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Abstract
Patient test outcomes from diagnostic testing laboratories can be indicators of laboratory performance. One method of proficiency testing compares 
test results across laboratories to flag non-compliant laboratories. Under this type of proficiency test, the statistical approaches for estimating the 
test result and comparing these across laboratories have important implications. The proficiency test of fecal occult blood testing laboratories in 
Ontario compare estimates of pass rate for a particular test by laboratory based on data observed in the present (latest) month. Estimates by 
laboratory are compared to an acceptance interval determined by data across all laboratories. A laboratory is classified as non-compliant when its 
monthly rate is outside the acceptance interval. We note that monthly sample sizes have an important impact on the probability that a laboratory is 
classified in error and differences in the number of tests conducted across laboratories should be considered. We present an alternative approach 
(Weighted Estimating Equations, or WEE) for combining historical data to improve the precision of the estimate of present performance in the case 
that performance changes slowly over time. The WEE approach uses all available historical data through estimating functions that down-weight 
past data. We compare the WEE approach to current practice through a real dataset of patient fecal occult blood test outcomes at laboratories 
in Ontario as well as simulated data. The study approach improves precision of the estimates and the power of a hypothesis test to compare 
estimates in order to reduce the risk of classifying a laboratory as compliant or non-compliant in error.
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Introduction
In the United States, the Centers for Medicare and Medicaid Services 

regulate all laboratories testing performed on humans through the Clinical 
Laboratory Improvement Amendments. In Ontario, Canada, the Institute for 
Quality Management in Healthcare is an independent agency with a provincial 
mandate to assess the ability of laboratories to perform medical testing. To 
equip medical professionals with quality data for decisions impacting patient 
health, the mission of the regulatory agencies is to provide rigorous, objective, 
third-party evaluation of the medical diagnostic testing systems according to 
international standards. Various laboratories may be performing the same 
test; however, differences between test kits, measurement methods, and 
processes, for example, can contribute to measurable differences between the 
mean outcomes at the various laboratories. Non-compliance and unfavorable 
performance have important implications for licensing continuance and 
for attracting patients. Considering a test result that is either “positive” or 
“negative”, a regulator or stakeholder may want to:

• Estimate the positive rate by laboratory 

• Compare the positive rates across all laboratories 

• Detect those laboratories which have a higher positive rate than their 
peers

The particular application under study relates to proficiency testing of 
laboratories which test samples for indications of colorectal cancer. In Ontario, 
the Colon Cancer Check program was initiated in 2008 as the first population-
based, province-wide, organized screening program designed to raise 
screening rates and reduce deaths from colorectal cancer. Those individuals 
who are deemed to be at risk for developing colorectal cancer are encouraged 
to have a Fecal Occult Blood Test (FOBT) every two years. Studies show 
that when detected early by a FOBT, there is an estimated 90% likelihood 
of curing colorectal cancer [1]. A kit is provided to the patient who draws the 
FOBT sample at home and returns their sample to a laboratory for testing. 
At the laboratory, a technician tests the sample by a nominal examination 
system which is common to all laboratories. The nominal examination results 
in either a negative or positive test result. The FOBT test is normally negative. 
A positive result indicates that abnormal bleeding is occurring and informs the 
medical professional to order follow-up tests. Unlike most other diagnostic 
tests, oversight of the seven laboratories testing FOBT samples in Ontario 
is assigned to a committee (“FOBT committee”) comprised exclusively of 
laboratory representatives.

This paper highlights shortcomings with the FOBT committee’s approach 
to laboratory performance monitoring and suggests a more effective 
approach. The approach as of May 2014 (“Ontario FOBT proficiency test”) is 
as follows. Monthly, each of the seven laboratories report their positive rate 
which is calculated as the number of samples having a positive test result 
relative to the total number of samples tested. The observed positive rate in 
the present month for each laboratory is compared to an acceptance interval 
and a rate outside this interval indicates that the laboratory is in potential 
non-compliance. Three consecutive months of this status prompts a letter of 
concern from the committee and can escalate to requests for re-training, peer 
visits, or a recommendation to the Ministry of Health that the non-compliant 
laboratory cease performing tests. The acceptance interval is determined by 
three standard deviations above and below the 12-month moving average 
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of outcomes across all seven laboratories. As the observed positive rate for 
each laboratory is compared to the acceptance interval, no consideration is 
given to the uncertainty of the rate resulting from sample size (number of tests 
conducted). Further, the number of patients tested at the various laboratories 
may vary to a large extent. Depending on how the acceptance interval is 
calculated, the data observed at a larger laboratory could have larger influence 
on the acceptance interval than a small laboratory. Changes in performance at 
a larger laboratory could move the acceptance interval over time and a smaller 
laboratory that experiences no change may become non-compliant relative 
to the latest acceptance interval. Sample size at a particular laboratory has 
an important impact on the probability that the laboratory is classified as non-
compliant relative to its peers.

