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Introduction
In this paper we study the problem

2(x) inuu e f
u g on

λ −∆ = + Ω ⊂


= ∂Ω

              (1)

Where Ω  is a bounded domain, λ  is a positive parameter,
( )g L∞∈ ∂Ω  and ( )qf L∈ Ω for some q>1.

Equation of Liouville-type is used in this study, it has the form:
u 2(x)e (x) in

0
u v f

u on
−∆ = + Ω ⊂


= ∂Ω



q(x) L ( )v ∈ Ω  For some q>1.

This related equation has been received much attention in the recent 
years. On the one hand, this is due to the wide range of application 
of this equation: it used in astrophysics [1] and combution theory [2], 
it is also related to the prescribed Gaussian curvature problem in 
Riemannian geometry [3], to the mean _led limit of vortices in Euler 
ows [4], to onsager's formulation in statistical mechanics [5], to the 
Keller-Siegel system of chemotaxis [6], to the Chern-Simon-Higgs 
gauge theory [7, 8], and it has many other physical applications. On the 
other hand, Liouville equation is mathematically appealing since it has 
an interesting solution structure [9-16].

Preliminaries
Assume 2Ω⊂   is a bounded domain and let u be a solution of 

2(x) inu f
u g on

−∆ = Ω ⊂


= ∂Ω



  (2)

With 1( ).set || f ||1 || (x) | dxf L f
Ω

∈ Ω = ∫  

Theorem 2.1 For every (0, 4 )δ π∈ we have 
2

2

1

(4 ) | u(x) | 4exp[ ] (diam )
|| ||

dx
f

π δ π
δΩ

−
≤ Ω∫ (3)

Proof: Let 
1
2

R diam= Ω  so that 
RBΩ⊂  for some ball of radius R.

Extend f to be zero outside Ω  and set, for 2x∈

1 2(x)) log( ) | f(y) | dy
2 | x y |RB

Ru
π

=
−∫

so that

2(x) | f |,onu−∆ = 

note that (x) 0for x Ru B≥ ∈ since 
2 1 ,

| x y | R
R x y B≥ ∀ ∈
−

it follows

from the maximum principle that | u | u on≤ Ω  and thus

1 1

(4 ) | u(x) | (4 )u (x)exp[ ] exp[ ]dx
|| f || || f ||RB

dxπ δ π δ
Ω

− −
≤∫ ∫

using Jensen in quality

( (y) (y)dy) (y) ( (y))dyF w w Fϕ ϕ≤∫ ∫
With 

1

| f(y) | (4 ) 2(t) expt, w(y) (y) log
|| f || 2 | x y |

RF and π δϕ
π
−

= = =
−We obtain

2
2

1 1

(4 ) u (x) 2 | f(y) |exp[ ] ( )
|| || | x y | || f ||R R RB B B

Rdx dx dy
f

δ
ππ δ −−

≤
−∫ ∫ ∫

2
2

1 1

(4 ) u (x) | f(y) | 2exp[ ] [ ( ) ]
|| || || f || | x y |R R RB B B

Rdx dx dy
f

δ
ππ δ −−

≤
−∫ ∫ ∫

but, for Ry B∈  we have 

2 2 22 2 22 2 4( ) ( ) (diam )
| x y | | x |R RB B

R Rdx dx
δ δ
π π π

δ

− −

≤ = Ω
−∫ ∫

and the estimate (3) follows.

Corollary 2.2 Let u be a solution of (2) with 1( )f L∈ Ω  Then for 
every constant k>0 

|u| 1( )ke L∈ Ω
Proof: Let 10

k
ε< <  We may split f as f=f1+f2 with 
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Abstract
In this paper we study a family of nonlinear Elliptic problems in two dimensions, we give some estimates for the 

solutions of this problem, and we decompose it on two problems, the first is the Poisson's equation and the second 
is the Liouville equation. 
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1 1 2|| f || ( )and f Lε ∞< ∈ Ω

Write u = u1 + u2 where ui are the solutions of

0
i i

i

u f in
u on
−∆ = Ω

 = ∂Ω

choosing, for example , (4 1)δ π= − in Theorem (2.1) we find

1

1 1

| u (x) |exp[ ]
|| f ||Ω

< ∞∫
And thus

1exp[k | u |]
Ω

< ∞∫
The conclusion follows since

1 2| u | | u | | u |≤ +

And 2 ( )u L∈ ∞ Ω

Statement of the Results
Let u satisfy the nonlinear equation (Liouville Equation)

u(x)e
0

u v in
u on

−∆ = Ω


= ∂Ω
                  (4)

Where Ω is a bounded domain in 2


 and v(x) a given function 
on Ω

Corollary 3.1 suppose u is a solution of (4) with ( )pv L∈ Ω and 
( )u pe L ′∈ Ω  for some 1 p< ≤ ∞ Then ( )u L∞∈ Ω

Proof: By corrollary (2:2), we know that 1 ( ), k 0,kue L∈ Ω ∀ >  

i.e., ( )u re L∈ Ω

r∀ < ∞  It follows that ( ) 0u pve L δ δ−∈ Ω ∀ >  if 

( ) r if .u rp and ve L p< ∞ ∈ Ω ∀ < ∞ = ∞  Standard elliptic estimates 

imply that ( )u L∞∈ Ω

Resolution of the equation (x)uu e fλ−∆ = +

The Corollary (3:1) still holds for a solution u of

(x) inuu e f
u g on

λ−∆ = + Ω


= ∂Ω
                    (5)

With 2Ω⊂  is a bounded domain, ( )g L∈ ∞ ∂Ω  and ( )qf L∈ Ω  
for some q>1.

Let w be a solution of

(x) inw f
w g on
−∆ = Ω
 = ∂Ω

                   (6)

So that ( )w L∞∈ Ω

The function k=u-w satisfies:

w k( e )e
0

k in
k on

λ−∆ = Ω


= ∂Ω
                    (7)

The solution k is of the problem of liouville (7). Thus the solution 
of the problem (5) is u=k+w with w the solution of the problem (6) and 
k the solution of the problem (7).

Remark 3.2

Corollary (3:1) is not valid for p=1 for that we have this example.

Example 3.3 Let 0 < a < 1. The function log(log )eu a
r

= − , with 
| x |r =  satisfies

1

0

uu ve in B
u on

−∆ = Ω =


= ∂Ω
                 (8)

With

2 a2(log )

av er
r

−
= −

Note that 1 u( ),e ( )v L L∈ Ω ∈ ∞ Ω  and nevertheless ( )u L∞∉ Ω  
since (x) as x 0u →−∞ → . The same function u with a<0 provides 
an example where u satisfies (8) with 1 1( ), ( )uv L ve L∈ Ω ∈ Ω  and 
nevertheless ( )u L+ ∞∉ Ω  since (x) as x 0u →+∞ →
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