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Abstract 
The theory of solving linear and nonlinear ill-posed problems is 
advanced greatly today (see, e.g., [1, 2]). A general scheme for 
constructing regularizing algorithms using Tikhonov’s variational 
approach is considered in [2]. It is very well known that ill-posed 
problems have unpleasant properties even in the cases when stable 
methods (regularizing algorithms) of their solution exist. E.g., it is 
impossible to estimate an error of an approximate solution of an ill-
posed problem without very strong assumptions concerning the 
unknown solution. The following assumptions are under 
consideration: 1) the unknown solution is an element of the given 
compact set; 2) the unknown solution is sourcewise represented with 
a compact operator. For these cases the theory of error estimation or 
a posteriori error estimation was developed and applied for solving 
operator equations including integral equations and some inverse 
problems for differential equations. Numerical methods for solving 
ill-posed problems and their error estimation are based on convex 
programming. The results above were used for the solution of 
practical problems in astrophysics, acoustics, physical 
chemistry, electron microscopy, nuclear physics, etc. 
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1. Introduction 
Let us consider an operator equation: 

uAz = ,                  (1) 

where A  is a linear operator acting from a Hilbert space Z 
into a Hilbert space U. It is required to find a solution of the 
operator equation z corresponding to a given inhomogeneity 
(or right-hand side) u. 
This equation is a typical mathematical model for many 
physical so called inverse problems if it is supposed that 
unknown physical characteristics z cannot be measured 
directly. As results of experiments, it is possible to obtain only 
data u connected with z with help of an operator A.  
French mathematician J. Hadamard formulated the following 
conditions of well-posedness of mathematical problems.  Let 

us consider these conditions for the operator equation above. 
The problem of solving the operator equation is called to be 
well-posed (according to Hadamard) if the following three 
conditions are fulfilled: 
1) the solution exists  Uu∈∀ ; 
2) the solution is unique; 
3) if uun → , nn uAz = , uAz = , then zzn → . 
The condition 2) can be realized then and only then the 
operator A is one-to-one (injective). The conditions 1) and 2) 
imply that an inverse operator 1−A  exists, and its domain 
D( 1−A ) (or the range of the operator A R(A)) coincides with 
U. It is equivalent to that the operator A is bijective. The 
condition 3) means that the inverse operator 1−A  is 
continuous, i.e., to “small” perturbations of the right-hand side 
u “small” changes of the solution z correspond. Moreover, J. 
Hadamard believed that well-posed problems only can be 
considered while solving practical problems. However, there 
are well known a lot of examples of ill-posed problems that 
should be numerically solved when practical problems are 
investigated. It should be noted that stability or instability of 
solutions depends on definition of the space of solutions Z. 
Usually, a choice of the space of solutions (including a choice 
of the norm) is determined by requirements of an applied 
problem. A mathematical problem can be ill-posed or well-
posed depending on a choice of a norm in a functional space.   
Numerous inverse (including ill-posed) problems can be 
found in different branches of physics.  E.g., an astrophysicist 
has no possibility to influent actively on processes in remote 
stars and galaxies. He is induced to make conclusions about 
physical characteristics of very remote objects using their 
indirect manifestations measured on the Earth surface or near 
the Earth on space stations. Excellent examples of ill-posed 
problems are in medicine. Firstly, let us point out 
computerized tomography. A lot of applications of ill-posed 
problems are in geophysics. Indeed, it is easier and cheaper to 
judge about what is going under the Earth surface solving
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inverse problems than drilling deep boreholes. Other examples 
are in radio astronomy, spectroscopy, nuclear physics, plasma 
diagnostics, etc., etc. 