A common approach to reduce the impact of sample size is to pool data 
across multiple time periods (for example, a year). While pooling data improves 
the precision of estimates and power of hypothesis tests, this approach 
increases bias and reduces power when the positive test rate changes over 
time. We expect that true positive rates by laboratory change slowly over time 
due to the effects of unobserved factors. Including historical data to reduce 
uncertainty due to small sample size trades bias for precision. Too much 
change in the parameter over time results in a large amount of bias and this 
trade-off is not beneficial. The decision whether to use present time data only 
or to include some or all observed historical data depends on the bias/variance 
trade-off. 

There is an opportunity to improve the bias and uncertainty in estimates 
of positive rate beyond the approach of pooling data. The Weighted Estimating 
Equations (WEE) approach [2] borrows information from the past in order 
to manage a bias/variance trade-off in an estimate of present performance. 
Where stakeholders pay regular attention to laboratory performance issues, we 
expect that laboratory performance changes slowly over time. Some laboratory 
sample sizes may be small. The WEE approach increases the statistical 
information for estimation by involving all relevant past data through the 
weighted estimating equation. Using WEE, estimates of present performance 
have less bias than pooling data and less uncertainty than using present data 
only. The WEE has intuitive properties which can be understood by laboratory 
performance stakeholders.

We further note that the Ontario FOBT proficiency test approach to assess 
a particular laboratory’s positive rate gives no consideration to patient-level 
risk factors. The underlying presumption is that all patients who present their 
samples for testing at the various laboratories have the same chance of a 
positive test outcome. Clearly, this assumption is questionable. For example, 
labs may serve different geographic regions where patient population test 
positivity rates are not directly comparable. While the dataset which motivates 
the work of this paper does not include covariates, note that the proposed 
approach may be easily extended to compare outcomes which are risk-
adjusted for patient-level risk factors. 

We consider a real dataset of outcomes from the seven laboratories 
that perform the FOBT test in Ontario. Based on this dataset, the committee 
responsible for FOBT test oversight estimates the positive rates for the present 
month by laboratory and compares these through hypothesis tests. This paper 
compares the estimates and hypothesis tests by the WEE approach with the 
present approach as well as another naïve approach that pools data across all 
time periods without weights. The objective of the WEE approach is to reduce 
uncertainty in the estimates when sample sizes at some laboratories are small 
and manage the added bias caused by possibly slowly changing positive rate 
over time. Further, we discuss the treatment of patient-level risk factors in order 
to improve the comparison of positive rate estimates across laboratories by the 
WEE approach. 

Data 

Consider real test result data from the seven laboratories conducting the 
same Fecal Occult Blood Test (FOBT) in Ontario over time. Test results are 
observed from patients in Ontario over the 18-month period from 
January 2014 to June 2015. The patients are not necessarily the same over 
time and are not identified. The positive or negative test result is recorded by 
patient, by laboratory, and by month. Figure 1 gives the observed number of 
patients by time period and the observed positive rate over time across all 
laboratories.

Figure 1 shows that the positive rate across all laboratories drifts slowly 
over time. Changes to the positive rate may occur due to many complex 
factors; examples include a change in the distribution of samples across 
the laboratories, continuous improvement in the test process at one or more 
laboratories, and changes in test equipment at one or more laboratories. We do 
not want to assume a stochastic or deterministic model to describe the change 
in rate since it may be difficult to model the contributing factors and the model 
may only be useful for a short period of time. Instead, we want to estimate the 
rate assuming that it changes slowly over time in an unpredictable way. 

A physician recommending a FOBT usually refers their patient to a 
particular laboratory for testing. In Ontario, a laboratory may serve patients 
from as few as 100 or as many as several thousand referring physicians. As 
such, the number of samples tested by time period varies considerably from 
laboratory to laboratory. Figure 2 gives the sample size and observed positive 
rate of each FOBT laboratory in the present time period (June 2015).

Figure 2 shows that there are large differences in the numbers of patients 
tested across the various laboratories. The number of FOBT samples tested 
varies from approximately 600 per time period to approximately 20,000 per 
time period. Due to this wide disparity in sample sizes, the power of the Ontario 
FOBT proficiency test to correctly classify small laboratories as compliant or 
non-compliant is a concern.

