
Volume 4 • Issue 3 • 1000165
J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Open Access

Saha, J Biomet Biostat 2013, 4:3
DOI: 10.4172/2155-6180.1000165

Open Access

     
Research Article

Keywords: Count data; Delta method; Extra-dispersion; Generalized 
estimating equations; Mean ratio

Introduction
Extra-dispersed count responses are frequent in many clinical trials 

and epidemiological studies. In many applications, responses in the 
form of counts, for example, the magnetic resonance imaging (MRI) 
lesion counts in multiple sclerosis patients [1], the number of adverse 
events occurring during a follow up period in a randomized clinical 
trial [2], the number of seizures in epileptics in a randomized clinical 
trial of the anti-epileptic drug [3], the number of new skin cancers 
in a randomized, double-blind, placebo-controlled clinical trial [4], 
the number of side effects in patients receiving a pharmacotherapy 
or a vaccine [5,6], and the number of times a patient used medical 
services in the previous year [7], are usually extra-dispersed; that is, 
the variance of such count responses is either greater or smaller than 
its mean (for example, tables 2 and 4). These data are often described 
by the appropriate parametric or semiparametric models [8-12], by 
taking into account the extra-dispersion. In addition, these models 
have also been applied to estimation and hypothesis testing, to assess 
the treatment effect [13-16]. An inadequate model assumption for the 
underlying data distribution may lead to making falsely significant 
inferences, and one must be careful when applying these distributions.

It is of common interest in such studies to obtain the confidence 
interval for one of the two quantities, mean difference (MD), and 
mean ratio (MR). However, little work has been done to investigate 
the confidence interval procedure to evaluate the efficacy and safety 
of treatment, in comparison with a placebo in the analysis of the 
extra-dispersed count data. In a recent study, Saha [17] developed 
several confidence interval procedures for the difference between two 
treatment means, in the analysis of extra-dispersed count data based 
on the generalized estimating equations (GEE) of Zeger and Liang 
[18]; the usual survey estimator studied by Rao and Scott [19]; and the 
procedures studied by Newcombe [20] and Beal [21]. He concluded 
that the confidence interval based on GEE performed the best in terms 
of coverage, expected width, and location.

The preference for the MR versus the MD in drawing inferences 
depends on the design of the study. In addition, in some situations, 
especially when the means are small, interval estimation of the MR is 
often preferable [22,23]. For instance, Francois et al. [24] analyzed the 
lesion count in multiple sclerosis, to assess the effect of the fingolimod 
treatment in the FREEDOMS trial. These data refer to the number of 
Gd-enhanced lesions counted on brain magnetic resonance imaging 
scans at baseline and months 6, 12, and 24. From table 1 of Francois et 
al. [24], we see that the means for fingolimod and placebo at baseline 
and months 6, 12, and 24 are small (between 0.22 and 1.74). These 
means are very small (between 0.19 and 0.30) for the two different 
doses of the fingolimod treatment at months 6, 12, and 24. In order 
to assess the treatment effect in the analysis of these lesion counts, the 
choice of the confidence interval would be in terms of the ratio of the 
means for fingolimod and placebo. For further explanation concerning 
when the MR is more relevant than the difference of means, see Cox 
and Lewis [25].

In this paper, we consider asymptotic confidence interval 
construction for the MR between two independent treatment groups in 
the analysis of extra-dispersed count data. Using large sample theory, 
we first develop three asymptotic interval estimators of the MR, which 
are actually the direct generalizations of the confidence intervals for a 
single mean parameter based on the delta method. From the simulation 
studies given in a later section, we can see that these methods maintain 
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Abstract
Responses in the form of counts arise in many clinical trials and epidemiological studies, and are usually extra-

dispersed. When one wishes to estimate the treatment effect in comparison with a placebo in clinical trials, confidence 
intervals are frequently used. It is of common interest in many clinical trials and epidemiological studies, to obtain the 
confidence interval for one of the two quantities, mean difference and mean ratio. The preference of one measure over 
the other depends on the design of the study. In many situations, the mean ratio is more relevant than the difference of 
means. Confidence interval procedures for the mean difference between treatment and control groups in the analysis 
of such extra-dispersed counts have been studied recently, but no attention has been paid to investigating the problem 
of confidence interval construction for the mean ratio. In this article, we develop several asymptotic confidence interval 
procedures for the mean ratio, by using the delta method, to extend the variance of a single mean estimate to the 
variance of the mean ratio estimate. The simulation studies indicate that all procedures perform reasonably well in 
terms of coverage. However, the interval based on the generalized estimating equation approach, using the logarithmic 
transformation, performs uniformly best in terms of coverage, expected width and location, and is preferable to the other 
intervals, in most of the situations considered here. Finally, three real-life examples from clinical trials are analyzed to 
illustrate the proposed confidence interval procedures.
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the coverage well, but suffer from the interval location, because 
the sampling distribution of the MR estimate can be much skewed 
when sample sizes are not large enough. To overcome this issue, we 
also develop confidence interval procedures for the MR using the 
logarithmic transformation suggested by Katz et al. [26]. In Section 
3, we conduct a simulation study to investigate the performance of 
various confidence interval procedures, with respect their coverage 
probabilities, expected confidence widths and interval locations based 
on the approach suggested by Newcombe [27]. In Section 4, we include 
two examples from toxicology and epidemiology studies to illustrate 
the use of the proposed methods. A brief discussion is given in Section 
5.