 
2. Regularizing algorithms 
In 1963 A.N. Tikhonov (see, e.g., [1, 2] formulated a famous 
definition of the regularizing algorithm (RA) that is a basic 
conception in the modern theory of ill-posed problems. 
Definition. Regularizing algorithm (regularizing operator) 

)(),( δδδδ uRuR ≡  is called an operator possessing two 
properties: 

1) )( δδ uR  is defined for any 0>δ , Uu ∈δ ,  and is 

mapping U×∝+ ),0(  into Z; 

2) For any Zz∈  and for any Uu ∈δ  such that 

uAz = , 0, >≤− δδδuu , 
0

)(
→

→=
δδδδ zuRz .  

A problem of solving an operator equation is called to be 
regularizable if there exists at least one regularizing algorithm. 
Directly from the definition it follows that if there exists one 
regularizing algorithm then number of them is infinite.  

At the present time, all mathematical problems can be divided 
into following classes: 

1) well-posed problems; 
2) ill-posed regularizable problems; 
3) ill-posed nonregularizable problems. 
All well-posed problems are regularizable since it can be 

taken 1)( −= AuR δδ . Let us note that knowledge of 0>δ  
is not obligatory in this case. 

Not all ill-posed problems are regularizable, and it depends on 
a choice of spaces Z, U at that. Russian mathematician L.D. 
Menikhes constructed an example of an integral operator with 
a continuous closed kernel acting from C[0,1] into L2[0,1] 
such that an inverse problem (that is, solving a Fredholm 
integral equation of the 1st kind) is nonregularizable. It 
depends on properties of the space C[0,1]. Below it would be 
shown that if Z  is the Hilbert space, and an operator A is 
bounded and injective, then the problem of solving of the 
operator equation is regularizable. This result is valid for some 
Banach spaces, not for all (for reflexive Banach spaces only). 
In particular, the space C[0,1] does not belong to such spaces. 

An equivalent definition of the regularizing algorithm is 
following. Let be given an operator (mapping) )( δδ uR  

defined for any 0>δ , Uu ∈δ , and reflecting 

U×∝+ ),0(  into Z. An accuracy of solving an operator 

equation in a point Zz∈  using an operator )( δδ uR  under 
condition that the right-hand side defined with an 
error 0>δ  is defined as  

||||sup),,(
,||:||

zuRzR
uAzuuUu

−=∆
=≤−∈

δδ
δ

δ
δδ

δ . An operator 

)( δδ uR  is called a regularizing algorithm (operator) if for 

any Zz∈  
0
0),,(

→
→∆
δδ δ zR . This definition is equivalent 

to the definition above. Similar definitions can be formulated 
if the operator is specified with an error. 

It is very important to get an answer to the following question: 
is it possible to solve an ill-posed problem (i.e., to construct a 
regularizing algorithm) without knowledge of an error level 
δ . Evidently, if a problem is well posed then a stable method 
of its solution can be constructed without knowledge of an 
error δ . E.g., if an operator equation is under consideration 
then it can be taken uAzuAz 11 −− =→= δδ  as 0→δ . 
It is impossible if a problem is ill posed. The next very 
important property of ill-posed problems is impossibility of 
error estimation for a solution even if an error of a right-hand 
side of an operator equation is known. These basic results 
were obtained by A.B. Bakushinsky  
From the definition of the regularizing algorithm it follows 
immediately if one exists then infinite number of them exists. 
While solving ill-posed problems it is impossible to choose a 
regularizing algorithm that finds an approximate solution with 
the minimal error. It is impossible also to compare different 
regularizing algorithms according to errors of approximate 
solutions. Only including a priori information in a statement 
of the problem can give such a possibility, but in this case a 
reformulated problem is well-posed in fact. We will consider 
examples below. 

 
3. ILL-Posed problems on compact sets 
Let us consider an operator equation (1)               
in the case when A is a linear injective operator acting 
between normed spaces Z and U. Let z  is an exact solution of 
an operator equation, uzA = , ⎯u is an exact right-hand side, 
and it is given an approximate right-hand side such that 

0, >≤− δδδuu . 

