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Introduction
The group testing model of Dorfman [1] is effective for reducing 

the number of diagnostic tests because instead of performing n 

individual diagnostic tests, it only requires =
ng
k

 when retesting is not 

done (where k is the pool size). However, caution needs to be exercised 
when choosing the pool size (k), because if k is too large, the diagnostic 
test may be sensitive to dilution effects [2,3]. Assuming perfect testing, 
a pool is declared positive if at least one of the k individuals is positive, 
and declared free of the disease if the test is negative.

 The assumption of a homogeneous distribution of transgenic maize 
(Zea mays L.) in a population, though easy to use in practice, is unrealistic 
[4] and therefore may affect the quality of the estimated proportion of
interest. Since plant samples are taken at different locations throughout 
a geographical region or seed samples are taken from seed lots obtained 
from different regions, this means that individual plants or seed lots are 
inherently clustered by design and share common characteristics [5].
This clustering results in correlated samples. Therefore, it is important
to develop methods for analyzing pooled data when individuals are
correlated and do not require the assumption of homogeneous plant
distribution, as in a binomial distribution.

When there is overdispersion (extra-binomial variation), binary 
data often show greater variability than predicted by the binomial model 
[6]. Overdispersion is said to be the norm in practice, and nominal 
dispersion, the exception. Hung and Swallow [7] studied the robustness 
of group testing in estimation problems when the underlying assumption 
of independent individuals is violated. They found that when defectives 
are clustered, as in a serial correlation model with positive serial 
correlation, even using a small group size offers little robustness. Group 
testing to estimate the proportion of defectives in a serially correlated 
population should be done cautiously. The recommendation is not to 
form groups directly from the ordered population, but to randomly 
assign the individuals to groups and destroy the correlation. However, 

group testing for classification purposes only (whether defective or 
non-defective) benefits from having the defectives clustered, and the 
clustering should be preserved and exploited [7].
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Abstract
When the sampling scheme is in clusters and when the pools (of size k) within a cluster are assumed not to be 

independent, the Dorfman model for estimating the proportion under the binomial model is incorrect. The purpose of this 
paper is to propose a method for analyzing correlated binary data under the group testing framework. First, assuming 
that the probability of an individual varies according to a beta distribution, we derived an analytic expression for the 
probability of a positive pool and the correlation between two pools in each cluster. Second, we derived the exact 
probability mass function of the number of positive pools in each cluster that should be used to obtain the maximum 
likelihood estimate (MLE) of the proportion of individuals with a positive outcome. However, this MLE is not efficient in 
terms of computational resources. For this reason, we proposed another estimator based on the beta-binomial model 
for obtaining the approximate MLE of the proportion of interest. Based on a simulation study, the approximate estimator 
produced results that are very close to the exact MLE of the proportion of interest, with the advantage that this approach 
is computationally more efficient.

Liu et al. [6] provide confidence interval procedures for estimating 
proportions estimated by group testing with groups of unequal size 
adjusted for overdispersion (extra-binomial variation). They used a 
quasi-likelihood approach to correct for the presence of overdispersion. 
However, in this case, heterogeneity in pool responses is induced by 
using different pool sizes (k) and may be due to the number of pools 
per cluster used in the group testing method. In their study, Liu et al. 
[6] introduced heterogeneity by assuming three clusters (m=3) and
using a different pool size (k1,k2,k3) in each cluster, with the following
number of pools per cluster: N1=5, N2=10 and N3=15. For example,
when k1=20, k2=10 and k3=5, they observed that if Y1=5, Y2=7 and

3=4, then 2 1. 28ˆ 00σ = , where Yi denote the number of positive pools
observed, i=1,2,3, and 2σ̂  denotes the estimated dispersion parameter.
However, if Y1=1, Y2=7 and Y3=3, then 2 4. 33ˆ 07σ = , which indicates that 
the proportion of group testing varies widely for specific combinations; 
this also implies the presence of overdispersion. Here it is important
to point out that the outcomes of the units in each cluster are assumed
to be independent, identically distributed (i.i.d.) binomial distributions 
with N and p and that testing was conducted with no errors. However,
the assumption of i.i.d. binomial distribution with N and p is not
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appropriate when the sampling process is hierarchical and the plants in 
each cluster are correlated due to genetic factors or because the plants 
are spatially adjacent [6].

Regression models for pooled data have been proposed that 
incorporate covariates to identify which factors influence prevalence 
[8-10], while assuming that individual statuses (positive or negative) 
are independent random variables. Group testing regression models 
with fixed and random effects have also been developed to handle 
within-cluster correlation among individual latent binary responses 
[5], where the correlation is incorporated into the model by using the 
clusters as random effects; with help of covariates, it is possible to vary 
the prevalence between units. However, when we do not have access to 
covariates, it is not possible to know the unit-specific prevalences that 
control the correlation between units induced by this variability in the 
prevalence between units. Also, with these models, it is not possible 
to get a closed form of the likelihood function and of the correlation 
between pools (or individuals) induced by the random effect. For 
this reason, it would be useful to develop an alternative method for 
analyzing pooled correlated data that takes into account the correlation 
between individuals when estimating the proportion of interest. Such 
a method would provide us with an analytical expression for the 
likelihood function that we could use for calculating the probability of 
a positive pool and the correlation between two pools.