The Confidence Intervals (CI) for the Mean Ratio
CI Based on NB model

Suppose that there are two comparison groups, the experimental 
treatment group (i =1) and the standard treatment group (i=2). For the 
ith treatment group, let Yij (j = 1,.. .,mi) be the counts of the jth individual. 
Given the unobserved variable ηij, suppose that Yij follows a Poisson 
distribution with mean ηijµi. We further assume that ηij independently 
follows a gamma distribution with mean 1 and variance ϕi. Then 
it follows that the marginal distribution of Yij becomes a negative 
binomial (NB) distribution, with mean E(Yij) = µi and variance var(Yij) 
=µi(1 + ϕiµi). Note that the parameter ϕi is used to measure the extra 
variability compared to the Poisson distribution, and is usually called 
the extra-dispersion parameter. Several parametric forms for the NB 
distributions exist, and we use the form found in Saha and Paul [28]. 

It can be shown that the limiting distribution of the NB distribution 
follows a simple Poisson distribution with mean µi, as the parameter ϕi 
approaches to zero.

The unbiased estimate of µi is ˆ =i iyµ  and ˆvar( ) (1 ) / .= +i i i i imµ µ φ µ  
As ˆ =i iyµ  (i=1,2) is an unbiased and consistent estimate of µi, it is 
natural to use  1 2ˆ ˆ/=MR µ µ  as an estimate of 1 2/=MR µ µ  and a 
confidence interval for MR can be constructed from the sampling 
distribution of MR . Using the delta method, the asymptotic variance 
of MR  is



2
1

1 22 2
2 1 2

1 1ˆ ˆvar( ) var( ) ( )
  

= +  
    

MR µ µ µ
µ µ µ                  

(1)

It can be proved that  1 2ˆ ˆ/=MR µ µ  is asymptotically normally 

distributed with mean MR=µ1/µ2, and variance var( MR ), as 1 →∞m  
and 2 →∞m .

Then, an asymptotic (1-α) 100% confidence interval (called the NB 
method), for the MR, is given by

  

/2 var( ),±MR Z MRα                       (2)

Where /2Zα is upper 100
2
α th percentile of the standard normal 

distribution, and  var( )MR  is the estimated variance of MR , given by

  φ1=0.2494 and φ2=0.1848 
  GEE Ratio NB GEE* Ratio* NB*
µ2 MR CP (L, R) W CP (L, R) W CP (l, R) W CP (L, R) W CP (L, R) W CP (L, R) W
0.5 1.0 94.7 (0.4, 4.9) 0.885 94.7 (0.4, 4.9) 0.890 94.7 (0.4, 4.9) 0.887 95.4 (2.1, 2.5) 0.830 95.5 (2.1, 2.4) 0.835 95.5 (2.1, 2.5) 0.832
 1.2 94.7 (0.4, 4.9) 0.846 94.8 (0.4, 4.8) 0.850 94.7 (0.4, 4.9) 0.848 95.1 (2.3, 2.6) 0.798 95.2 (2.2, 2.6) 0.802 95.2 (2.3, 2.5) 0.800
 1.4 94.5 (0.4, 5.1) 0.818 94.7 (0.4, 5.0) 0.822 94.7 (0.4, 5.0) 0.820 95.3 (2.0, 2.6) 0.774 95.5 (2.0, 2.6) 0.778 95.4 (2.0, 2.6) 0.776
 1.6 94.5 (0.4, 5.1) 0.797 94.6 (0.4, 5.0) 0.801 94.6 (0.4, 5.1) 0.799 95.2 (2.0, 2.8) 0.756 95.4 (1.9, 2.7) 0.760 95.3 (2.0, 2.8) 0.759
 1.8 94.8 (0.4, 4.9) 0.780 94.8 (0.3, 4.8) 0.785 94.8 (0.4, 4.9) 0.783 95.3 (1.9, 2.7) 0.742 95.4 (1.9, 2.7) 0.746 95.4 (1.9, 2.7) 0.744
 2.0 94.7 (0.3, 5.0) 0.767 94.8 (0.3, 4.9) 0.771 94.7 (0.4, 4.9) 0.770 95.2 (2.1, 2.8) 0.731 95.3 (2.0, 2.7) 0.735 95.2 (2.0, 2.7) 0.733