This paper proposes a way to improve the estimate of the mean positive 
rate at each of the laboratories, noting the wide disparity in sample sizes, 
so that comparisons of rates across the laboratories are more reliable. In 
Appendix A, we provide a set of mathematical notation for the observations 
of test results for each patient, at each laboratory, and at each time period. 
Further, we assume that the observations follow a binomial distribution which 
is frequently used to model the number of successes and number of failures 
in a sample. We describe the (7×1) vector of parameters which we need to 
estimate and we refer to this vector as θ. With an estimate for θ, which we call

Figure 1. Sample size and observed positive rate () of FOBT laboratories in Ontario.

Figure 2.  Sample size and observed positive rate () of FOBT laboratories in Ontario 
in June 2015.
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, we can calculate estimates for the mean positive rate at each laboratory 
through (3) in Appendix A.

Methodology

There are two naïve approaches to estimate the parameter θ that are 
commonly used. One approach is to estimate θ using the observations from 
the latest time period only. In this paper, we refer to this as the ‘naïve, present 
data only’ approach. The drawback with this approach is that the present 
sample size may be small at some laboratories and so the estimate 

has high variance. Another option to estimate θ is to use data across 
many time periods without regard for the time period of the data. In this paper, 
we refer to this as the ‘naïve, all historical data’ approach. Since more data 
are used for estimation, the variance of the estimate  is lower than when 
only present data are used. However, in the problem at hand where the 
positive rates at the various laboratories may be changing slowly over time, 
the estimate  may lead to biased estimates of the positive rates at various 
laboratories due to the influence of older data. 

Weighted estimating equations approach

The Weighted Estimating Equations (WEE) approach offers a trade-
off between estimation of positive rate using present time data only (naïve, 
present data only approach) or pooling the data by laboratory over all months 
(naïve, all historical data approach). This trade-off is especially important in 
the FOBT positive rate problem since sample sizes at some time periods may 
be small and the positive rate by laboratory may drift slowly over time in an 
unpredictable way. The premise behind the WEE approach is to estimate the 
present value of the parameter θ using all historical data, but to down-weight 
the influence of historical data. This is done by way of a function (called an 
‘estimating function’) to calculate the estimate θ of parameter  that involves 
all historical data as well as a set of weights. We use the notation t to denote 
the set of data observed for a time period t and wt to denote the value of the 
weight which is selected for time period t, where  can take a value from 1 to 
T. Time period Tis the present (latest) time period. The estimating equation to 
calculate is 

 ( ) ( ) ( )1 1 1 2 2 2
ˆ ˆ ˆ; ; ... ; 0 (1)T T Tw y w y w yψ θ ψ θ ψ θ+ + + =

Where each is a score function which involves dataset 
and  as given in Appendix B. To down-weight the influence of historical 
data, the various functions by time period are given weights which decline 
for time periods in the further past as Relative values of 
the weights control the trade-off between bias and variance of the estimate 

 and so the weights require careful selection. Since we expect that one or 
more the laboratory means drift slowly with time, we use weights that decrease 
exponentially for time periods further in the past. In particular, we propose a 
weight parameter which we refer to as λ and define the weight for each time 
period  in terms of λ as

	
 ( )1 (2)T t

tw λ λ −= −
	

The weight parameter can take a value between 0 and 1 as 0 < λ < 1. 
With (2), the weight for the most recent time period is proportional to λ, the 
time period before that has weight proportional to λ (1-λ), the time period 
before that λ (1-λ)2 and so on. For convenience, we can divide each weight 
by the same constant  so that . Other definitions 
of decreasing weights are possible. A larger value of λ increases the relative 
weight of yt in the estimate of θ. There is subjectivity in the selection of λ, 
but the value λ =0.1 is chosen for this application. Note that once the weight 
values are selected, a closed form solution for the WEE estimate   is possible 
using the equations given in Appendices A and B. 

Naïve approaches

We consider the formulation of the WEE approach in relation to those of 
the Ontario FOBT proficiency test (naïve, present data only approach) and 

the approach that pools data across all time periods (naïve, all historical data 
approach). We point out that these two naïve approaches are special cases of 
the WEE approach with particular selections of the weights.

•	 Naïve, present data only approach: We can show that the WEE 
estimate simplifies to the usual calculation of a rate using only the 
latest time period data when we give all of the weight to the most 
recent time period (λ approaches 1 in (2) so that wT ≈ 1and wT ≈ 0 
for t < T). The estimating function involves the present time dataset yT 
only which is the same as the Ontario FOBT proficiency test estimate 
for each of the seven laboratories.

•	 Naïve, all historical data approach: We can show that the WEE 
estimate simplifies to the usual calculation of a rate using all historical 
data weighted equally when we select weights which are equal 
across all time periods (λ approaches 0 in (2) so that wt ≈1/T for all 
t = 1,……,T) 

Further, we can show that at the two particular selections of the weights 
described previously, the estimate of the variance of   in the WEE formulation 
gives the usual estimates of variance [2]. 