Furthermore, ignoring the correlation among individuals 
with cluster data under group testing produces a biased estimate 
of the proportion of interest; it also narrows down the confidence 
intervals and causes overestimated p-values for hypothesis testing. 
Data analysis methods are available for data with correlated responses 
in a non-group testing context with the correlation incorporating 
extra-binomial variation. One way of including extra-binomial 

 
which is independently distributed on the interval (0,1) with E(Pi)=pi;  

( ) ( )[ 1 ]φ= −i i iVar P p p , where ϕ is the parameter of overdispersion, and 
by assuming that, conditional on Pi=pi, Ri is binomial (mi,pi), E(Ri)=mi pi 
and ( ) ( )[ ]1 1 ( 1)δ= − + −i i i i iVar R m p p m , where δ is the intraclass correlation. 
However, note that when mi=1, the variance does not change 
Var(Ri)=pi(1−pi), but we are still introducing a correlation between the 
individual binary responses [11,12].

A special case of this model for extra-binomial variation, described 
by Williams [11], assumes that Pi has a beta distribution, which results 
in Ri having a beta-binomial distribution. Another distribution with the 
same relationship between E(Ri) and Var(Ri) is the correlated-binomial 
model [13,14], in which ϕ plays the role of a correlation between the 
binary components of a population.

Turechek and Madden [15] used beta-binomial distribution to 
estimate the proportion (p) when there is heterogeneity. The key element 
of their approach was to approximate the probability of a positive pool 
of size k in the presence of heterogeneity with the probability of a positive 
pool under the binomial model (assuming homogeneity, that is, assuming 
that p is constant across clusters) and adjust this binomial probability 
with the design effect (deff= [ ]1 ( 1)δ+ −k ). In this case, deff was defined 
as the ratio of the variance of the beta-binomial model divided by the 
variance of the proportion under the binomial distribution. Turechek 

and Madden [15] then defined the effective pool size 
2 =deff

kk
deff

, 

which represents the reduction in information obtained in the pool size 

due to the effects of over-dispersion. Then, to correct for overdispersion 
when calculating the probability of a positive pool, they replaced k with 
k2deff in the binomial model to approximate the probability of a positive 

pool under the beta-binomial model.  However, this effective pool size 

2 =deff
kk

deff
 sometimes does not predict the probability of a positive 

pool in the presence of heterogeneity very well, so they suggested using 

2 2 2  
(0.98135 0.8179 0.004958 0.30387 0.3471 0.08475θ θ θ θ

=
+ + + − −D

kk
k k k  as the 

effective pool size to produce better results (where 
1
δθ
δ

=
−

). It is 

important to point out that this approach works well if the correlations 
between pools are negligible; however, most of the time this assumption 
is violated in the context of plants collected from the same cluster that 
share genetic and environmental background.

Recent work by Lendle et al. [16] proposed group testing procedures 
for case identification with correlated responses for studying the 
efficiency of a group testing procedure when units within clusters 
are correlated, understanding by efficiency the expected number of 
diagnostic tests per unit required to classify all units as either positive 
or negative. In the work of Lendle et al. [16], clusters were assumed 
to be of equal size with the same distribution, contain exchangeable 
units and have a particular type of distribution. They used three 
models to examine how the efficiencies of group testing procedures are 
affected by correlated responses: a beta-binomial model where π has 
a beta distribution with mean p and variance σp(1−p); the model of 
Madsen [17], which is useful for modeling exchangeable binary data 
letting π=p with probability 1−σ, π=0 with probability σ(1−p), and 
π=1 with probability σp; and the model of Morel and Neerchal [18], 
which is constructed by letting (1 )π σ= + −p p  with probability p 
and π σ= −p p  with probability 1−p. However, it is important to 
point out that the focus of the Lendle et al. [16] paper was classification, 
not estimation. In fact, they derived a closed-form expression for the 
expected number of tests per unit (i.e., efficiency) of hierarchical and 
matrix-based group testing procedures used for classification when units 
within clusters are correlated under a class of model for exchangeable 
binary random variables. Considering the above three models of 
exchangeable binary random variables in their study, they found that 
if units from the same cluster are tested together, the efficiency of a 
particular procedure can be improved, sometimes substantially, relative 
to random arrangements, which ignore information about cluster 
membership [16].

The main objective of this research is to propose a method for 
estimating binary responses using the Dorfman group testing model 
without retesting when the data were collected in clusters and the 
individuals within each cluster are positively and equally correlated. 
Negative correlations are not discussed here. To account for this 
correlation in the analysis, we proceed as in the standard context of 
the group testing binomial model, but vary the parameter p as a beta 
distribution, which is used to achieve a closed form of the probability 
mass function (pmf) of the number of positive pools in each cluster. 
This also allows deriving a closed form for the probability of a positive 
pool ( )( ) π k

p  and the correlation between two pools ( )( )δ k
p . This pmf 

is used to estimate the proportion of interest (π) and the correlation 
between two individuals (δ) [16]. 

It is essential to point out that with this method we get a closed 
expression for the probability of a positive pool and the correlation 
between two pools that is not available in conventional approaches 
for pooled correlated data. However, with the proposed model these 
maximum likelihood estimates (MLEs) are difficult to compute, so we 

variation is by introducing an unobserved continuous variable Pi
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approximated them by using the beta-binomial distribution which was 
applied directly over the pooled correlated data to obtain estimates of 

( )π k
p  and ( )δ k

p
( ) ( )ˆˆ and( ) π δk k
p p . Equating these two estimates with 

the closed-form expressions derived for ( )π k
p  and ( )δ k

p , we get the 

approximate MLEs for π and δ while solving a system of nonlinear 
equations. These approximate MLEs based on the beta-binomial 
distribution produce results that are close to the exact MLEs derived 
using the proposed pmf with cheap computational resources.