1.5 1.0 94.9 (1.1, 4.0) 0.531 95.0 (1.1, 3.9) 0.534 94.9 (1.1, 4.0) 0.532 95.2 (2.4, 2.5) 0.519 95.3 (2.3, 2.4) 0.521 95.2 (2.3, 2.5) 0.520
 1.2 95.0 (1.1, 3.9) 0.513 95.1 (1.1, 3.8) 0.516 95.1 (1.1, 3.9) 0.515 95.3 (2.3, 2.5) 0.502 95.4 (2.2, 2.4) 0.505 95.4 (2.2, 2.4) 0.503
 1.4 94.9 (1.2, 3.9) 0.500 95.0 (1.1, 3.9) 0.503 95.0 (1.1, 3.9) 0.501 95.2 (2.4, 2.4) 0.490 95.3 (2.3, 2.4) 0.492 95.2 (2.3, 2.5) 0.491
 1.6 95.0 (1.1, 4.0) 0.490 95.1 (1.0, 3.9) 0.493 95.0 (1.0, 3.9) 0.491 95.3 (2.3, 2.5) 0.481 95.4 (2.2, 2.4) 0.483 95.3 (2.3, 2.4) 0.482
 1.8 94.9 (1.1, 4.0) 0.483 95.0 (1.0, 4.0) 0.485 95.0 (1.0, 4.0) 0.484 95.1 (2.3, 2.6) 0.473 95.2 (2.2, 2.6) 0.476 95.2 (2.2, 2.6) 0.474
 2.0 95.0 (1.1, 4.0) 0.476 95.0 (1.0, 3.9) 0.479 94.9 (1.1, 4.0) 0.477 95.3 (2.2, 2.5) 0.467 95.4 (2.1, 2.5 0.470 95.4 (2.2, 2.5) 0.468
  φ1= 0.25 and φ2=0.25
  GEE Ratio  NB GEE* Ratio* NB*
µ2 MR CP (L, R) W CP (L, R) W CP (l, R) W CP (L, R) W CP (L, R) W CP (L, R) W
0.5 1.0 94.5 (0.4, 5.1) 0.892 94.7 (0.4, 5.0) 0.897 94.6 (0.4, 5.0) 0.894 95.5 (2.1, 2.4) 0.836 95.6 (2.1, 2.4) 0.840 95.5 (2.1, 2.4) 0.838
 1.2 94.4 (0.4, 5.1) 0.853 94.6 (0.4, 5.0) 0.858 94.6 (0.4, 5.1) 0.855 95.2 (2.2, 2.6) 0.804 95.2 (2.2, 2.6) 0.808 95.3 (2.2, 2.6) 0.806
 1.4 94.5 (0.4, 5.2) 0.825 94.6 (0.3, 5.1) 0.830 94.5 (0.4, 5.1) 0.828 95.4 (2.0, 2.6) 0.781 95.5 (2.0, 2.6) 0.785 95.4 (2.0, 2.6) 0.783
 1.6 94.5 (0.5, 5.0) 0.805 94.6 (0.4, 4.9) 0.809 94.6 (0.4, 5.0) 0.807 95.2 (2.1, 2.8) 0.763 95.3 (2.0, 2.7) 0.767 95.3 (2.0, 2.7) 0.765
 1.8 94.5 (0.4, 5.1) 0.788 94.7 (0.3, 5.0) 0.793 94.6 (0.3, 5.1) 0.791 95.5 (1.8, 2.7) 0.749 95.5 (1.8, 2.7) 0.753 95.5 (1.8, 2.7) 0.752
 2.0 94.6 (0.3, 5.1) 0.775 94.7 (0.3, 5.0) 0.780 94.7 (0.3, 5.0) 0.778 95.3 (2.0, 2.7) 0.738 95.4 (2.0, 2.6) 0.742 95.4 (2.0, 2.6) 0.740

1.5 1.0 94.8 (1.1, 4.1) 0.541 94.9 (1.1, 4.0) 0.544 94.8 (1.1, 4.1) 0.543 95.2 (2.3, 2.6) 0.528 95.3 (2.3, 2.5) 0.531 95.3 (2.3, 2.50 0.530
 1.2 94.9 (1.1, 4.0) 0.524 95.0 (1.0, 4.0) 0.527 94.9 (1.0, 4.1) 0.525 95.2 (2.3, 2.5) 0.512 95.3 (2.2, 2.5) 0.515 95.3 (2.2, 2.5) 0.513
 1.4 95.0 (1.0, 3.9) 0.511 95.1 (1.0, 3.9) 0.514 95.1 (1.0, 3.9) 0.512 95.1 (2.3, 2.6) 0.500 95.2 (2.3, 2.5) 0.503 95.2 (2.3, 2.5) 0.501
 1.6 94.9 (1.1, 4.0) 0.501 95.0 (1.0, 3.9) 0.504 95.0 (1.1, 4.0) 0.503 95.2 (2.3, 2.5) 0.491 95.3 (2.3, 2.5) 0.493 95.2 (2.3, 2.5) 0.492
 1.8 94.9 (1.1, 4.0) 0.493 95.0 (1.1, 3.9) 0.496 94.9 (1.1, 4.0) 0.495 95.1 (2.3, 2.6) 0.484 95.2 (2.3, 2.5) 0.486 95.1 (2.3, 2.6) 0.485
 2.0 94.9 (1.1, 3.9) 0.487 95.1 (1.1, 3.9) 0.490 95.0 (1.1, 4.0) 0.489 95.3 (2.2, 2.5) 0.478 95.4 (2.2, 2.5) 0.480 95.3 (2.2, 2.5) 0.479

Table 1: The coverage percentage (CP), left non-coverage percentage (L), right non-coverage percentage (R), and the average interval width (W) for the 95% nominal CIs, 
based on various methods using 10,000 replications with sample sizes of 100.
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Where ˆiµ (i=1,2) is the unbiased estimate of µi and îφ (i=1,2) is 

the maximum likelihood (ML) estimate of ϕi. The ML estimate îφ of 
ϕi can be obtained by maximizing the log-likelihood of the NB model, 
or solving the estimating equations discussed by Saha and Paul [28].

