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Nonparametric regression techniques including kernel smoothing 
[1], spline smoothing [2], and local regression [3] are useful for 
estimating a mean response function μ(x) in the statistical model 
Yi = μ (xi)+ i∈  when one is unwilling to assume that μ(x) is linear (or 
polynomial of higher but known degree) in the covariate x. These same 
techniques can also be employed to estimate one or more derivatives of  
μ(x). While the techniques differ in their details, they have a common 
underlying theme. One specifies a covariate value x0 and estimates μ(x) 
or one of its derivatives at x0 by solving an optimization problem that 
is localized to a neighborhood of x0, in that only observations with 
covariate values inside the neighborhood contribute substantively to 
the solution. For example, the simplest incarnation of this theme is to 
define μ(x0) to be the average of all responses Yi for which |xi−x0| is 
sufficiently small. As one slides x0 through a continuum of all possible 
covariate values, an estimated mean response or derivative is then 
traced out. Selecting the neighborhood size is a crucial implementation 
decision to which much literature has been devoted [4].

Under mild conditions, including appropriate dependence of the 
neighborhood size on the sample size n, Stone [5] established that local 

regression yields an optimal convergence rate of n−(J+1−k)/(2J+3) in estimating 
k

k

d
dx

μ(x) for 0 ≤ k ≤ J when μ(x) has (J+1) bounded derivatives. However, 

optimality may be defined even more stringently than the attainment 
of a particular convergence rate. For instance, optimality may entail 
minimizing mean square error or an asymptotic approximation thereto. 
Yet, kernel and local regression estimators of 

k

k

d
dx

 μ(x) with minimal 
mean square error are not the kth order derivatives of kernel and local 
regression estimators of μ(x) with minimal mean square error [6,7]. 
While the existing literature thus provides guidance on the optimal 

estimation of 
k

k

d
dx

μ(x)  by itself, or of μ(x) by itself, the existing literature 
does not elucidate what is optimal for the simultaneous estimation 

of μ(x) and 
k

k

d
dx μ(x) or, more generally, the simultaneous estimation 

of μ(x) and all of its derivatives up to order J. Here we clarify that by 
simultaneous we refer not merely to the explicit estimation of multiple 

derivatives in a single data analysis but also to the requirement that
( )

k

k

d x
dx

µ and ( )xµ  honor the same functional relationship as 
k

k

d
dx

μ(x) 

and μ(x), namely that ( )


{ }( ) .
k k

k k

d dx x
dx dx

µ µ=  Charnigo and Srinivasan [8] 

have termed this requirement “self-consistency”.

There are several practical applications in which estimating a mean 
response function and its derivatives may help to address important 
scientific questions. These applications include the modeling of:

• Human height [9], for which the first derivative is the growth rate
and the second derivative can be employed to delineate time intervals 
over which growth is speeding up or slowing down;

• Kidney function for a lupus nephritis patient [10], for which the
first derivative quantifies the progress of the disease and the second 
derivative can be used to delineate time intervals over which the disease 
is progressing unstably;

• Scattering profiles of submicroscopic nanoparticles [11], for which

the mean response function and its derivatives may be employed like 
“fingerprints” to identify nanoparticles of unknown size or structure 
given existing results for nanoparticles of known size and structure; 
and,

• Raman spectra of bulk materials [4], for which the mean response
function and its derivatives may likewise be used to identify materials 
of unknown chemical composition. The Raman spectrum application 
may be particularly interesting to readers of this journal because of 
its potential to detect impurities as part of a quality control process 
in pharmaceutical production [12] and its potential to complement 
existing mammography and ultrasound technology for the noninvasive 
diagnosis of breast cancer via the detection of calcified lesions [13].

 In some of these practical applications, one may reach contradictory 
scientific conclusions if μ (x) and its derivatives are not estimated 
simultaneously. For example, Charnigo and Srinivasan [8] illustrated 

the consequences of having inequalities among { }


2

2 ( ) , ( ) ,d d dx x
dx dxdx

µ µ
  
 
  

and 

( )
2

2

d x
dx

µ in the human height application. Employing local regression, 

Charnigo and Srinivasan [8] found that the estimated first derivative 
for one child had a local maximum at 10.5 years, suggesting that the 
child’s growth spurt peaked at 10.5 years. On the other hand, the 
estimated second derivative for that same child was nonzero at 10.5 
years. The closest zero of the estimated second derivative was at 10.1 
years, translating to a discrepancy of five months in pinpointing the 
peak of the growth spurt. While there is inherently some uncertainty 
about when the growth spurt peaked, acquiring two different estimates 
from a single data analysis is unsettling. The preceding illustration thus 
demonstrates that insisting upon optimal estimation of μ(x) by itself, of 

k

k

d
dx

μ(x)by itself, of ( )
2

2

d x
dx

µ  by itself, and similarly for higher order 

derivatives may lead to incoherent scientific conclusions.