Sampling Process using the Dorfman Model 
Suppose that our population is composed of I clusters, and that N 

independent clusters are drawn from the I clusters in the population. 
Further within the l-th cluster, we form ni pools of size kl individuals, 
where we use the Dorfman model without retesting, with random 
allocation of individuals to the pools. Let Yijl denote a binary random 
variable that indicates whether the i-th individual within the pool 
j (j=1,2,…,nl) in the cluster l (l=1,2,…,N) is diseased (Yijl=1) or not 

diseased (Yijl=0). Let 

1

0
=

 
 > 
 

=
∑

k

ijl
i

jl
Y

Z I  be the indicator variable, whether 

the j-th pool inside the cluster l is positive Zjl=1 or negative (Zjl=0). 

( ) [ ]
[ ]

( ) / , (1 ) /
1 1

/ , (1 ) /
π θ π θ

π
π θ π θ

− +
= = = −

−
k

p lj

B k
P Z

B 	   	              (1)

 The correlation between any two pools in the same cluster, ( )( )δ k
p , 

Zjl and Zj’l (j ≠ j’), is derived in Appendix A and given by

( ) ( )
( )

2(2 ) ( )
( )

' ( ) ( )

1 1
Cor ,         

1

π π
δ

π π

− − −
= =

−

k k
p pk

p jl j l k k
p p

Z Z 	                (2)

where 
[ ]
[ ]

(2 ) / , (1 ) / 2
:1

/ , (1 ) /
π θ π θ

π
π θ π θ

− +
= −

−
k

p

B k
B

 is the probability that a pool of 

2k individuals is positive. Although we are using only pools of size k, 
( )2π k
p  is a simplified notation and will be used in the proposed graphical 

estimator method. In this way, we can see that both the probability that 
a pool (of size k) is positive, ( )π k

p , and the correlation between any 
two pools, ( )δ k

p , are functions of the probability that an individual is 
positive, π, and of the correlation between any two individuals in the 
same cluster, δ.

From Appendix C we have that ( )π k
p  increases with k, 

( )( ) ( )

0 0
lim lim 1 1
δ θ

π π π
→ →

= = − − kk k
p p  and ( ) ( )

1
lim lim
δ θ

π π π
→ →∞

= =k k
p p .

Deriving the Probability Mass Function of the Number 
of Positive Pools in a Cluster

 Let 
1=

=∑
ln

l jl
j

Z Z  denote the number of positive pools in cluster l 

Parameter Estimation 
Maximum likelihood estimation 

Let z=(z1,…, zN) be the vector that contains the number of positive 
pools of N clusters analyzed. Then, since the clusters are independent, 
the log-likelihood is given by

( ) ( )
1

, | log | ,π θ π θ
=

 =  ∑

l

N

Z l
l

f zz  

Thus the ML estimators π̂  and ( )ˆ ˆθ δ  are obtained by solving the 

equations

( )
1

, |
0

π θ
π=

∂
=

∂∑
N

l l

l

l z and

( )
1

, |
0

π θ
θ=

∂
=

∂∑
N

l l

l

l z

Where ( ) ( ) ( ), | log | , log , |π θ π θ π θ   = =   ll l Z l l ll z f z L z , and   

( ), |π θ
π

∂
∂

l ll z and ( ), |π θ
θ

∂
∂

l ll z
 are given in Appendix D. This system of 

equations can be solved iteratively using the Newton-Raphson method.

Moment estimation 

We first obtain moment estimates for ( )  π k
p  and ( )δ k

p ; from this 
we obtain estimates for the interest parameters (π and δ) by solving a 
system of nonlinear equations. We define the first and second empirical 
moments based on the number of positive pools contained in N clusters 
sampled respectively by

1
1

1
=

= ∑
N

l
l

m Z
N

and

2
2

1

1
=

= ∑
N

l
l

m Z
N

 

Then, by setting these moments to their expected values and solving 

for ( )  π k
p  and ( )δ k

p , we obtain the moment estimators for the cluster l as 

1π = p
Nm

n  

* 2
2

*

1
(1 )

π
δ

π π
 −

= − 
− −  





 

p
p

p p

m n
n

n n

where * 2

1=

=∑
N

l
l

n n  and 
1=

=∑
n

l
l

n n  is the total number of pools analyzed.

(l=1,2,…,N) and let ( )
lZf z  be the probability mass function (pmf) of 

Zl, where

( ) ( ) ( )
0

1| , 1 ,
1,

π ππ θ
π π θ θ
θ θ

=

 
    −  = − − + +   −    

  

∑l

l
z

i
Z l l

i

n
zz

f z B k n z i
iB

                  (3)

Details of how this pmf was derived are given 
in Appendix B. It is interesting to point out that 

( ) ( ) ( ) ( )
0 0

  lim | , lim | , 1 1 1 ,   {0,1, , },
δ θ

π θ π θ π π
−

→ →

     = = − − − ∈ …      

l

l l

z n zk kl
Z Z l

n
f z f z z n

z  that is, 

as 0δ → , the pmf of Zl reduces to the binomial ( )( 1 1 , )= − − k
lP p n  when 

there is no correlation between individuals.

