y is undefined. For each individual, we 
can also consider potential outcomes [6] corresponding to what would 
have happened if an individual had been in an arm other than the one 
they were in. Let Sa denote the survival status if the individual were in 
A=a, and let Ya denote the outcome if the individual were in A=a. The 
variable Ya is defined only if Sa=1. Otherwise, the individual would have 
died, and Ya would be undefined. Here, we assume no interference [7], 
i.e., we assume that the outcome and survival status of an individual
do not depend on the treatment status of other individuals. We also
assume randomization of the treatment such that Ya   A and Sa



A [8], where B 


 C denotes that B is independent from C. These
independencies also hold conditional on X denoting a set of baseline
covariates that do not affect A but do affect both S and Y.
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we can apply the estimation methods developed in the context of 
observational studies to estimate casual effects of an exposure on the 
outcome by adjusting for measured confounders, where the target 
population is the unexposed group. These major methods (the model-
based standardization approach [10], the inverse probability weighting 
[IPW] approach [11], and the doubly robust estimation [12]) have 
been summarized elsewhere [13].

Here, we present a marginal structural model [11] to yield an 
IPW estimate of the PSE. After limiting the analysis set to individuals 
with S=1, this analysis can be conducted using a weighted regression 
model of A on Y with the weights wi=1 for individuals with Ai=0 and 
wi=Pr(Ai =1 | Xi)/Pr(Ai=0 | Xi) for individuals with Ai=1, where i=1, …, 
N denotes an individual. The value of Pr(Ai=a | Xi) is often predicted 
using a regression model; e.g., a logistic regression model. We present 
an SAS code to implement this analysis in the appendix. For example, 
we consider the simple hypothetical data shown in table 1, where only 
one binary baseline covariate is observed. The data yielded a SACE 
estimate of 0.30 (95% confidence interval [CI]: 0.25, 0.35), whereas the 
crude estimate was (480/800)–(300/600)=0.10 (95% CI: 0.05, 0.15).

For the sensitivity analysis when Assumption 2 is violated, we can 
also apply the methods for unmeasured confounding developed in the 
context of observational studies [13]. We set a sensitivity parameter as 
[4,14]

δX=E(Y1 | A=1, S=1, X)–E(Y1 | A=0, S=1, X).                (4)

This sensitivity parameter is the average difference in the outcome 
that would have been observed under a treatment comparing two 
different subpopulations, in the stratum with X: the first is the 
subpopulation that would have survived with treatment (A=1, S=1); 
the second is the subpopulation that would have survived without 
treatment (A=0, S=1).

By substituting δX into (2), we obtain the following sensitivity 
analysis formula:

 ˆSACE Pr( | 0, 1)X
x

X x A Sδ= ∆ − = = =∑ ,

where   is a SACE estimator, which is the difference between (1) and 
(3), under Assumptions 1 and 2. Specifically, under an assumption 
that the values of δX do not vary between the strata of X, this formula 
simplifies to

ˆSACE δ= ∆ −                                      (5)

where δ=E(Y1 | A=1, S=1)–E(Y1 | A=0, S=1) (=δX). This sensitivity 
analysis formula implies that the sensitivity analysis can be easily 
conducted. The sensitivity parameter δ is set by the investigator 
according to what is considered plausible. The parameter can be varied 
over a range of plausible values to examine how conclusions vary 
according to different parameter values. The confidence interval of the 
true SACE for a fixed value of δ can be obtained simply by subtracting 
δ from the upper and lower confidence limits of  ∆̂ . Therefore, we can 

readily display the results of the sensitivity analysis graphically, where 
the horizontal axis represents the sensitivity parameter, and the vertical 
axis represents the true SACE.