We therefore perceive the need for a new criterion by which 
optimality may be defined when multiple derivatives are estimated 
simultaneously. Such a criterion would evaluate a family of self-

consistent estimators ( ) ( )


( )
2

2, ,d dx x x
dx dx

µ µ µ  and so forth rather than 

evaluating each estimator by itself. Ideally, this criterion would favor 
good estimation of several derivatives over excellent estimation of 
one derivative accompanied by poor estimation of the remaining 
derivatives. Hence, a family of estimators deemed optimal by such a 
criterion would not be anticipated to include, for example, a μ(x) that 
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minimized the mean square error in estimating ( )xµ ; the derivatives of 
such a ( )xµ would likely be too undersmoothed to serve as good proxies 
for the derivatives of μ(x). Likewise, an optimal family would not be 

anticipated to include a ( )
J

J

d x
dx

µ that minimized the mean square error 

in estimating
J

J

d
dx

 μ(x); the antiderivatives of such a ( )
J

J

d x
dx

µ  would likely 
be too oversmoothed to serve as good proxies for the antiderivatives of 

J

J

d
dx

μ(x).

What, then, might such a criterion look like? One idea would be to 

consider the sum of mean square errors, 


2
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k k

J
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d dE x x
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    Σ −     

with 

the rationale that the sum could be minimized only if each derivative were 

well estimated. Yet, because 
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J J

J J
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    −     

might be much larger 

than any other summand, the sum might overemphasize the estimation 

of
J

J

d
dx

μ(x) and thereby lead to oversmoothing in the estimation of μ(x) 

and its lower order derivatives. A less naive idea would be to consider 

a weighted sum of mean square errors, 
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or the mean square error of a weighted sum of derivative estimators, 
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. Either way, a sensible specification of 

a0 through aJ would be required for the criterion to serve its intended 
purpose. In light of Stone’s [5] theory, one might think to let ak escalate 
in proportion to n(J+1−k)/(2J+3) as the sample size n increased. However, 
prescribing ak = ckn

(J+1−k)/(2J+3) with ck not dependent on n only reduces 
the question of specifying a0 through aJ to the problem of choosing c0 
through cJ. One might imagine that c0 = c1 = • • • = cJ = 1 would be a 
natural default choice and least  vulnerable to criticism for appearing 
ad-hoc, but whether such a choice would allow the criterion to serve its 
intended purpose is unclear.

The considerations in the preceding paragraph are, of course, 
predicated on the belief that μ(x) is (J+1) - times differentiable. A 
still greater challenge remains in formulating a criterion by which 
optimality may be defined when μ(x) is infinitely differentiable and all 
of its derivatives are to be estimated simultaneously. Such a criterion 
is motivated by the recognition that, although one may not envisage 
practical applications in which estimates of all derivatives are required, 
there may exist practical applications in which the number of derivative 
estimates required is not known a priori. For example, in the Raman 
spectrum application, a researcher may first examine an estimate of 
μ(x). If the estimate of μ(x) reveals the chemical composition of the 
material, then the researcher may stop. Otherwise, the researcher may 
examine an estimate of μ’(x). This process may continue, with the 
researcher subsequently examining estimates of μ”(x) and higher order 
derivatives, until the researcher either knows the chemical composition 

of the material or regards the higher order derivative estimates as so 
noisy that he/she is simply forced to make a guess about the chemical 
composition. Charnigo, Hall and Srinivasan [4] provide an example 
in which an estimate of μ’(x) leads to successful identification of a 
sample of cerium bastnasite. In general, then, the number of derivative 
estimates to be examined may not be known a priori. Unfortunately, 
since most nonparametric regression techniques make no provision 
for the estimation of infinitely many derivatives, there is little theory 
to inform the construction of a criterion by which optimality may be 
defined when μ(x) is infinitely differentiable and all of its derivatives are 
to be estimated simultaneously. We thus conclude the present editorial 
by calling for additional research on the simultaneous estimation of a 
mean response function and its derivatives when the mean response 
function is infinitely differentiable.
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