Hypothesis tests

We compare the positive rates across laboratories for the present time 
period and detect laboratories which have a higher positive rate than their 
peers through tests of hypotheses. We consider the test with null hypothesis 
(‘H0’) vs. the alternative hypothesis ('HA') as follows:

H0 : All laboratories have same positive rate for the present time period

HA : At least one of the laboratories has a different positive rate than the 
others

If H0 is rejected, then there is statistically significant evidence that there are 
differences between test results across the laboratories. The committee can 
review estimates from each of the laboratories and carry out follow-up analysis 
to identify the nature of the differences across laboratories. Two characteristics 
of the hypothesis test are considered: 

•	 Size: upper bound on the probability that the test is rejected for values 
of the parameter in the region where the null hypothesis is true

•	 Power, β(θ): The probability that the test is rejected at a particular 
value of the parameter, θ

For tests with a select value of size, we want the power of the test to be 
as large as possible on alternative values of the parameter θ. The power of a 
test is limited by the number of observations and so we look for an approach 
with the highest power of the test for H0 vs. HA given some relatively small 
sample sizes by laboratory. Since increasing sample size increases the power 
of a hypothesis test [3], one can improve the power of a test by pooling data 
across time periods. However, including data observed in time periods before 
a change occurs reduces the power of the test aimed at detecting the change. 
The decision whether to use present time data only or to include some or 
all observed historical data depends on the sample size of the laboratory 
experiencing the change and the size of the change which are both unknown. 
We compare the powers of the tests based on the WEE approach and the two 
naïve approaches. 

In Appendix C, we give the calculation for a test statistic which we call the 
WEE Likelihood Ratio (LR) test statistic for testing H0 vs. HA (7). We refer to this 
test statistic as . Note that the WEE LR test statistic involves all historical 
data, but down-weights the influence of historical data through the weights. 
The weights by time period in the test statistic are also given by (2) with the 
value of the weight parameter λ selected previously. As is done in statistical 
hypothesis testing, we reject or don’t reject H0 in favour of HA by comparing a 
test statistic to a critical value from the distribution of the test statistic. Appendix 
C gives an approximation for the distribution of the WEE LR test statistic. We 
use the approximation for the distribution of this statistic to determine if there 
is significant evidence to reject the null hypothesis. Note that at the two limiting 
values of weight parameter described previously, the WEE LR test statistic 
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and the approximation for its distribution give the usual results using the naïve, 
present data only or naïve, all historical data approaches.

Results 

Ontario FOBT dataset 

We compare the WEE estimates and the two naïve estimates for the 
mean positive rate at each laboratory for the FOBT dataset. Figure 3 gives 
the estimates based on the WEE approach and the two naïve approaches. 
Figure 3 shows that estimate by the WEE approach have less uncertainty than 
estimates using present data only across all laboratories. The uncertainties of 
the WEE estimates are comparable to those of the naïve, all historical data 
estimates. The WEE estimates of positive rates agree closely to those of the 
naïve, all historical data approach and are substantially different than those 
of the naïve, present data only approach for laboratories 1, 2, 3, and 4. The 
closeness of the WEE and naïve, all historical data estimates indicates that 
there was little change in actual positive rates at these laboratories over the 
18 time periods. The naïve, all historical data estimates and WEE estimates 
will have a bigger difference when there is some change in the positive rates 
across time. 

We calculate the WEE LR test statistic   to test the null hypothesis of 
no difference across mean positive rates across laboratories vs. the alternative 
hypothesis for the FOBT dataset using the procedure described above. Details 
of these calculations are given in Supplementary Table 1. We compare the 
value of the test statistic  to the critical value of an approximate 
distribution of this quantity from the 𝑥2 distribution, 𝑥2 

0.05 (6) = 12.6. Since 
 is larger than the critical value of its approximate distribution, there is 

statistically significant evidence to reject the null hypothesis in favor of the 
alternative hypothesis for a size 0.05 test. The reject/don’t reject decision is 
the same for the hypothesis test by the naïve, all historical data approach; 
however, the naïve, present data only approach gives no evidence to reject 
the null hypothesis vs. the alternative hypothesis. We see that an approach 
based on the present time period data is less sensitive at detecting differences 
among laboratories for this dataset. This is the current industry practice (as of 
May 2014) among the committee that oversees FOBT laboratories in Ontario. 

Since we reject the null hypothesis that all laboratories have the same 
positive rate at the present time, we refer to the estimates in Figure 3 to 
understand the nature of the differences across laboratories. The estimates 
show that the WEE estimate of positive rate at laboratory 6 is significantly 
higher than the rates at each of the other laboratories. Note that this difference 
is not significant through comparison of naïve, present data only estimates.