A set }:{ δδδδδ ≤−= uAzzZ  is a set of approximate 

solutions of the operator equation.  For linear ill-posed 
problems 

 ∞=∈−= },||:sup{|| 2121 δδ ZzzzzZdiam  

for any 0>δ  since the inverse operator 1−A  is not 
bounded. 
The question is that: is it possible to use a priori information 
in order to restrict a set of approximate solutions or (it is 
better) to reformulate a problem to be well-posed. A.N. 
Tikhonov proposed a following idea: if it is known the set of 
solutions is a compact then a problem of solving an operator 
equation is well-posed under condition that an approximate 
right-hand side belongs to the image of  the compact. A.N. 
Tikhonov proved this assertion using as basis the following 
theorem. 

Theorem. Let an injective continuous operator A  be 
mapping: UADZD ∈→∈ , where UZ , are normed 
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spaces, D is a compact. Then the inverse operator 1−A  is 
continuous on AD . 
The theorem is true for nonlinear operators also. So, a 
problem of solving an operator equation is well-posed under 
condition that an approximate right-hand side belongs to 
AD . This idea made possible to M.M. Lavrentiev to 

introduce a conception of a well-posed according to A.N. 
Tikhonov mathematical problem (it is supposed that a set of 
well-posedness exists), and to V.K. Ivanov to define a 
quasisolution of an ill-posed problem. 

 The theorem above is not valid if )(ARu ∉δ . So, it should 
be generalized. 

Definition. An element Dz ∈δ such that 

δδ uAzz
Dz

−=
∈
minarg  is called a quasisolution of an 

operator equation on a compact D 
( δδ uAzz

Dz
−=

∈
minarg  means that 

}:min{ DzuzAuzA ∈−=− δδδ ). 

A quasisolution exists but maybe is nonunique. Though, any 
quasisolution tends to an exact solution: zz →δ  as 0→δ . 

In this case, knowledge of an error δ  is not obligatory. If δ is 
known then:  

1) any element Dz ∈δ  satisfying an inequality : 

δδδ ≤− uAz , can be chosen as an approximate solution 

with the same property of convergence to an exact solution  (δ-
quasisolution); 

2) it is possible to find an error of an approximate 
solution solving an extreme problem: 

find max||z-zδ|| maximizing on all Dz ∈  satisfying an 

inequality: δδ ≤− uAz  (it is obviously that an exact 

solution satisfying the inequality). 
Thus, the problem of quasisolving an operator 

equation does not differ strongly from a well-posed problem. 
A condition of uniqueness only maybe does not satisfy. 
If an operator A is specified with an error then the definition 
of a quasisolution can be easily modified.  
If Z and U are Hilbert spaces then many numerical methods of 
finding quasisolutions of linear operator equations are based 
on convexity and differentiability of the discrepancy 

functional 
2

δuAz − . If D is a convex compact set then 

finding a quasisolution is a problem of convex programming. 
The inequalities written above and defining approximate 
solutions can be used as stopping rules for minimizing the 
discrepancy procedures. The problem of calculating errors of 
an approximate solution is a nonstandard problem of convex 

programming because it is necessary to maximize (not to 
minimize) a convex functional. 
Some sets of correctness are very well known in applied 
sciences. First of all, if  an exact solution belongs to a family 
of functions depending on finite number of bounded 
parameters then the problem of finding parameters can be 
well-posed. The same problem without such a priori 
information can be ill-posed.  
If an unknown function z(s), s∈[a, b], is monotonic and 
bounded then it is sufficient to define a compact set in the 
space L2[a, b]. After finite-dimensional approximation the 
problem of finding a quasisolution is a quadratic programming 
problem. For numerical solving, known methods such as a 
method of projections of conjugate gradients or a method of 
conditional gradient can be applied. Similar approach can be 
used also when the solution is monotonic and bounded, or 
monotonic and convex, or has given number of maxima and 
minima. In these cases an error of an approximate solution can 
be calculated.  