Note that the sampling distribution of  1 2ˆ ˆ/=MR µ µ can be much 
skewed, especially when sample sizes are not large enough. In such a 
case, the interval estimator of 1 2/=MR µ µ  obtained in (1) may not 
perform well; in particular, this interval may not have satisfactory 
interval location. That is, the interval in (1) may be too distally located. 
Following Katz et al. [26], we use the logarithmic transformation to 
improve the normality approximation of this sampling distribution. 
Again, using the delta method, the asymptotic variance of ln( )MR  is 
given by



1 22 2
1 2

1 1ˆ ˆvar(ln( )) var( ) var( ),= +MR µ µ
µ µ

                 (4)

And hence, we obtain an asymptotic (1-α) 100% confidence interval 
(called the NB* method), for the MR given by

  

/2exp ln( ) var(ln( )) ±  
MR Z MRα                 (5)

Where

               (6)

CI Based on sandwich variance estimator

The robust estimator, known as a sandwich estimator of the variance 
of the regression estimator can be obtained by using the generalized 
estimating equation (GEE) approach, introduced by Zeger and Liang 
[18]. Saha [17] applied this approach to the extra-dispersed count data, 
to obtain an estimate of the mean parameter and a sandwich estimate 
of its variance. From Saha [17], we obtain an estimate of µi (i=1,2) as

1
ˆ /

=
= =∑ im

i ij i ij
y m yµ ,and a sandwich estimator of the variance of 

ˆiµ  (i=1,2) given by

2
1

2

ˆ( )
.=

−
=
∑ im

ij iji
GEE

i

y
V

m

µ

Note that this variance formula does not involve the extra-
dispersion parameters ϕi (i=1,2). Now, using this sandwich estimator 
of the variance of ˆiµ  as an estimate of var( ˆiµ ) in (1), we also obtain 
an asymptotic (1-α)100% confidence interval (called the GEE method), 
for the MR based on equation (2), where

 

1 22 22 1 1 2 21 1
2 2 2 2

2 1 1 2 2
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var( )

ˆ ˆ ˆ
= =

 − −  
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MR

m m

µ µµ
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.

Similarly, using i
GEEV  as an estimate of 1ˆvar( )µ  in (4), an 

asymptotic (1-α) 100% confidence interval (called the GEE* method), 
for the MR can be obtained based on equation (5), where



1 22 2
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CI Based on variance of a ratio estimator

The variance of an estimate of the mean parameter µi (i=1,2) can 
also be obtained, using the results by Cochran [29]. Saha [17] computed 
this variance by expressing the estimate of the mean parameter µi as 

the ratio of two means, . .ˆ /=i i iy tµ , where . 1
/

=
=∑ im

i ij ij
y y m  and 

. 1
/ .

=
=∑ im

i ij ij
t t m Following Saha [17], an estimator of ˆvar( )iµ  is 

given by

2
1

2

ˆ( )
,

( 1)
=

−
=

−

∑ im
ij ij iji

R
i i i

y t

m m t

µ
ϑ

where tij is the surface area, or volume, or any other appropriate 
measure of size. However, in some situations, information on tij may 
not be available. In such cases, one can set tij equal to a constant, and 

without loss of generality, one can assume as tij=1 for all i and j. It 

follows that . =i it m  and 1=it   so that 
2

1
ˆ( )

.
( 1)

=
−

=
−

∑ im
ij iji

R
i i

y

m m

µ
ϑ

Like the sandwich variance, i
Rϑ  does not involve the extra-dispersion 

rameters ϕi (i=1,2). Now, using i
Rϑ  as an estimate of ˆvar( )iµ  in (1), an 

asymptotic (1-α) 100% confidence interval (called the Ratio method), 
for the MR can also be obtained based on equation (2), where
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Similarly, using i
Rϑ  as an estimate of ˆvar( )iµ  in (4), we obtain an 

asymptotic (1-α) 100% confidence interval (called the Ratio* method), 
for the MR based on equation (5), where

 

1 22 2
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MR
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Simulations
The performance of the proposed six confidence interval (CI) 

     ML Estimates of 
Follow-Up Period Treatment Arms Size Mean Variance µ φ

Year 1 Control 51 1.5294 1.3341 1.5294 -0.1344
s.c. IFN beta-1a 46 0.3696 0.5048 0.3696 1.1538
i.m. IFN beta-1a 46 1.1522 1.3319 1.1522 0.1420

GA 48 0.7917 0.7642 0.7917 -0.0853
Year 2 Control 51 2.9608 4.5584 2.9608 0.2559

s.c. IFN beta-1a 46 0.7174 0.7850 0.7174 0.0818
i.m. IFN beta-1a 47 1.6596 2.2294 1.6596 0.2326