In addition to comparing the WEE LR test statistic to a critical value, it 
is useful to track the trend of , the statistic for the test of H0 vs. HA over 
time. The WEE LR test statistic at a particular time period is calculated with all 
observations up to the end of that time period and the same weight values used 
previously  The WEE LR test statistics for the Ontario FOBT dataset across the 
18 time periods are given in Figure 4. Whenever the test statistic is higher than 
the critical value for the size 0.05 test, there is statistically significant evidence 
to reject the null hypothesis H0 in favor of alternative HA.

Figure 4 shows evidence to reject null hypothesis H0 in favour of alternative 
HA from April 2014 to June 2015 for a size 0.05 test. There are significant 
differences in the positive rate at one or more of the laboratories over this 
period. Note that this graph does not point to a particular laboratory and so 
there may be different outlier laboratory(s) from period to period. The graph 
points to a change at one of the laboratories that began around March 2014. 
Further, there is a downward trend that starts around September 2014. The 
downward trend from September 2014 to June 2015 suggests that positive 
rates across the laboratories are becoming more consistent with one another. 
A distinctive trend in the WEE LR test statistic should be investigated with the 
follow-up analysis discussed previously.

Simulation study

We simulate data that resembles the fecal occult blood test in Ontario 

dataset to study the power and biasedness of the size 0.05 tests of hypotheses 
by the various approaches. We compare the WEE approach to the two naïve 
approaches. We discuss the limitations of the results and the impact of certain 
characteristics of the data. 

We simulate datasets with sample sizes similar to the Ontario FOBT 
laboratory problem where the number of samples per month ranges from 600 
to 35,000 across the seven laboratories and the total sample size is 60,000 
observations per month. Figure 5 gives the sample sizes for each laboratory 
which are the same for each of the 18 time periods (months).

Each simulated dataset contains observations by laboratory per time 
period over a period of 18 time periods. As stated, the objective of the 
analysis is to regularly assess a laboratory’s ability to provide an acceptable 
standard of service by comparison with peers. Parallel changes at all 
laboratories simultaneously may be of interest, but are not addressed here. 
Each dataset is designed with positive rate at the first time period equal 
to 0.042 (4.2%) for each of the seven laboratories. Following the first time 
period, a change is introduced into a single laboratory and positive rates at 
the remaining laboratories are unchanged. We simulate a change at either the 
largest laboratory or the smallest laboratory in order to study the power and 

Figure 3.  Estimates of positive rate for FOBT laboratories in June 2015 by naïve, 
present data only method (), naïve all historical data method (), and WEE method 
(). Vertical bars are the corresponding 95% upper control limits and lower control limits 
assuming normality.

Table 1.  Simulation design profiles. The profile letters refer to the profiles for the positive 
rates over time period given in Figure 6.

Design 
Profile

Size of the 
Laboratory 

Undergoing the 
Change

Type of Change Direction 
of Change

Positive Rate Profile 
(see Figure 6) for 

Laboratory m

I Positive rate stay constant Profile a for all m

II Small laboratory Step change Increase Profile a for m={1,…,6} 
Profile b for m=7

III Small laboratory Step change Decrease Profile a for m={1,…,6} 
Profile c for m=7

IV Small laboratory Linear change Increase Profile a for m={1,…,6} 
Profile d for m=7

V Small laboratory Linear change Decrease Profile a for m={1,…,6} 
Profile e for m=7

VI Large Laboratory Step change Increase
Profile a for 

m={1,2,3,5,6,7} 
Profile b for m=4

VII Large Laboratory Step change Decrease
Profile a for 

m={1,2,3,5,6,7} 
Profile c for m=4

VIII Large Laboratory Linear change Increase
Profile a for 

m={1,2,3,5,6,7} 
Profile d for m=4

IX Large Laboratory Linear change Decrease
Profile a for 

m={1,2,3,5,6,7} 
Profile e for m=4
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biasedness of the hypothesis test at the extremes of laboratory sample sizes. 
Many changes are possible; we simulate a step or linear change that increases 
or decreases the positive rate over the 18 time periods. We add a profile for 
the base case (called profile ‘a’) where the positive rate stays constant at 
all laboratories over time and a profile for each increasing/decreasing and 
step/linear positive rate change (called profiles ‘b’ through ‘e’). Under these 
conditions, there are nine design profiles involving the positive rate changes 
for a large or small laboratory (called ‘I’ through ‘IX’) as summarized in Table 1. 
As noted, the profile letters in Table 1 refer to the profiles for the positive rates 
over time period given in Figure 6.