 
4. ILL-posed problems with source wise represented 

solutions 
Let an operator A  be linear injective continuous and  
mapping UZ → ; UZ ,  normed spaces. Let the following a 
priori information be valid: it is known that an exact solution 
z  for an equation zAu =  is represented in the form 

zvB = , Vv∈ ; ZVB →: ; B  is an injective completely 
continuous operator; V is a Hilbert space. Let suppose that an 

approximate right-hand side δu  such that δδ ≤− uu , and 

its error 0>δ  is known. Such a priori information is typical 
for many physical problems.   
V.K. Ivanov and I.N. Dombrovskaya proposed an idea of a 
method of extending compacts. Let describe a version of this 
method below.  
Let preset an iteration number n=1, and define a closed ball in 
the space V: }:{)0( nvvSn ≤= . Its image 

)0(nn SBZ =  is a compact since B is a completely 
continuous operator and V is a Hilbert space. After that let us 
find 

))0((

min
nSBz

uAz
∈

− δ , where δu  is given approximate right-

hand side 0, >≤− δδδuu . Existence of the minimum is 

guaranteed by compactness of nZ  and continuity of A. If 

))0((

min
nSBz

uAz
∈

− δ δ≤ , then the iteration process should be 

stopped, and the number nn =)(δ  defined. An approximate 
solution of the operator equation can be chosen as any element 

))0((: )()()( δδδ nnn SBzz ∈  satisfying  
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δδδ ≤− |||| )( uAzn . If δδ >−
∈ ))0((

min
nSBz

uAz  then the 

compact should be extended. For this purpose n changes to n 
+1, and the process repeats. 
Theorem [3]. The process described above converges: 

+∞<)(δn . There exists 00 >δ  (generally speaking, 

depending on z ) such that )()( 0δδ nn =  ],0( 0δδ ∈∀ . 

Approximate solutions )(δnz  strongly converge to the exact 

solution z  as 0→δ . 

It is clear why the method is referred to as “an extending 
compacts method”. It appears that using this method so called 
an a posteriori error estimate can be defined. It means that 
there exists a function ),( δχ δu  such that 0),( →δχ δu  

as 0→δ , and ||||),( )( zzu n −≥ δδ δχ  at least for 

sufficiently small 0>δ . As an a posteriori error estimate 
}||||,||:max{||),( )()( δδχ δδδδ ≤−∈−= uAzZzzzu nn

 can be taken. 
An a posteriori error estimate is not an error estimate in a 
general sense, error estimates cannot be constructed for ill-
posed problems. However, for sufficiently small 0>δ  
(notably ],0( 0δδ ∈∀ )   an a posteriori error estimate is an 
error estimate for a solution of an ill-posed problem if an a 
priori information about source wise represent ability is 
available. 
 This approach was generalized to cases when both operators 
A and B are specified with errors, also to nonlinear ill-posed 
problems under condition of sourcewise representation of an 
exact solution. 
Numerical methods for solving linear ill-posed problems 
under condition of sourcewise representation were 
constructed, including methods for an a posteriori error 
estimation. To use a sequence of natural numbers as radii of 
balls in the space V is not obligatory. Any unbounded 
monotonically increasing sequence of positive numbers can be 
taken. 
 
5. Applications 
Methods for solving ill-posed problems on functional compact 
sets of special structure (monotonic functions, convex 
functions, monotonic convex functions, piecewise convex-
concave functions) so as under condition of sourcewise 
representability were effectively applied to solution of ill-
posed problems in astrophysics, acoustics, physical chemistry, 
electron  microscopy, nuclear physics, etc.  
On the picture 1 it can be found an example of solving an 
inverse problem for 2D heat conductivity equation under 
condition that the initial temperature is 2D concave function. 
In this case it is possible to calculate not only an approximate 
solution but also functions that define errors of the solution 
from above and from below. The first function is on the 
picture. 

Many other practical applications and numerical examples can 
be found in [4-10]. 
 

 
Picture 1 

 
6. Conclusion 
We have described in brief fundamentals of the theory of ill-
posed problems and error estimation if a priori information is 
available. 
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