Let us assume that all clusters are independent and that for each 
cluster, conditional on p, all individuals have a Bernoulli distribution 
with parameter p, and that p varies according to a beta distribution with 
parameters α=π/θ and β=(1−π)/θ, where π, θ>0. It is not difficult to 
show that for each individual, the unconditional mean and variance, 
respectively, are π and π(1−π), while the correlation between any two 
individuals within the same cluster l, Yijl and Yi’jl (i≠i’), is 

1
θδ

θ
=

+
 (see 

Appendix A and Kupper and Haseman [14] for details). In this context, 
from Appendix A we derived that the probability that a pool of size k is 
positive, is given by
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 Now, since ( )  π k
p  and ( )δ k

p  are functions of π and δ (Eq. 1 and Eq. 
2), estimates of the parameters of interest can be obtained by solving the 
next system of nonlinear equations 

 
( )  π π= k
p p                      (4)

( ) ( )( )
( ) ( )( )

221 1

1

π π
δ

π π

− − −
=

−


k k
p p

pk k
p p

                  (5)

By replacing Eq. 5 in Eq. 6, this system of equations is reduced to 

( ), , 1π δ π= −  pg k                       (6) 

( ) ( ) ( ), , 2 1 1 1 1π δ π π δ = − − − + 


 p p pg k                   (7)

where ( ) [ ]
[ ]

( ) / , (1 ) /
, ,

/ , (1 ) /
π θ π θ

π δ π
π θ π θ

− +
= =

−
s

p

B s
g s

B
. 

The system of nonlinear equations given by Eq.6 and Eq.7 can 
be solved iteratively by the Newthon-Raphson method; alternatively, 
given that the right side of Equations 6 and 7 involves a quantity in 
the interval (0,1), and the parameters are between 0 and 1, they can 
be approximated by graphing the contours of g(π,δ,k) and g(π,δ,2k) at 

levels 1 π−  p  and  ( ) ( )1 1 1 1  ,π π δ − − − + 


 p p p  respectively, and then 

observing where this intersection is located. This can be done with the 
R contour command. We will denote this solution ( , );π δ  it can be used 
as the initial value in true maximum likelihood (π and δ). 

However, these MLEs are difficult to compute with the proposed 
model, so we approximated them using beta-binomial distribution. We 
applied it directly over the pooled correlated data to obtain estimates 

of ( )π k
p    and ( )δ k

p  ( ( )π̂ k
p  and ( )ˆ ) δ k

p  and, by equating these two 

estimates with the closed-form expressions derived for ( )  π k
p and 

( )δ k
p , we get approximate MLEs for π and δ by solving a system of 

nonlinear equations. These approximate MLEs based on beta-binomial 
distribution produced results that are close to exact MLEs derived using 
the proposed pmf with cheap computational resources.

An Alternative Approach based on Beta-binomial 
Distribution 

Calculations of MLEs of the parameters of interest (π and δ) 
using the model described in the last section are difficult due to the 
complexity of the derived pmf. Therefore, in this section, we propose 
an alternative approach for estimating the parameters required with the 
beta-binomial model.

As shown in the previous section, the total number of positive pools 
in every cluster does not have a beta-binomial distribution; however, 
within each cluster the pool responses are binary with a probability of 
success ( )π k

p  and a positive correlation ( ( )δ k
p ), which are functions 

of π and δ, as shown in Eq. 1 and Eq. 2. Alternative estimates of the 
parameters (π and δ) can be developed if we assume that the total 
number of positive pools in each cluster has a beta-binomial distribution 
with parameters ln , ( )π k

p  and ( )δ k
p , and we obtain the MLEs of ( )π̂ k

p  

and ( )δ̂ k
p . We can obtain the MLEs ( )π k

p  and ( )δ k
p  ( ( )π̂ k

p  and ( )δ̂ k
p ) 

with this approach and by solving Equations 6 and 7 for π and δ with 

 π p and δp  replaced by ( )π̂ k
p  and ( )δ̂ k

p , respectively, or by directly 
maximizing the likelihood we estimate π and δ. We can obtain MLEs 
(for ( )π k

p  and ( ) ) δ k
p   using the R library VGAM and the betabinomial 

function [19]. This alternative approach based on beta-binomial 
distribution has computational advantages over the exact solution, 
since for large nl (e.g., >20), the exact solution [Eq. 3] is unstable due to 
the alternative sums involved in ( )| ,π θ

lZf z . 

The corresponding log-likelihood using the beta-binomial model 
is given by

( ) ( )
1

, | log | , ,π θ π θ
=

 =  ∑

N

BB BB l l p p
l

f z nz

where ( | , , )π δBB l l p pf z n  is the probability function of the beta 
binomial with parameters ,ln  π p  and θ p  evaluated at ;lz  specifically,

( ) [ / , (1 ) / ]
| , ,

[ / , (1 ) / ]
π θ π θ

π δ
π θ π θ

Β + + − − 
=   Β − 

p p l p p ll
BB l p p

p p p p

z n zn
f z n

z

where π p  and θ p  (δ p ) are given by Equations 1 and 2 ignoring the 
superscripts.