A positive or negative test response is simulated for each sample at each 
laboratory at each time period by the binomial distribution with the appropriate 
positive rate design value. The sample size for each laboratory by time period 
is given in Figure 5 and the positive rate design value by time period is given 
in Table 1 and Figure 6. We simulate 5000 datasets under these conditions for 
each of the nine design profiles. 

For each of the 5000 simulated datasets for each of the nine design 
profiles, we calculate the WEE LR test statistic and reject or do not reject H0 vs. 
HA based on the approximation for its distribution under the null hypothesis as 
described in Appendix C. We do this for every value of the ending time period 
between 1 and 18 and for each of the naïve and WEE approaches to study the 
power and biasedness of the tests statistics by the various approaches over 
successive time periods. With these simulation results, we evaluate the size 
for the design profile where the null hypothesis is known to be true (profile I) 
and the power and biasedness for design profiles where the null hypothesis 
is known to be false (profiles II through IX). Figure 7 gives the percentage of 
test statistics by the WEE and naïve approaches where the null hypothesis is 
rejected at size 0.05 for data simulated by profile I where the null hypothesis 
is known to be true. Figure 7 shows that the percentage of tests rejected over 
time is similar for the WEE and naïve approaches. The WEE LR test statistic 

rejects the null hypothesis for 4.8% of datasets, and the naïve, all historical 
data and naïve, present data only approaches reject for 4.7% and 5.0% of 
datasets, respectively. The closeness of the observed sizes of the tests 
compared to the design value for the size of test (0.05 or 5%) is expected and 
indicates that the approximations for the critical values of the test statistics are 
reasonable. The observed differences in actual sizes of the tests among the 
three approaches do not have an important impact on the interpretation of the 
power of the tests to follow.

Figures 8-15 gives the percentage of LR test statistics by the WEE and 
naïve approaches where the null hypothesis H0 is rejected in favour of the 
alternative HA based on data simulated with each of the eight design profiles 
where the null hypothesis is known to be false. The graphs are interpreted as 
the observed power of the various test statistics to reject the null hypothesis 
with sizes of the test close to 0.05. We expect the observed power to increase Figure 4.  WEE LR test statistic ( ) to test H0 vs. HA by time.

Figure 5.  Sample size by laboratory per time period.
Figure 6.  Positive rate design profiles.

Figure 7.  Percentage of tests of H0 rejected for profile I (no change) by naïve method 
using present data only (), naïve method using all historical data (o), and WEE method 
().

Figure 8.  Percentage of tests of H0 rejected for profiles II by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().
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Figure 9.  Percentage of tests of H0 rejected for profiles III by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

Figure 10.  Percentage of tests of H0 rejected for profiles IV by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

Figure 11. Percentage of tests of H0rejected for profiles V by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

according to the known change in positive rate. Note that there are differences 
in the scales of the vertical axes. Figure 8-15 shows that the power usually 
increases with more time periods since the step change and as the linear 
change gets larger. The exception is under the naïve, present data only 
approach where power does not increase with more time periods following 
a step change (naïve, present data only for profiles II, III, VI, VII). In general, 
the WEE approach has higher power to detect a change after a given number 
of time periods and requires fewer time periods to achieve a particular level 
of power. 

We investigate how the power to detect a change increases as the size of 

Figure 12. Percentage of tests of H0 rejected for profiles VI by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

Figure 13. Percentage of tests of H0 rejected for profiles VII by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

Figure 14.  Percentage of tests of H0 rejected for profiles VIII by naïve method using 
present data only (), naïve method using all historical data (o), and WEE method ().

the change increases in a follow-up simulation study. In this study, we simulate 
data where the true value of the positive rate does not change up to time period 
9 and then either a linear or step change of various sizes occurs at the small 
laboratory 7. Figures 16 gives the observed power to detect the linear or step 
change of various sizes at three time periods following the change (that is, at 
time period 12) by test statistics from the various approaches.

Figure 16 shows that the power of the WEE approach to detect a step 
change of 0.024 in the positive rate (from 0.042 to 0.066) at laboratory 7 at 
three time periods since the change is favorable at 73% (0.73). As the size 
of the step change increases over the range from 0.003 to 0.024, the WEE 
approach has increasingly more power to detect the change than either naïve 
approach. Figure 17 shows that the power of the WEE approach to detect a 
linear change of 0.01 per time period (from 0.042 to 0.072) at laboratory 7 after 
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Figure 15. Percentage of tests of H0 rejected for profiles IX by naïve method using 
present data only (/), naïve method using all historical data (o), and WEE method ().

Figure 16.  Power of test to detect change at a small laboratory after three time periods; 
following a step change.