GA 48 1.2917 1.4876 1.2917 0.1225

Table 2: Summary statistics and the maximum likelihood estimates of the model parameters for MRI cortical lesions data of example 1.
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methods for the MR, NB, NB*, GEE, GEE*, Ratio and Ratio*, was 
assessed in this section through simulations in terms of the coverage 
probabilities, expected confidence widths, and the distal and mesial 
non-coverage probabilities. In this study, we considered the following 
sample sizes: (m1,m2)={(30,30), (50,50), (100,100)} for the balanced 
designs, and (m1,m2)={(30,50), (50,80)} for the unbalanced designs. 
For the mean parameters, we considered µ2=0.5, 1.5, 3.0 (these are very 
similar to the real-life applications in tables 2 and 4) and µ1=MR*µ2, 

where MR=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0. The common 
extra-dispersion parameters (ϕ1,ϕ2)=(0.25,0.25) were considered 
for both the treatment and control groups, and the unequal extra-
dispersion parameters ϕ1=0.2494 for the treatment group and ϕ2=0.1848 
for the control group were considered based on the ML estimates of ϕ1 
and ϕ2 from table 6. For each combination of (m,µ,ϕ), data for both 
groups were generated from a NB distribution using IMSL subroutine 
RNNBN.

Table 3: 95% confidence intervals of the MR=µ1 / µ2 with the confidence widths by the all six methods for MRI cortical lesions data of example 1.

Follow-Up Period Comparison Groups Method Lower CI Upper CI Width
Year 1 s.c. IFN beta-1a VS control NB 0.0964 0.3869 1.3901

  NB* 0.1325 0.4408 1.2024
  GEE 0.0999 0.3834 1.3449
  GEE* 0.1344 0.4344 1.1732
  Ratio 0.0983 0.3849 1.3645
  Ratio* 0.1335 0.4372 1.1860
 i.m. IFN beta-1a VS control NB 0.4886 1.0180 0.7340
  NB* 0.5301 1.0705 0.7027
  GEE 0.4880 1.0187 0.7360
  GEE* 0.5297 1.0715 0.7045
  Ratio 0.4851 1.0215 0.7446
  Ratio* 0.5277 1.0755 0.7120
 GA VS control NB 0.3286 0.7067 0.7658
  NB* 0.3593 0.7458 0.7304
  GEE 0.3256 0.7097 0.7792
  GEE* 0.3572 0.7502 0.7421
  Ratio 0.3236 0.7117 0.7882
  Ratio* 0.3558 0.7531 0.7498

Year 2 s.c. IFN beta-1a VS control NB 0.1430 0.3416 0.8708
  NB* 0.1608 0.3650 0.8196
  GEE 0.1445 0.3401 0.8562
  GEE* 0.1618 0.3628 0.8075
  Ratio 0.1434 0.3412 0.8667
  Ratio* 0.1611 0.3644 0.8162
 i.m. IFN beta-1a VS control NB 0.3721 0.7489 0.6994
  NB* 0.4005 0.7845 0.6722
  GEE 0.3805 0.7405 0.6659
  GEE* 0.4065 0.7728 0.6423
  Ratio 0.3786 0.7424 0.6734
  Ratio* 0.4052 0.7754 0.6491
 GA VS control NB 0.2874 0.5851 0.7111
  NB* 0.3101 0.6137 0.6826
  GEE 0.2927 0.5798 0.6835
  GEE* 0.3139 0.6062 0.6581
  Ratio 0.2912 0.5813 0.6912
  Ratio* 0.3129 0.6083 0.6649

     ML Estimates of 
Follow-Up Period Treatment Arms Size Mean Variance µ φ

Year 1 Placebo 827 0.2709 0.7619 0.2709 4.2018
 Beta-carotene 856 0.2979 0.6468 0.2979 4.2009

Year 2 Placebo 803 0.2403 0.4771 0.2403 3.5114
 Beta-carotene 827 0.2612 0.4571 0.2612 2.9188

Year 3 Placebo 776 0.2474 0.6071 0.2474 4.6972
 Beta-carotene 794 0.3154 1.2643 0.2859 6.0556

Year 4 Placebo 699 0.2332 0.6117 0.2332 5.6482
 Beta-carotene 688 0.3154 1.2643 0.3154 4.8770

Year 5 Placebo 419 0.2721 0.7153 0.2721 4.2656
 Beta-carotene 392 0.2985 0.8033 0.2985 3.5507

Table 4: Summary statistics and the maximum likelihood estimates of the model parameters for skin cancer data of example 2.
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Ten thousand data sets were produced to compute the coverage 
proba-bilities (CP), the expected confidence width (ECW), the distal 
non-coverage probability (DNCP) estimated by the proportion of 
intervals that missed the true parameter value, MR, from the left, 
and the mesial non-coverage probability (MNCP), computed by the 
proportion of intervals that missed MR from the right. For each given 
combination, we compute the corresponding coverage probability 
by the proportion of intervals that included the true value of the 
parameter of interest, MR. Note those confidence intervals (CI) based 
on ML estimates of the extra-dispersion parameters did not exist for 
some samples [28], and these were discarded. Further note that a 
confidence interval is good if it is able to guarantee its CPs close to the 
nominal coverage level. Given the CPs are well controlled, one prefers 
those CIs which yield shorter ECWs on average. For the ratio measure, 
confidence interval width is best on a log scale. As a result, the ECWs 
are computed as the average widths between the log of upper and 
lower limits of the 10,000 confidence intervals. In addition to CPs and 
ECWs, Newcombe [27] also suggested assessing location from overall 
coverage, that is, to check whether the CI is completely above or below 
the true value of the parameter of interest. This can be measured by 
an index MNCP/(DNCP+MNCP), which ranges on the interval [0,1].