Simulation Study 
We present the results of a simulation study conducted to evaluate 

the performance of the approximate estimators (using the binomial 
or beta-binomial distribution) instead of the exact distribution (Eq. 
3). The simulation study was performed using four values of π (0.025, 
0.05, 0.075 and 0.1), four values of δ (0.025, 0.05, 0.075 and 0.1) and 
five values of N (10, 30, 50, 100, 200) with k=25 and nl=10, l=1,…,N. 
For each combination of these parameters, we obtained 2000 random 
samples generated using the model given in Eq. 3. To estimate the 
relative bias (RB) and the relative mean squared error (RMSE) for 
each of these samples, we calculated the corresponding MLEs of the 
parameters using the true model, the binomial model and the beta-
binomial model. 

We also evaluated the results of the simulation based on the use of the 
beta-binomial model in order to approximate the correct distribution 
given in Eq. 3. This approach has an attractive computational advantage 
over the exact distribution. To evaluate the quality of the approximate 
estimators, we calculated the relative bias (RB) as

( ) 0

0

π̂
π
− π

= iE
RB

and the relative mean squared error (RMSE) as:

( )
( )

2
0

2
0

ˆˆ( )
( ˆ ˆ)
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where π̂  is the MLE of π using the true model, π̂ i  is the usual MLE of 
π using the binomial or beta-binomial model, and π0 is the parameter 
for which the data were generated using the model given in Eq. 3.

Figure 1 shows the RMSE plots assuming a binomial model. All 
the plots show that miss-specification of the true model (Eq. 3) lowers 
(less than 1) the RMSE when the sample size at the cluster level is equal 
to 10 and larger than 1 when the sample sizes are 30, 50, 100 and 200. 
This means that when the number of clusters is equal to 10, the RMSE 
using the binomial model is smaller. However, when the sample size 
at the cluster level is 30, 50, 100 or 200, the RMSE with the binomial 
model is considerably larger and increases linearly with sample size; the 
performance of the binomial model is more deficient for larger values 
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of δ (Table 1). The binomial model has worse RB (Figure 2) than the 
beta-binomial model and the true model (Eq. 3), and underestimates 
the true values; this behavior is less severe as the sample size increases. 
Also, it is clear that increasing the correlation between individuals (δ) 
significantly increases the RB (Figure 2). 

Figure 3 depicts the RMSE plots for the same parameters as in 
Figures 1 and 2. All of these plots show that, each time, the approach 
of the beta-binomial model in Eq. 3 performs well in RMSE. However, 
when δ increases, RMSE performance decreases somewhat, but is still 
reasonable for the larger values of δ. In addition, it is important to 
point out that for N ≥ 30, performance is good and similar in all cases 
studied (Table 2). For the same parameters studied,  Figures 3 and 4 

shows that the beta-binomial model performs well in RB, except when 
the number of clusters is less than 30 (N<30) but comparable with the 
exact model; additionally, when the correlation between individuals (δ) 
decreases or N increases, this performance improves substantially in a 
similar way for both the beta-binomial approach and the exact model. 
Furthermore, Figure 4 shows that in all cases the approach using the 
beta-binomial model has a positive off-target bias, but it gradually 
converges to 0 as N increases, although with different patterns in each 
combination. The parameter that influences RB the most (in the exact 
and the beta-binomial approximation) is δ. For larger values of δ, RB 
convergence to the desired value is slower; for example, for δ=0.025, 
convergence is reached approximately at N>50, while for δ=0.075, it is 
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Figure 1: Relative mean squared error (RMSE) for the binomial model using various combinations of π, δ and N with k=25 and nl=10, l=1, 2, …, N.

N 10 30 50 100 200
δ π RB RMSE RB RMSE RB RMSE RB RMSE RB RMSE
0.025 0.025 -0.19851 0.62720 -0.21900 1.39904 -0.21404 2.07079 -0.21983 3.99190 -0.21802 8.10129

0.05 -0.19846 0.82584 -0.21224 2.01364 -0.21294 3.23978 -0.21866 6.61699 -0.21839 12.93352
0.075 -0.19159 0.58552 -0.20734 2.16589 -0.21525 3.95608 -0.21557 6.99832 -0.21770 16.05542
0.1 -0.18630 0.47723 -0.20989 2.04705 -0.21070 3.15518 -0.21594 6.79163 -0.21745 15.11770

0.05 0.025 -0.33664 0.29684 -0.34216 1.38478 -0.34687 2.22916 -0.35037 4.84176 -0.35118 10.18286
0.05 -0.32390 0.55233 -0.34550 2.48866 -0.34682 4.21423 -0.34792 8.09808 -0.34914 16.14353
0.075 -0.31866 0.42907 -0.33918 2.58116 -0.34041 4.53962 -0.34644 10.35087 -0.35034 22.34342
0.1 -0.32452 0.57821 -0.33669 2.62008 -0.34382 5.20362 -0.34643 10.76827 -0.34634 21.27869

0.075 0.025 -0.41765 0.21261 -0.43070 1.14142 -0.43465 2.28080 -0.43728 4.62541 -0.43816 9.57794
0.05 -0.41226 0.49517 -0.43016 2.22917 -0.43729 4.09072 -0.43711 7.91928 -0.44006 17.84205
0.075 -0.41035 0.57524 -0.43316 3.24027 -0.43726 5.11599 -0.43433 10.47707 -0.43923 21.55867
0.1 -0.40325 0.52001 -0.42756 2.83587 -0.43379 5.31205 -0.43266 11.63008 -0.43582 25.09460