Figure 17.  Power of test to detect change at a small laboratory after three time periods; 
following a linear change by naïve method using present data only (o), naïve method 
using all historical data (), and WEE method ().

three time periods is 55% (0.55). The naïve present data only approach has 
slightly more power than the WEE approach for this example since the change 
is relatively large and the total amount of data since the change is relatively 
small compared to that from before the change. As more time passes since the 
start of the change, we expect that the power of the WEE approach to detect 
a change will surpass the power of the naïve; present data only approach, 
but exploring this through simulation remains as future work. The nine time 
periods of data observed before the change considerably reduce the power of 
the naïve approach using all historical data weighted equally compared to the 
other approaches. This study shows that there is favorable power of the WEE 
approach for detecting a change at a small laboratory within a short time frame 
depending on the size of the change.

Summary and Discussion

The proficiency test to assess the ability of laboratories to perform Fecal 
Occult Blood Tests (FOBT) in Ontario compares the observed positive rate 
from various laboratories to an acceptance interval based on data across all 
laboratories. When one or more of the laboratories test few samples relative 
to the other laboratories, the probability that the Ontario FOBT proficiency 
test incorrectly classifies the laboratory acceptable or non-compliant may 
be significant. There is wide disparity in sample sizes between the seven 
laboratories testing FOBT in Ontario. The power of the Ontario FOBT proficient 
test to correctly classify small laboratories is a concern. 

We analyze real Ontario FOBT outcome data from seven laboratories over 
a period of 18 months. We use the Weighted Estimating Equations (WEE) 
approach since we expect that test performance may drift slowly over time 
in an unpredictable way and some sample sizes are small. We compare the 
WEE estimate of the positive rate to estimates by naïve approaches based 
on present time data only and all historical data weighted equally. The 
various approaches produce positive rate estimates that vary considerably 
from one another. The WEE estimate has similar precision to the naïve, all 
historical data estimate. Based on the WEE and the naïve, all historical data 
approaches, we reject a test of the null hypothesis that all laboratories have the 
same positive rate in favor of an alternative hypothesis that not all laboratories 
have the same positive rate. We do not reject this null hypothesis based on 
the analysis of present data only. Similarly, two of the tests against laboratory-
specific alternative hypotheses are rejected based on the WEE approach and 
the naïve, all historical data approach, but not rejected based on the naïve, 
present data only approach. There are important differences in the results 
based on the WEE approach and those based on current industry practice. 

We explore the power of the hypothesis test to detect difference between 
laboratories by the various approaches through simulated data designed with 
varying changes in positive rate over time. The conditions for the simulation 
study reflect those of the Ontario FOBT proficiency test at May 2014 as a 
prototype example, including the number of laboratories, sample sizes by 
laboratory, and initial positive rates. In general, the WEE approach has higher 
power to detect a change after a given number of time periods and requires 
fewer time periods to achieve a particular level of power. As the size of a 
step change increases, the WEE approach has increasingly more power to 
detect the change than either naïve approach under the particular simulation 
conditions. Under a linear change, initially the naïve, present data only 
approach has higher power but the power of the WEE approach surpasses its 
power within a short time frame depending on the size of the change. 

Formal process monitoring could be used to provide quicker detection of 
small sustained shifts in positive rate and control the rate that laboratories 
are classified as non-complaint in error. A control chart statistic based on the 
likelihood ratio test can be used to detect a change in both the overall process 
mean and changes in the individual stream means [4]. The methodology to 
monitor multiple stream processes can be applied to monitor many laboratories 
simultaneously. The authors show that this test does not require a phase 1 
sample where we collect data from an in-control process to set an appropriate 
control limit which saves cost. This work could be extended to develop a 
control chart for the WEE LR test statistic to improve time to detection of a 
small change and the probability of non-compliance misclassification [5-7].

Conclusion

The work of this paper indicates that a more reliable Ontario FOBT 
proficiency test can be constructed based on the weighted estimating 
approach that has suitable power to detect changes at a laboratory of any 
size and reduces the risk of classifying a laboratory as non-compliant in error. 

Limitations and recommendations for future work

The work of this paper demonstrates the WEE approach based on the 
Ontario FOBT proficiency test which monitors anonymized patient results 
from all laboratories. It is important to point out two limitations. Firstly, 
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there are important laboratory factors that may contribute to differences 
across laboratories, such as differences in measurement methods, test kits, 
and laboratory processes. Further, important patient factors that may be 
contributing to differences, such as the foodstuffs consumed by the patient 
before taking the sample and the amount of time elapsed between drawing and 
testing a sample. We note that while data on these important laboratory factors 
and patient factors were not provided for the application at hand, risk-adjusted 
monitoring of outcomes through the WEE approach is possible. It should 
be noted however, that any factors relating to the quality of the laboratories 
should not be included whenever the results are intended to show differences 
in quality across laboratories. The importance of this work is to draw reliable 
comparisons across laboratory results. Differences that are detected can direct 
the appropriate follow-up work to understand the nature of the differences and 
drive quality improvement. Future work will extend this work to other datasets 
incorporating covariate data.