Results
All six confidence intervals evaluated here are two-sided 95% 

intervals for the MR corresponding to the different sets of parameter 
combinations discussed above. For the results corresponding to 
(m1,m2)={(30, 30), (50, 80)} and µ1=3, we do not observe any substantial 

difference; so these are omitted. Therefore, we present the simulation 
results only for two cases of balanced designs, one case of unbalanced 
designs, and two values of mean parameter µ1. However, a complete list 
of simulation results can be obtained from author’s website.

The simulation results for the CPs, ECWs and symmetry of 
coverage for all six methods for both balanced and unbalanced designs 
are reported in figures 1-3. Note here that each box plot was constructed 
for various MR values between 1 and 2, with an increment of 0.1. The 
horizontal line for plots (a)-(d) indicates the coverage probability of 
0.95. Furthermore, the horizontal lines for plots (i)-(l) indicate the 
proportions of 0.40 and 0.60, respectively. For the location property 
of the interval procedure, following Newcombe [27], we classify the 
index measure MNCP/(DNCP+MNCP) as satisfactory if it is between 
0.4 and 0.6, the interval is too mesially located if it is below 0.4, and 
too distally located if it is above 0.6. Based on the simulation results in 
figures 1-3, we observe the following:

Coverage probability

In general, all six interval methods perform satisfactorily in terms 
of coverage, in the sense that these probabilities for all methods are 
between 93% and 97% in almost all situations. As expected, as sample 
sizes increase, the coverage probabilities become closer to 0.95, 
the nominal level. Irrespective of equal or unequal dispersions, the 
cover-age probabilities for the interval methods using logarithmic 
transformation (GEE*, Ratio*, and NB*) are slightly better than the 
interval methods with-out this transformation (GEE, Ratio, and NB). 
Although there is no overall winner in terms of coverage, the GEE* 

Table 6: Summary statistics, the maximum likelihood estimates of the model parameters, and 95% confidence intervals of the MR=µ1 / µ2 with the confidence widths by the 
all six methods for MRI vascular lesions data of example 3.

Summary of the Data Sets
Treatment Arms Size Value Parameter ML Estimate

treatment 59 Mean 4.9322 µ 4.9322
Variance 9.6850 φ 0.2494

Control 57 Mean 5.5088 µ 5.5088
Variance 10.4330 φ 0.1848

95% Confidence Interval for MR
Method Lower CI Upper CI Width

NB 0.6870 1.1036 0.4740
NB* 0.7095 1.1299 0.4653
GEE 0.6987 1.0920 0.4466
GEE* 0.7188 1.1153 0.4393
Ratio 0.6987 1.0920 0.4466
Ratio* 0.7188 1.1153 0.4393

Table 5: 95% confidence intervals of the M =µ1 / µ2 with the confidence widths by the all six methods for the skin cancer data of example 2.

95% Confidence Interval for MR =µ1 / µ2

Follow-Up Period NB NB* GEE GEE* Ratio Ratio*
Year 1 (0.8076, 1.3920) (0.8432, 1.4345) (0.7871, 1.4126) (0.8276, 1.4616) (0.7869, 1.4127) (0.8275, 1.4618)
Year 2 (0.8032, 1.3702) (0.8372, 1.4106) (0.7981, 1.3753) (0.8332, 1.4173) (0.7979, 1.3755) (0.8331, 1.4175)
Year 3 (0.8098, 1.5011) (0.8567, 1.5584) (0.7635, 1.5475) (0.8231, 1.6222) (0.7632, 1.5477) (0.8229, 1.6225)
Year 4 (0.9258, 1.7793) (0.9866, 1.8543) (0.8601, 1.8451) (0.9398, 1.9467) (0.8597, 1.8454) (0.9395, 1.9472)
Year 5 (0.6859, 1.5081) (0.7542, 1.5957) (0.6361, 1.5579) (0.7207, 1.6698) (0.6355, 1.5585) (0.7203, 1.6707)

Interval Width
Follow-Up Period NB NB* GEE GEE* Ratio Ratio*

Year 1 0.5444 0.5314 0.5848 0.5687 0.5852 0.5690
Year 2 0.5340 0.5217 0.5443 0.5312 0.5446 0.5315
Year 3 0.6171 0.5983 0.7065 0.6785 0.7070 0.6789
Year 4 0.6533 0.6310 0.7633 0.7283 0.7639 0.7288
Year 5 0.7879 0.7495 0.8957 0.8403 0.8970 0.8413
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confidence interval provides slightly better coverage, in the sense that 
it controls well the coverage probabilities around the nominal level in 
most situations.