 In some situations, it may be troublesome for investigators 
to determine the range of δ to examine. In such situations, the large 
sample bounds [2,15] can be used to determine this range. The bounds 
for E(Y1 | A=0, S=1)=E(Y1 | S1=S0=1) are derived from the number of 
individuals with S1=S0=1 in the subgroup with (A, S)=(1, 1). Because 
individuals in the subgroup with (A, S)=(1, 1) are limited to those 
with S1=S0=1 and those with S1=1 and S0=0, under Assumption 1, this 
number is:

 1 0
11

1 0 1 0

Pr( 1)
Pr( 1) Pr( 1, 0)

S SN
S S S S

= =
= = + = =

 0
11

1

Pr( 1)
Pr( 1)

SN
S

=
=

=

11

Pr( 1 | 0)
Pr( 1 | 1)

S AN
S A

= =
=

= =
 ,

where N11 is the number of individuals with (A, S)=(1, 1). For example, 
in the hypothetical data of table 1, this number is 800×(600/1000)/
(800/1000)=600. Using this number, the large sample bounds for E(Y1 
| A=0, S=1) are calculated as:

1
0 320 1 (600 320) 1 480 0 (600 480)E( | 0, 1)

600 600
Y A S× + × − × + × −

≤ = = ≤ .

As E(Y1 | A=1, S=1)=E(Y | A=1, S=1)=480/800, the range of δ 
becomes –0.20 ≤ δ ≤ 0.13. The result of the sensitivity analysis using 
(5) is shown in figure 1, where the lower and upper limits of the SACE 
are 0.16 (95% CI: 0.12, 0.21) and 0.50 (95% CI: 0.45, 0.55), respectively. 
When the larger value of the outcome denotes that the individual is 
healthier, if investigators are sure that individuals who survived even 
without treatment are likely to be healthier overall than those who 
would have survived with treatment, the second subpopulation in (4) is 
larger than the first subpopulation. In this situation, δ ≤ 0, and thus, the 
lower limit of the SACE is improved to 0.30 (95% CI: 0.25, 0.35).

In this editorial, we have presented simple methods for the 
estimation and sensitivity analysis of the SACE under the monotonicity 
assumption (Assumption 1). The methods are essentially identical 
to the methods developed in the context of observational studies 
to estimate the casual effects of an exposure on the outcome by 
adjusting for measured confounders. The methods presented here 
can be extended in a straightforward manner to other effect measures. 
Although the monotonicity assumption is a strong assumption, 

A=1 A=0

X=1 X=0 Total X=1 X=0 Total

S=1 Y=1 300 180 480 250 50 300

Y=0 20 300 320 200 100 300

S=0 70 130 200 290 110 400

Total 390 610 1000 740 260 1000

Table 1: A hypothetical data.
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Figure 1: Sensitivity analysis of the survivor average causal effect; the solid 
line indicates the survivor average causal effect and broken lines indicate 
95% confidence intervals.
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whenever investigators consider that this assumption is plausible, the 
simple methods presented here can be applied.

Appendix
The following code is organized as follows. First, we used PROC 

LOGISTIC to fit the logistic model in the estimation of Pr(A=1 | X). 
Second, we used an SAS data step to calculate the weights for each 
individual from the estimated Pr(A=1 | X) of the previous logistic 
model. Third, we used PROC GENMOD to fit the weighted linear 
regression model that estimates the SACE. We note that the data file 
“IPW” contains only data of individuals with S=1 in the original data 
file.

/* Estimation of Predicted Values */

proc logistic data=IPW descending;

model A=X;

output out=PRED p=P;

run;

/* Calculation of the Weights */

data CIE;

set PRED;

if A=0 then WEIGHT=1; else WEIGHT=(1-P)/P;

run;

/* Weighted Analysis */

proc genmod data=CIE;

class i;

model Y=A/dist=normal link=identity;

weight WEIGHT;

repeated sub=i/type=ind;

run;

When the outcome is a binary variable, the SACE on the risk ratio 
scale can be estimated by replacing “dist=normal” and “link=identity” 
in the GENMOD procedure with “dist=poisson” and “link=log”. 
Furthermore, when the “estimate ‘beta’ A 1/exp” is added in this 
procedure, the risk ratio and the 95% CI are displayed on the output.
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