The second important limitation to note is that there are other methods 
of proficiency testing; for example, proficiency test which sends one or more 
artifacts between a number of participating laboratories. In this type of test, 
small samples may not be a concern. Consideration of present methods for 
estimating and comparing positive rates across laboratories through data 
collected by other types of proficiency tests remains as future work.

Acknowledgements

Financial  support for this study was provided in part by research grant 
105240 from the Natural Sciences and Engineering Research Council of 
Canada. 

Conflict of Interest 

The funding agreement disclosed above ensured the authors’ 
independence in designing the study, interpreting the data, writing, and 
publishing the report. Each of the authors has no commercial associations that 
might create a conflict of interest in connection with this manuscript.

References
1.	 Cancer Care Ontario. “When caught early, colon cancer is more likely to be treated 

successfully.” (2017).

2.	 Barfoot, Patricia L. Cooper, Stefan H. Steiner, and R. Jock MacKay. “Bias/Variance 
Trade-off in Estimates of a Process Parameter Based on Temporal Data.” J Qual 
Technol 49 (2017):301-319. Google Scholar CrossRef Indexed At

3.	 Lehmann, Erich Leo and Joseph P. Romano. “Testing Statistical Hypotheses”. 
NewYork: Springer Science+Business Media, USA, 3(2005).

4.	 Liu, Xuyuan, R. Jock MacKay, and Stefan H. Steiner. “Monitoring Multiple Stream 
Processes.” Qual Eng 20 (2008):296-308. Google Scholar, CrossRef, Indexed at

5.	 Barfoot, Patricia Cooper, R. Jock MacKay, and Stefan H. Steiner. “Comparing and 
Monitoring Risk-adjusted Hospital Performance Measures: A Weighted Estimating 
Equations Approach.” MDM Policy & Practice 3 (2008):1-12. Google Scholar 
CrossRef Indexed at

6.	 Small, Christopher G. “Expansions and Asymptotics for Statistics”. Boca Raton: 
Chapman & Hall/CRC Press, USA, 2010.

7.	 Casella G., and R. L. Berger. “Statistical Inference, Second Edition”. Duxbury 
advanced se ries, 2002.

How to cite this article: Barfoot, Patricia Cooper, Stefan H. Steiner and R. Jock 
MacKay. “Estimating and Comparing Diagnostic Laboratory Performance with 
Weighted Estimating Equations.” J Biom Biostat 13 (2022): 90

https://www.newswire.ca/news-releases/when-caught-early-colon-cancer-is-more-likely-to-be-treated-successfully-615085644.html
https://www.newswire.ca/news-releases/when-caught-early-colon-cancer-is-more-likely-to-be-treated-successfully-615085644.html
https://www.tandfonline.com/doi/abs/10.1080/00224065.2017.11917999
https://www.tandfonline.com/doi/abs/10.1080/00224065.2017.11917999
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bias%2FVariance+Trade-off+in+Estimates+of+a+Process+Parameter+Based+on+Temporal+Data&btnG=
https://doi.org/10.1080/00224065.2017.11917999
https://www.researchgate.net/publication/320538930_BiasVariance_Trade-Off_in_Estimates_of_a_Process_Parameter_Based_on_Temporal_Data
https://www.tandfonline.com/doi/abs/10.1080/08982110802035404
https://www.tandfonline.com/doi/abs/10.1080/08982110802035404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Liu%2C+Xuyuan%2C+R.+Jock+MacKay%2C+and+Stefan+H.+Steiner.+%E2%80%9CMonitoring+Multiple+Stream+Processes.%E2%80%9D+Qual+Eng+20+%282008%29%3A296-308.&btnG=
https://doi.org/10.1080/08982110802035404
https://www.researchgate.net/publication/233179275_Monitoring_Multiple_Stream_Processes
https://journals.sagepub.com/doi/full/10.1177/2381468318761027
https://journals.sagepub.com/doi/full/10.1177/2381468318761027
https://journals.sagepub.com/doi/full/10.1177/2381468318761027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+and+Monitoring+Risk-adjusted+Hospital+Performance+Measures%3A+A+Weighted+Estimating+Equations+Approach&btnG=
https://doi.org/10.1177%2F2381468318761027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125076/
https://www.routledge.com/Expansions-and-Asymptotics-for-Statistics/Small/p/book/9781584885900
https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2751348