0.1 0.025 -0.49251 0.16253 -0.49814 0.94624 -0.50126 1.93484 -0.50360 3.98548 -0.50508 8.79043
0.05 -0.49530 0.39304 -0.49912 1.94190 -0.50125 3.65935 -0.50238 7.63380 -0.50425 17.88317
0.075 -0.47931 0.54316 -0.49485 2.29268 -0.50104 4.98767 -0.50378 10.93567 -0.50427 22.90261
0.1 -0.47330 0.44214 -0.49533 2.89089 -0.49896 5.15652 -0.50163 11.57889 -0.50280 24.79560

Table 1: Relative bias (RB) and relative mean squared error (RMSE) for the binomial model using various combinations of π, δ and N with k=25 and nl=10, l=1,2,…,N.
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reached approximately at N>100. Furthermore, smaller values of π are 
more affected by δ because they have larger RB values, but again this 
is observed in both estimators of π (the beta-binomial and the exact 
model). Therefore, the performance in RMSE and RB of the approach 
based on the beta-binomial model is good and has the advantage of 
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being more efficient than the exact distribution (Eq. 3).

Application
 In this section, we give two examples to illustrate the methodology.

Figure 2: Relative bias (RB) for the binomial model using various combinations of π, δ and N with k=25  and nl=10, l=1, 2, …, N.

Figure 3: Relative mean squared error (RMSE) for the beta-binomial model with various combinations of π, δ and N and with 
k=25 and nl=10, l=1, 2, …, N.
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Example: Transgenic maize estimation

In 2009, a study was conducted to estimate the proportion of 
genetically modified maize plants in farmers’ fields in the Sierra Juárez 
region of Oaxaca, Mexico (Table 3) [20]. Of an estimated total of 50 
fields in the Santa María Jaltianguis locality, 30 fields were sampled; 
300 leaves were collected from plants randomly chosen throughout 
each field. During leaf collection in each field, 4-mm leaf sections were 
bulked per field totaling 300 sections per bulk sampled. The remaining 
leaves were labelled and stored separately (a total of 9000 leaf samples 
were stored). The bulk samples comprising 4-mm sections of 300 

leaves each were subdivided into six pools of 50 leaves each. DNA was 
extracted, and the presence of 35S and NOSt sequences was determined 
by polymerase chain reaction (PCR) (Table 3) [20].

Each 300-leaf bulk was disaggregated into 50-leaf bulks (6 per field) 
for DNA extraction, and PCR amplification of HSP101, 35S and NOSt 
sequences was performed. Data on HSP101 and NOSt amplification are 
not shown. Results presented in Table 3 correspond to bulks that were 
confirmed as positive in at least two independent PCRs [19]. Fields 6, 
8, 11, 15, 25 and 27 had exactly one positive pool, field 17 had exactly 2 
positive pools and field 30 had 3 positive pools. 
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Figure 4: 
δ and N and with k=25 and nl=10, l=1, 2, …, N.

δ
0.025 0.05 0.075 0.1
π π π π

N  0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1
10 RB 0.02947 0.02258 0.04016 0.03863 0.13102 0.07173 0.09012 0.06763 0.24288 0.12071 0.11051 0.10479 0.33570 0.18675 0.14564 0.15245

RBE 0.03021 0.02474 0.04221 0.04513 0.12475 0.07008 0.09192 0.07777 0.22789 0.11552 0.10892 0.11093 0.31133 0.16957 0.13704 0.15162
RMSE 0.99578 0.98579 0.99114 0.90046 1.01075 1.02702 1.00010 0.92797 1.04519 1.01203 1.04029 0.95725 1.04125 1.06464 1.04087 1.01525

30 RB 0.00802 0.01036 0.01316 0.00871 0.03736 0.01877 0.01972 0.01997 0.06229 0.03655 0.02350 0.03446 0.08924 0.06558 0.06124 0.03677
RBE 0.00778 0.01194 0.01684 0.01474 0.03303 0.01777 0.02252 0.02682 0.05223 0.03117 0.02224 0.03797 0.07198 0.05321 0.05455 0.03376

RMSE 1.00309 0.98850 0.96432 0.93459 1.02808 1.00170 0.99492 0.95885 1.04456 1.04185 1.02271 1.00198 1.08761 1.08077 1.03345 1.05222
50 RB 0.01008 0.00247 0.00309 0.00439 0.01118 0.01067 0.01058 0.00521 0.03868 0.01866 0.02416 0.01035 0.06565 0.03432 0.03297 0.03320

RBE 0.00997 0.00401 0.00688 0.01069 0.00796 0.01036 0.01337 0.01225 0.03002 0.01382 0.02270 0.01336 0.04995 0.02394 0.02592 0.03031
RMSE 1.00058 0.98683 0.96670 0.93616 1.01788 1.00520 0.99666 0.96695 1.04735 1.03331 1.01907 1.01246 1.07330 1.05838 1.05647 1.04896

100 RB 0.00395 0.00342 -0.00092 -0.00203 0.00787 0.00838 0.00384 0.00221 0.01871 0.01858 0.01445 0.00792 0.04271 0.02876 0.01196 0.01248
RBE 0.00383 0.00502 0.00295 0.00423 0.00494 0.00790 0.00697 0.00957 0.01080 0.01356 0.01322 0.01130 0.02889 0.01841 0.00537 0.01005