Width of the CI

As expected, the expected confidence widths for all methods 
becomes smaller when sample sizes increased (for example, Figures 
1e and 3e), as well as when the mean parameters become larger (for 
example, Figures 1e and 1f). The confidence intervals using logarithmic 
transformation (GEE*, Ratio*, and NB*) provide significantly shorter 
widths compared to the other interval methods, specifically for 
smaller mean parameters (for example, Figures 1e). For larger mean 
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Figure 1: Box plots of coverage probability, expected confidence width, and symmetry of coverage for the following 95% confidence interval methods: 1. GEE, 2. 
Ratio, 3. NB, 4. GEE*, 5. Ratio*, and 6. NB* with the sample sizes (m1,m2)=(30, 50), and dispersion parameters (ϕ1,ϕ2)=(0.1848, 0.2494) [(a),(c),(e),(g),(i),(k)], (0.25, 
0.25) [(b),(d),(f),(h),(j),(l)].

parameters, the ECWs for all methods become very similar; however, 
the intervals using logarithmic transformation have slightly shorter 
ECWs than the others. Overall, the GEE* method has some edge and 
yields generally shorter confidence widths.

Symmetry of coverage

Irrespective of the sample sizes, as well as the other parameter 
combinations, the interval methods without logarithmic transformation 
(GEE, Ratio, and NB) show strong evidence of asymmetry; that is, 
the right non-coverage probabilities become much larger than the 
left non-coverage probabilities. More specifically, the index MNCP/
(DNCP+MNCP) for these intervals becomes very close to 1, indicating 
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Figure 2: Box plots of coverage probability, expected confidence width, and symmetry of coverage for the following 95% confidence interval methods: 1. GEE, 2. 
Ratio, 3. NB, 4. GEE*, 5. Ratio*, and 6. NB* with the sample sizes (m1,m2)=(50,50), and dispersion parameters (ϕ1,ϕ2)=(0.1848, 0.2494) [(a),(c),(e),(g),(i),(k)], (0.25, 
0.25) [(b),(d),(f),(h),(j),(l)].

that these intervals are too distally located. However, the asymmetric 
behavior of these confidence intervals improves a little bit for larger 
sample sizes (for example, Figures 1i and 3i). The measures of this index 
for the interval methods using logarithmic transformation (GEE*, 
Ratio*, and NB*) are generally between 40% and 60%, indicating 
that these intervals have satisfactory interval locations in almost all 
situations. That is, the left and right non-coverage probabilities for 
these three intervals are very similar.

In addition to figures 1-3, the simulation results for selected 
parameter combinations are also presented in table 1, but only for 
the balanced designs of 100. From table 1, it can be seen clearly that 
all methods show nearly identical empirical coverage probabilities, 

and maintain the nominal coverage level of 95% reasonable well. As 
expected, ECWs for all methods decrease as the mean parameters 
increase. Irrespective of parameter combinations, the GEE*, Ratio*, 
and NB* methods provide shorter confidence widths, compared to the 
other methods in almost all situations. In terms of ECWs, the GEE*, 
Ratio*, and NB* intervals are quite similar; however, the GEE* method 
has somewhat shorter widths. The left non-coverage probabilities for 
the GEE, Ratio and NB methods are almost 1% or less, whereas the 
right non-coverage probabilities for these are between 4% to 5%, which 
is an evidence of asymmetry. However, the left and right non-coverage 
probabilities for the GEE*, Ratio*, and NB* intervals are almost 
identical, which is evidence of symmetry.
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Clinical Trial Data Applications
This section illustrates the analysis of three real-life data sets 

obtained from clinical trials. The first example is from the multiple 
sclerosis longitudinal studies reported in Sormani et al. [30]. Second, 
we consider the example from the skin cancer prevention study 
of Greenberg et al. [4], and then we revisit the Type II clinical data 
example given in Saha [17].

Example 1: MRI cortical lesions data

Multiple sclerosis (MS) is a chronic inflammatory disease 
involving the central nervous system (CNS). In order for diagnosis and 
monitoring disease activity in clinical trials and practice, MRI is widely 

used to detect the white matter, gray matter, and cortical lesions in 
specific MRI sequences. The main goal of these studies is to lessen the 
degree of inflammation within the CNS, which can lessen the number 
of lesions, indicating ultimately progress in disability. Sormani et al. 
[30] studied new cortical lesions developed by MS patients over the 
follow up period. This clinical study was conducted on a group of 191 
relapsing remitting (RR) MS patients who were randomized into four 
different groups. Fifty patients did not received any treatment, 46 were 
given subcutaneous (s.c) interferon (IFN) beta-1a (44 mcg three times 
weekly), 47 received intramuscular (i.m.) IFN beta-1a (30 mcg weekly), 
and the remaining patients received glatiramer acetate (GA) (20 mg 
daily). All 191 subjects were evaluated by MRI at baseline, 12 and 24 
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Figure 3: Box plots of coverage probability, expected confidence width, and symmetry of coverage for the following 95% confidence interval methods: 1. GEE, 2. Ratio, 
3. NB, 4. GEE*, 5. Ratio*, and 6. NB* with the sample sizes (m1,m2)=(100,100), and dispersion parameters (ϕ1,ϕ2)=(0.1848, 0.2494) [(a),(c),(e),(g),(i),(k)], (0.25, 0.25) 
[(b),(d),(f),(h),(j),(l)].
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months, and the number of new cortical lesions was counted on the 
12-and 24-month scans, as compared to the baseline. The descriptive 
statistics of the number of new cortical lesion counts over 1 and 2 years, 
as well as the maximum likelihood estimates of the model parameters 
for all four treatment arms are reported in table 2. The hypothesis tested 
whether the new treatment has an effect in reducing the mean value 
of lesions. We used this data and computed the confidence intervals 
for the MR between treatment and control groups for all six proposed 
methods, and the results are summarized in table 3, which shows that 
intervals are less than one except for i.m. IFN beta-1a treatment after 1 
year. This leads to the same conclusions, indicating that all treatments 
have significant effects in reducing the mean number of new cortical 
lesions over the follow up period, except for the i.m. IFN beta-1a 
treatment. Similar conclusions were obtained by Sormani et al. [30]. 
Note that the intervals based on logarithmic transformation using GEE 
have the shortest lengths compared to the others in almost all cases.