RMSE 1.00121 0.98672 0.96740 0.94398 1.02159 1.00838 0.98715 0.96012 1.04804 1.03945 1.01994 1.00181 1.08931 1.06980 1.05148 1.04374
200 RB -0.00134 -0.00086 -0.00197 -0.00718 0.00898 -0.00057 -0.00191 -0.00822 0.01747 0.01051 0.00419 0.00133 0.02724 0.01607 0.00991 0.00703

RBE -0.00140 0.00076 0.00195 -0.00099 0.00610 -0.00095 0.00124 -0.00086 0.01031 0.00597 0.00307 0.00454 0.01496 0.00642 0.00388 0.00483
RMSE 1.00082 0.98763 0.96873 0.95629 1.02283 1.00717 0.99031 0.97972 1.05062 1.03692 1.02093 1.00423 1.08130 1.06762 1.05158 1.03280

Table 2: Relative bias (RB) and relative mean squared error (RMSE) for the beta-binomial model and Relative bias (RBE) for the exact distribution (Eq. 3), using various 
combinations of π, δ and N with k=25 and nl=10, l=1,2,…,N.

Relative bias (RB) for the beta-binomial model (in black) and for the true model (in red) with various combinations of  π, 
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in pure water overnight; the suspensions were then used as coating 
antigens to initiate the indirect enzyme-linked immunosorbent assay 
(ELISA) for detecting the presence of CGMMV. Fifteen sub-samples 
were randomly taken from the seed lot. Working samples were prepared 
using pool sizes (k) of 1, 2, 5, 10, and 100 seeds from each sub-sample 
(cluster). When k=1, 2, 5, or 10, 10 replicates ( )ln  of each were used 
in the experiment. However, if k=100 of a sample, only five replicates 
were used. The aim of the experiment was to estimate the proportion of 
infected seeds and its CI with group testing (Table 4). 

The MLEs based on Eq. 3 were 0.0 21ˆ 202π =  and   0.05ˆ 7920δ = , 
while the approximate MLEs using the beta-binomial approach were 

0.02026ˆ 7 π =BB  and    0.057821 δ̂ =BB . With the conventional binomial 
model, the approximate estimate was 0.00 0 9ˆ 6 2π =B . The approximate 
MLE based on the beta-binomial approach is almost identical to the 
exact MLE, whereas the binomial estimate is different. Also, the 
estimated correlation using the beta-binomial model is very close to 
that given by the exact MLE. Furthermore, the 95% confidence interval 
based on the profile likelihood of π using the exact MLE approach 
is (0.006897, 0.070214) and that of the beta-binomial approach is 
(0.006928, 0.068484), which indicates the similarity of the results of the 
two approaches. Indeed, the profile likelihood of this approach overlies 
the profile exactly, as shown in Figure 6.

Using the traditional binomial model, (0.002724, 0.009334) and 
(0.003181, 0.010005) are the 95% Wald and profile confidence intervals, 
respectively. The similarity of these confidence intervals is due to the 
assumption of independence among individuals (and also among 
pools) in each cluster and a large sample of 135 pools. Note that these 

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π

R
p(
π
)

Proposed model
BB approach
Binomial model

Figure 5: Relative profile likelihood function and 95% confidence interval 
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Location: 
Santa María 
Jaltianguis

x 0 1 2 3 4 5 6
Nx 22 6 1 1 0 0 0
Nx.s 26 1 1 1 1 0 0

Table 3: Number of pools comprised by leaf samples from Oaxaca, Mexico (2009), 
with a positive 35S PCR band based on 30 fields and 300 maize leaves per field. 
x indicates the number of positive pools, Nx is the observed frequency of each 
category at this location and Nx.s is the frequency of each category simulated as-

Cluster l, kl nl zl Cluster l, kl nl zl Cluster l, kl nl zl

1 1 10 0 6 2 10 0 11 10 10 4
2 1 10 1 7 5 10 0 12 10 10 0
3 1 10 0 8 5 10 1 13 100 5 0
4 2 10 1 9 5 10 1 14 100 5 0
5 2 10 2 10 10 10 2 15 100 5 0

Table 4: Data for detecting CGMMV in seed. kl is the pool size in cluster l, nl is 
the number of pools in cluster l, and zl is the number of positive pools in cluster l.

suming π=0.001324 and δ=0.045.

based on the profile likelihood of π for the transgenic maize example.

based on the profile likelihood of π for the seed health assay data.

The traditional binomial approach resulted in an estimated 
prevalence of transgenic plants of 0.001260; the exact MLEs were 

0.0 24ˆ 013π =  and  0.002ˆ 104 δ =  taking into account the correlation; 
the beta-binomial approach gave estimates of 0.001 4ˆ 32π =BB  and 

0.0 04ˆ 021δ = . Since the estimated correlation is low (  0.00ˆ 2104δ = ), this 
data set is not appropriate for illustrating the proposed methodology. 
For the purpose of illustration, we assumed that 0.001324 is the true 
prevalence (π), and that δ=0.045 is the true correlation between 
individuals, and we maintained the same number of clusters and 
individuals per cluster (frequencies obtained now are in row Nx.s of 
Table 3). Now the exact MLEs were 0.00 6 ˆ 148π =  and  0.0 91ˆ 194δ = , 
while the MLEs using the beta-binomial approach were 0.00150ˆ 5 π =BB  
and 0.0 81ˆ 198δ = . Again, we see that the approximate MLEs based on 
the beta-binomial model are very close to the exact MLEs. However, 
assuming there is no correlation between individuals and pools, the 
estimated prevalence is equal to 0.001142515. The 95% Wald and profile 
confidence intervals for π using the exact approach were (-0.000662, 
0.003635) and (0.000367, 0.012265), respectively; using the beta-
binomial approach, they were (-0.000701, 0.0003711) and (0.000369, 
0.012063), respectively, and using the binomial mode, they were 
(0.000435, 0.001850) and (0.000573, 0.002003), respectively [19]. The 
similarity between the results of the exact and beta-binomial models 
can be observed in more detail in the profile likelihood shown in Figure 5.