Example 2: Skin cancer data

Greenberg et al. [4] conducted the Skin Cancer Prevention Study. 
This was a randomized, double-blind, placebo-controlled clinical trial 
of beta-carotene to prevent basal-cell and squamous-cell cancers of the 
skin in high risk people. A group of 1805 patients were randomized to 
either a placebo or 50 mg of beta-carotene per day, over the follow up 
period of 5 years. Patients were examined once a year and biopsied, 
if a tumor was suspected to determine the number of new cancerous 
lesions occurring since the last exam. The data from this study consist 
of counts of the number of new skin cancers per year, over the follow 
up period of 5 years. The complete dataset on 1683 patients comprising 
a total of 7081 measurements are given in Fitzmaurice et al. [31]. The 
summary of the data for each year, as well as the maximum likelihood 
estimates of the model parameters for placebo and beta-carotene 
treatment, are presented in table 4, which shows that the mean number 
of new skin cancer for each data set is very small (that is, between 0.23 
to 0.32). This table also shows that the variance for each data set is 
much larger than its mean, indicating extra-dispersion. In addition, 
the mean for each group per year is very small, so it is preferable to 
use the confidence interval procedures for the MR to assess the effect 
of the treatment. Therefore, we computed six types of 95% confidence 
intervals for this ratio, and the results are given in table 5. The intervals 
include the value of 1, which indicates that the beta-carotene treatment 
was not effective on the high risk patients, for any of the five follow up 
years. The CI based on NB models using logarithmic transformation is 
reasonably good compared with the other intervals, since it provides 
the shortest confidence width compared to the others for all data sets.

Example 3: MRI vascular lesions data

We now revisit the example of Type II clinical trial data from Saha 
[17]. This was originally conducted by the National Heart, Lung, and 
Blood Institute (NHLBI), to study Type II Coronary Intervention, and 
analyzed by Brensike et al. [32]. In this study, patients with Type II 
hyperlipoproteinemia and coronary heart disease were randomly 
allocated to a daily dosage of 24 g of cholestyramine and diet (treatment 
group), or placebo and diet (control group), after a standardizing 
period. After five years, the number of vascular lesions was counted 
for each patient’s angiogram, for both treatment and placebo groups. 
The summary of this data and the maximum likelihood estimate of 
the model parameters are presented in table 6, which shows that the 
variances are greater than corresponding mean responses, indicating 
that the lesion count data are extra-dispersed. The main purpose of this 
study was to determine whether the 24 g of cholestyramine and diet 

treatment reduces the mean number of vascular lesions for patients 
with Type II hyperlipoproteinemia and coronary heart disease. Here, 
we compute the 95% confidence interval for the MR between the 
treatment and control groups based on the methods discussed in earlier, 
and the results are also given in table 6, from which we see that intervals 
based on all methods include the value of one, which lead to the same 
conclusion drawn by Saha [17]. Note that the confident interval based 
on GEE using logarithmic transformation has the shortest width.

Conclusion
In this paper, we developed six different asymptotic confidence 

interval methods for the ratio of two treatment means in the analysis 
of extra-dispersed count response data from clinical trials. Three 
methods were based on large sample theory of the MR estimate, using 
three different variances obtaied using the NB model, the generalized 
estimating equations, and the ratio estimator. Actually, three variances 
were obtained by the direct generalizations of the variances of a single 
mean estimate, using the delta method. It has been seen from the 
simulation results that these three methods maintained the coverage 
reasonably well, but showed evidence of asymmetric confidence 
intervals, when the sample sizes are not large enough. Following the 
suggestion of Katz et al. [26], we also developed three other confidence 
interval methods, based on the point estimate for the logarithmic 
version of the MR and its variances. From the simulation results, 
we found that not only the coverage probabilities of the logarithmic 
versions improved, but also showed strong evidence of symmetry, and 
shorter widths of these intervals compared to the other three methods. 
That is, the mesial and distal differences of these intervals are very close 
to zero, which guarantees that the intervals are not directionally biased. 
This is true, regardless of the sample sizes and parameter combinations. 
Because the three logarithmic intervals maintain coverage, have 
shorter widths, and are close to symmetric, they outperform the 
non-logarithmic versions. However, we recommend the GEE based 
logarithmic interval because it is also very simple to use; does not 
require the iteratively obtained estimates of the dispersion parameters; 
and provides somewhat shorter width compared to the other methods 
considered here.
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