Example: Seed health assay

We used the data set given in Liu et al. [6] for detecting seed 
transmission of the cucumber green mottle mosaic virus (CGMMV). 
They selected seed lot (1877T-2B) of bottle gourds (Lagenaria siceraria 
L.) cv. “S-1” for testing. Test seeds of the working samples were soaked 
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confidence intervals have a narrow width because they ignore extra 
binomial variation.

The 95% Wald confidence interval for π is (-0.002029, 0.042472) 
with the exact MLE approach, while with the approximate beta-binomial 
approach it is (-0.001769, 0.042303). As before, the exact MLE and the 
approximation based on the beta-binomial approach produced similar 
results. It is important to point out that the width of our confidence 
intervals is larger than the width adjusted for overdispersion that Liu et 
al. [6] reported. This can be explained by the fact that Liu et al. [6] used 
a quasi-likelihood approach to model the number of positive pools by 
cluster with the assumption that the individuals within each cluster are 
independent binary variables having the same prevalence. In contrast, 
our approach is based on the assumption that the responses of all 
individuals within each cluster are equally correlated binary variables 
and, as a result, we take into account the induced correlation between 
individuals and pools.

Conclusions 
When we obtained a sample of N independent clusters from a finite 

population of clusters, we sampled individuals within each selected 
cluster and randomly allocated these individuals to nl pools of size 
kl individuals for the detection or estimation of a particular disease 
(positive). To produce correct estimations, in this case it is important 
to take into account the correlation between units and pools. For the 
purpose of estimation, it is important to use the probability mass 
function (pmf) of the number of positive pools in a cluster derived in 
this study to correctly estimate the proportion of interest, because it 
takes into account the fact that the pools formed in each cluster are 
correlated. Also, we showed that if we use the binomial distribution 
to estimate the proportion of interest, the results will present a large 
bias and very inflated mean square errors when N ≥ 30. This result 
agrees with the paper of Hung and Swallow [7], who concluded that 
“for clustered and correlated individuals in each cluster even using 
a small pool size offers a little robustness.” Since our methods (exact 
and approximate) induce correlations between individuals with a beta 
distribution, they are valid for hierarchical sampling because they 
take into account the correlation between individuals and pools in 
each cluster. This is an advantage over the approach proposed by Liu 
et al. [6], which is not appropriate for a hierarchical sampling process 
because they assumed that the individuals in each cluster are i.i.d 
binomial distributed and used a quasi-likelihood approach to correct 
for the presence of overdispersion. 

For this reason, it is important to use the pmf given in Eq. 3 to 
obtain correct estimations of the proportion in a group testing context 
when the responses are correlated. However, using Eq. 3 when the 
sample size increases is inefficient due to the term involving the sum 
that it contains. For this reason, we studied an approach based on 
the beta-binomial model, which according to the simulation study 
performed, produces results that are very close to those obtained 
using the exact distribution [Eq. 3] with the great advantage that the 
approach based on the beta-binomial model is computationally more 
efficient, although we still need to use Eq. 1 and Eq. 2 to estimate the 
corresponding parameters required for the beta-binomial model. In 
addition, we control the induced correlation because we get a closed 
form of the probability of a positive pool and the correlation between 
any two pools.
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Appendix A 

Suppose that conditionally on p , Y  has a Bernoulli distribution with parameter p , and that 
p  has a beta distribution with parameters /α π θ=  and (1 ) /β π θ= − . The mean and 

variance of ,Y  respectively, are:  
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Then, if conditionally on p , iY  and jY  are independent Bernoulli variables with parameter 

p , the unconditional correlation of iY  and jY  is given by 
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Since ljZ  is a binary random variable and ( )| 1 (1 )k
ljE Z p p= − − ,  

( ) ( ) ( )( ) 1 |k
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This last equality is true because ( , )(1 ) , 
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Now, since all the individuals within a cluster are independent conditional on p , 
subsequently any two pools are as well, i.e., ' |     'lj lj
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Thus the correlation between two any pools in the same cluster ( l ) is  
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, which corresponds to the probability that a pool is 

positive as if it were made up of 2k  individuals. 
 
Appendix B 

Note that conditionally on p , 
1

ln
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=∑  have binomial distribution with parameters 

( )1 1 kP p= − −  and ln  because all the individuals within a cluster are conditionally 
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distribution of lZ  is given by 
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Appendix C 
It is well known that ( )Γ 1 Γ( )x x x+ = . So by recursively applying these properties of the 
gamma function, we get 
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Here, it is easy to see the following: 
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Appendix D 
To obtain the gradient of ( ), | ,l ll zπ θ  first let c  be a constant and ( )0 ( ) Γ /x x xψ = ∂ ∂  be the 
first derivate of the usual gamma function. Note that 
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where : ( )l
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Hence, using the parameterization / (1 )θ δ δ= −  
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